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Both the trapping geometry and the interatomic interaction strength of a dilute ultra-
cold fermionic gas can be well controlled experimentally. When the interactions are tuned
to strong attraction, Cooper pairing of neutral atoms takes place and a BCS superfluid is
created. Alternatively, the presence of Feshbach resonances in the interatomic scattering
allow populating a molecular (bound) state. These molecules are more tightly bound than
the Cooper pairs and can form a Bose–Einstein condensate (BEC). In this contribution,
we describe both the BCS and BEC regimes, and the crossover, from a functional integral
point of view. The path-integral description allows to derive the properties of the super-
fluid (such as vortices and Josephson tunneling) and follow them as the system is tuned
from BCS the BEC.
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1 The ultracold dilute Fermi gas

When a dilute Bose gas is cooled below the degeneracy temperature, the bosonic
atoms all condense in the same one-particle state and a Bose–Einstein condensate
forms. This has been convincingly demonstrated with magnetically trapped, evap-
oratively cooled atomic gases for a multitude of atom species. Moreover, magnetic
or optical traps can be equally well loaded with fermionic isotopes, such as 6Li or
40K. These atoms do not undergo Bose–Einstein condensation, but fill up a Fermi
sea, as has been demonstrated through the observation of the Pauli blocking effect
[1] and through a measurement of the total energy of the Fermi gas [2]. Very soon
after the observation of a degenerate Fermi sea of atoms, researchers embarked
upon the quest to achieve Cooper pairing in the dilute Fermi gas. Indeed, for met-
als we know that the Fermi sea is unstable with respect to Cooper pair formation.
So, if the (neutral) atoms in the dilute gas attract each other, a similar instability
towards a paired state is to be expected.

The interatomic interactions in ultracold gases are remarkable for two rea-
sons. Firstly, the collisions between the atoms can be satisfactorily character-
ized by a single number, the s-wave scattering length as. For low-energy colli-
sions, the effective interaction potential between atoms becomes a contact poten-
tial, V (r − r′) = gδ(r − r′), where g = 4πh̄as/m with m the mass of the atoms.
The scattering length can be both positive (leading to interatomic repulsion) or
negative (attraction).
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Secondly, this scattering length can be tuned by an external magnetic field
when a Feshbach resonance is present [3]. This resonance occurs when the energy
of a bound (molecular) state in a closed scattering channel becomes equal to the
energy of the colliding atoms in the open scattering channel. The different channels
correspond here to different hyperfine states of the trapped atoms, and the distance
in energy between these states can be tuned with a magnetic field.

In what follows, we will consider a trapped mixture of 40K atoms in the
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hyperfine states. This potassium isotope is fermionic, and the trapped
states display a Feshbach resonance at B = 202.1 Gauss. When the scattering
length is tuned to a negative value, the atoms attract and Cooper pairs can form
leading to a BCS regime. The critical temperature for Cooper pairing can be raised
by making the scattering length more strongly negative. When the scattering length
is large and positive, the molecular state in the closed channel is populated, and
molecules appear that can be Bose–Einstein condensed (the BEC regime). The
adaptability of the scattering length allows bringing the gas from the BCS regime
into the BEC regime or vice versa, and allows studying the interesting intermediate
‘crossover’ regime.

The first experimental realization of superfluidity of a Fermi gas in the molec-
ular BEC regime came in 2003 [4]. A condensate of molecules was convincingly
observed. The detection of superfluidity in the BCS regime however is much more
subtle. In an initial experiment [5], the superfluid behavior was derived from the
hydrodynamic nature of the expansion of the cloud, as compared to a ballistic ex-
pansion expected for a non-superfluid weakly-interacting Fermi gas [6]. However,
this did not constitute unambiguous proof, since the Fermi gas was in the strongly
interacting regime. Subsequent experiments probed superfluidity by mapping the
pair density onto a molecular condensate density [7] or by spectroscopically mea-
suring the gap [8]. Yet although these experimental methods clearly demonstrate
pairing, they do not unambiguously demonstrate superfluid behavior.

The very recent observation of a lattice of quantized vortices in resonant Fermi
gases [9] constitutes the first clear demonstration of superfluidity in the BEC/BCS
regime. Observation of these vortices well in the BCS regime may be difficult
since the fermionic density penetrates in the core of the vortex in the BCS regime,
leading to a loss of contrast in direct imaging [10, 11, 9]. Another possibility to
demonstrate superconductivity is though the observation of the Josephson effect
[12] in optical lattices. These optical lattices are periodic potentials formed by two
counterpropagating laser beams, for example in the z-direction:

Vopt(z) = sER sin2(2πz/λ) , (1)

where λ is the laser wave length, ER = h2/(2mλ2) is the recoil energy, and s is the
laser intensity expressed in units of the recoil energy. Typically, s = 1−20, λ = 795
nm. The atoms collect in the valleys of the optical lattice and form a ”stack of
pancakes”, illustrated in Fig. 1. Typically, there are on the order of a few 100
‘pancakes’ with on the order of 1000 atoms each. When a superfluid is loaded in
such an optical lattice, the system corresponds to an array of Josephson junctions.
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Fig. 1. Two counterpropagating laser beams form a periodic potential for the atoms.
Such optical lattices can be loaded with quantum gases, forming a stack of quasi-two

dimensional clouds.

In such an array, the superfluid gas can propagate whereas the normal state gas is
pinned. This has already been demonstrated for bosonic atoms [13], and has been
predicted theoretically for fermionic atoms [12, 14].

2 Path-integral treatment of the BEC/BCS crossover

The partition function for the atomic Fermi gas is given by the functional inte-
gral

Z =

∫

Dψ̄x,τ,σDψx,τ,σ exp {−S/h̄} (2)

with an action

S =

∫ h̄β

0

dτ

∫

dx
∑

σ

ψ̄x,τ,σ

(

h̄
∂

∂τ
−
h̄2

2m
∇2

x
− µ

)

ψx,τ,σ+

+

∫ h̄β

0

dτ

∫

dx gψ̄x,τ,↑ψ̄x,τ,↓ψx,τ,↓ψx,τ,↑ .

(3)

The fermionic fields ψx,τ , ψ̄x,τ are Grassman variables. The interaction potential,
as discussed in the previous section, is a contact potential with experimentally
adjustable strength g. The two hyperfine states are denoted by σ =↑, ↓. The
functional integral over the Grassman variables can be performed analytically only
for an action that is quadratic in ψx,τ , ψ̄x,τ . In order to get rid of the quartic
term in (3) we perform a Hubbard–Stratonovic (HS) transformation, introducing
auxiliary bosonic fields ∆̄x,τ and ∆x,τ :

Z ∝

∫

Dψ̄x,τ,σDψx,τ,σ

∫

D∆̄x,τD∆x,τ exp {−S/h̄} (4)
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with

S =

∫ h̄β

0

dτ

∫

dx
∑

σ

ψ̄x,τ,σ

(

h̄
∂

∂τ
−

h̄2

2m
∇2

x
− µ

)

ψx,τ,σ−

−

∫ h̄β

0

dτ

∫

dx

(

∆̄x,τψx,τ,↓ψx,τ,↑ + ∆x,τ ψ̄x,τ,↑ψ̄x,τ,↓ +
∆̄x,τ∆x,τ

g

)

.

(5)

Indeed, performing the functional integral over the HS fields ∆̄x,τ , ∆x,τ in (5)
brings us back to (3). Our goal is an investigation of the superfluid properties of the
ultracold Fermi system. For a straightforward hydrodynamic interpretation of the
Hubbard–Stratonovic fields, it is advantageous to work with |∆x,τ | and θx,τ . These
are related to the original HS field by ∆x,τ = |∆x,τ | exp(iθx,τ ). We have restricted
the functional integral to ∆̄x,τ = (∆x,τ )∗ without neglecting any field configurations

of importance to the final result. The hydrodynamic interpretation of |∆x,τ |
2

is
the density of fermion pairs, whereas h̄∇xθx,τ/m = vx,τ can be interpreted as
the superfluid velocity field. Performing this change of variables in the functional
integral yields

Z ∝

∫

Dψ̄x,τ,σDψx,τ,σ

∫

D |∆x,τ | Dθx,τ exp {−S/h̄} , (6)

with

S =

∫ h̄β

0

dτ

∫

dxψ̄x,τ,σ

(

h̄
∂

∂τ
−
h̄2

2m
∇2

x
−

1

2
vx,τ · ih̄∇x − µ+

+
ih̄

2

∂θx,τ

∂τ
−

1

4
(ih̄∇x · vx,τ ) +

1

8
mv2

x,τ

)

ψx,τ,σ−

−

∫ h̄β

0

dτ

∫

dx

(

|∆x,τ |ψx,τ,↓ψx,τ,↑ + |∆x,τ | ψ̄x,τ,↑ψ̄x,τ,↓ +
|∆x,τ |

2

g

)

.

(7)

De Palo et al. [17] suggest at this point to introduce additional collective quantum
variables to extract the fermionic density. However, care must be taken, since when
additional collective quantum fields are present the problem of double-counting
poses itself [18], and variational perturbation theory has to be applied to avoid
double-counting [19]. However, in the present case it is not necessary to explicitly
introduce the additional collective variables to obtain information about the atomic
density profile [20]. In (6) the integration over the fermionic variables can be taken,
leading to

Z ∝

∫

D |∆x,τ | Dθx,τ exp {−Seff/h̄} (8)

with an effective action

Seff = −Tr

[

ln

(

−G−1

h̄

)]

−

∫ h̄β

0

dτ

∫

dx
|∆x,τ |

2

g
, (9)
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where the inverse propagator can be written as the sum of an inverse ‘free fermion
propagator’ and a term arising from the superfluidity:

−G−1 = −G−1
0 + F .

The inverse free fermion propagator is

−G−1
0 = σ0

(

h̄
∂

∂τ

)

+ σ3

(

−
h̄2

2m
∇2

x
− µ

)

and the superfluid part of the propagator can be written as

F = σ0

(

− 1
2
vx,τ · ih̄∇x

)

− σ1 (h̄ |∆x,τ |) + σ3

(

ih̄

2

∂θx,τ

∂τ
−

ih̄

4
∇x · vx,τ +

m

8
v2
x,τ

)

.

In these expressions, σ0, . . . , σ3 are the Pauli matrices. Note that if we have an
external potential Vext(x) present, for example the optical potential or the magnetic
trap, this appears in −G−1

0 as an extra term +σ3Vext(x). The effective action (9)
depends on the fields |∆x,τ |, θx,τ . For these fields, a saddle point approximation is
usually made. For example, a good saddle point form when no vortex is present is
[15, 16]:

{

|∆x,τ | = ∆ ,

θx,τ = constant .
(10)

The value of the constant for the phase is irrelevant, and the value of ∆ can be
extracted by extremizing the effective action δSeff/δ∆ = 0. This yields the well-
known gap equation in the case of neutral atoms interacting through a contact
potential. Alternatively, we proposed in Ref. [11] to use a different saddle point
approximation to investigate the case of a fermionic superfluid containing a vortex
parallel to the z-axis:

{

|∆x,τ | = ∆r ,

θx,τ = φ .
(11)

Here, φ is the angle around the z-axis, and r is the distance to the z-axis. Again, a
gap equation can be derived for ∆r by extremizing the action — this gap equation
yields a gap that depends on the distance to the vortex line (the z-axis). Fixing
the total number of fermions yields a number equation in which the local density
of fermions can be identified straightforwardly.

3 Results and discussion

Consider first the simplest saddle point approximation, (10). The saddle point
result for the action in this case is

Ssp1 =
|∆|

2

g
− 2

∫

dk

(2π)3
ln



2 cosh





β

2

√

(

k2

2m
− µ

)2

+ |∆|2







 .
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Fig. 2. The saddle point value ∆ is shown as a function of the interaction strength
parameter 1/(kF as) for different values of the temperature. In the BCS regime this
corresponds to the BCS gap and it vanishes at the critical temperature. The inset shows
the temperature at which ∆ = 0. In the BEC regime, fluctuations around the saddle

point need to be taken into account to obtain the correct critical temperature [15].

Two unknowns are the chemical potential µ and the value of constant ∆, the
gap. The chemical potential is obtained by fixing the particle density. In the
BCS limit, µ → EF whereas in the BEC limit, the chemical potential goes to
the binding energy of the molecule, µ → h̄2/(ma2

s). In the intermediate regime,
there is a smooth crossover between the two limiting values. The gap ∆ is found by
extremizing the saddle point action, δSsp1/δ∆ = 0. The result is shown for different
temperatures in figure 2. At temperature zero, the gap depends exponentially on
the scattering length as we expect from the BCS theory. As the temperature is
raised, the gap decreases, reaching zero at a certain temperature. In the BCS
limit, the superfluidity is destroyed by breaking up Cooper pairs, so the critical
temperature corresponds to the temperature where ∆ = 0. However, in the BEC
limit, superfluidity is destroyed through phase fluctuations, and one cannot extract
the critical temperature from the results shown in figure 2. It becomes necessary
to include fluctuations around the saddle point value (10) and expand the effective
action up to second order in these fluctuations around the saddle point value. This
second-order expansion yields an action that is quadratic in the fluctuation variables
and that can be integrated analytically. For fluctuations around the saddle point
(10) this was done by Randeria and co-workers, who obtained a corrected value of
the critical temperature that in the BEC limit becomes independent of 1/(kFas).
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Fig. 3. The order parameter, as a function of the distance to the vortex core, for different
values of the interaction parameter on the BEC side.

Fig. 4. The order parameter, as a function of the distance to the vortex core, for different
values of the interaction parameter on the BEC side.

Next, we consider the saddle point approximation (11) suitable to describe a
vortex. Extremizing the action leads to the following gap equation:

1

kF as

=
2

π

∫

dk



1 −
k2

√

(k2 − µ+ (kF r)−2/4)
2
+ ∆2

r



 ,

whereas the number equation becomes

ρr =
3

2

∫

dk k2



1 −
k2 − µ

√

(k2 − µ+ (kF r)−2/4)
2
+ ∆2

r



 .

Fixing the total number of particlesN =
∫

dr ρr allows to fix the chemical potential.
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For a given chemical potential, solving the gap equation leads to a pair density |∆r|
2

that depends on the distance r to the center of the vortex line.
The result is shown for different values of the interaction strength, in figures (3),

(4). Starting with a vortex in a molecular condensate (deep in the BEC side), the
vortex core will shrink as the interaction strength is increased. Crossing over the
Feshbach resonance into the BCS side, the vortex core size R is seen to saturate at
about kFR = 1

2
. This is consistent with the idea that on the BEC side, the system

can be well approximated by a collection of point bosons with twice the mass of
the constituent atoms. In this molecular condensate, the healing length and thus
the vortex core size will shrink as the interaction is increased. However, when one
crosses into the BCS side, the fermionic pairs are no longer tightly bound molecules,
but weakly bound, delocalized Cooper pairs, and the concept a the healing length
based on point bosons is no longer valid.

4 Conclusion

In this contribution, we have first reviewed the path-integral description of the
BEC/BCS crossover in dilute atomic gases. At low temperatures, the interatomic
interaction can be appropriately modelled by a contact potential with renormalized
strength, and this greatly simplifies calculations. We emphasize that the formalism
is not restricted to a single choice of saddle point approximation. Indeed, by a
judicious choice of the saddle point approximation to the Hubbard–Stratonovic
fields, it is possible to investigate not only the ground state configuration, but also
excited or metastable states. An example of this, worked out in this contribution,
is the vortex state of the superfluid Fermi gas.
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