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We discuss nonlocal quantum mechanical effects in mesoscopic devices, for studying
which, path integral has been shown to provide quite a powerful and compact approach. In
particular, we focus onto geometrical phase effects. As a former example, we discuss how
a geometrical phase due to spin-orbit coupling may affect Aharonov–Bohm conductance
oscillations in a mesoscopic ring. As a latter example, we show that a pertinent cycling
in parameter space may induce a robust Berry phase in a quantum dot tuned close to a
three-level degeneracy. In both cases, we propose to detect geometrical phase effects by
means of an appropriate DC transport measurement.

1 Introduction

Nowadays, it is possible to manipulate the wavefunction of the electrons in a
nanodevice, without letting it lose coherence. Of course, “taming” decoherence is
possible only when operating devices of nanometric dimensions. This can be prac-
tically realized by adiabatically tuning gate voltages, or magnetic fields applied
to the system. Indeed, the Aharonov–Bohm (AB) effect has been mostly used to
coherently modulate the electron wavefunction. Also, recently people are achiev-
ing good qualitative control on the interaction between gates and the underlying
electron spins in semiconductor heterostructures.

In this framework, path integral formalism is particularly suitable, in order to
discuss quantum interference in mesoscopic systems, as it allows for a straightfor-
ward analysis of nonlocal effects in the electron quantum propagator, which are at
the hearth of quantum interference.

In these notes we report on results obtained in two different systems:
a) Modulation of the current due to spinful electrons transmitted ballistically

across a mesoscopic ring under the influence of orthogonal stationary electric and
magnetic fields.

b) Study of a peculiar Berry phase that can be added to the interacting electrons
of a Quantum Dot (QD) close to a level crossing.

In particular, in section 2 we discuss the path integral formulation of the device
at point a). This allows us to make it explicit that interference is due to the
combined effects of a Berry phase, arising from the spin-orbit interaction, of the
Aharonov–Bohm phase and of the Zeeman spin splitting. Instead, in Section 3 we
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add by hand a Berry phase to an isolated dot, by cycling an electric field orthogonal
to the dot plane, close to a level crossing in parameter space. We shortly address
the problem of the of the read-out of the phase.

2 Quantum propagator of spinful electrons in an interferometric ring

An interferometric ring realized on a solid state substrate, has typical size of the
order of the coherence length of electrons within the substrate. In this case, one
can apply contacts to opposite ends of the ring and use the device for generating
and detecting interference effects between electrons undergoing different paths in
space [1]. A typical, and well known, phenomenon is the Aharonov–Bohm phase,
picked up by electrons when they travel along a closed path in space pierced by
a nonzero magnetic flux [2]. In addition to the AB phase, spinful particles suffer
another mechanism that may possibly generate quantum interference. Indeed, spin
orbit interaction (SOI) in mesoscopic devices may give rise to an additional effective
field, which provides a geometrical contribution to the electron wavefunction phase,
in addition to the BA phase (Rashba effect) [3]. Rashba effect can be tuned by
properly acting on the device with external potential gates. We will show that, in
the limit in which the spin dynamics due to SOI is “adiabatic”, with respect to
orbital motion of the electrons in the ring, the corresponding accumulated phase
takes the form of an adiabatic, su(2)-Berry phase. In order to show this features,
let us start with the description of the electron dynamics across the interferometric
ring. By neglecting interaction effects among electrons, we formulate a description
of the relevant physics of the system within an appropriate, single particle, path
integral formulation.

Despite its apparent simplicity, we will show that such a formulation embodies
all the relevant phenomenology.

The interferometric ring (of radius R) is assumed to lie on a plane, of coordinates
x and y. An external magnetic field B is applied, orthogonal to the plane. B is
described by the vector potential ~A, lying within the (x, y)-plane. An applied

electric field E tunes α, the SOI strength . ~S is the electron spin so that, if ωc

is the cyclotron frequency and the Zeeman spin splitting is included, the total
Hamiltonian for an electron in the ring is given by

H =
1

2m

(

~p+
e

c
~A
)2

+
α

~

[(

~p+
e

c
~A
)

× ~S
]

· ẑ +
~ωc

2
Sz . (1)

Since we want to resort to a path integral formulation of the problem, we need to get
back to the Lagrangian of the system. This is obtained by Lagrange transforming
H and is given by

L =
m

2
|~v|2 − e

c
~v · ~A+

mα

~

[

~v × ~S
]

· ẑ − ~ωc

2
Sz , (2)

where ~v is the electron velocity. The Lagrangian in Eq.(2) will be the starting point
for the path integral formulation of the theory.
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To compute the DC conductance across the ring, one needs the single electron
transmission amplitude A(σf , σi|EF ) for an electron entering the ring with spin
σi and getting out with spin σf , at the Fermi energy EF . Within Landauer’s
approach [4], the total DC conductance across the ring is, therefore, given by

G =
e2

h

∑

σi,σf

∣

∣A(σf , σ0|EF )
∣

∣

2
. (3)

In a quasi one-dimensional ring the only orbital coordinate for the particle is an
angle ϕ along the circle.

In [5], we express the amplitudes as path integrals over the orbital coordinate
only, by treating spin coordinates as operators. The final result is, therefore, a
matrix in spin space, whose entries are just the A(σ, σ′|EF ) in Eq.(3).

For simplicity, let us assume symmetric boundary conditions, that is, since we
are only interested in electrons transmitted across the ring, we will assume that the
electron enters the ring at ϕ(0), makes a certain number (2n+1, n = 0,±1,±2, . . .)
of half turns, and exits at ϕ(tf ) = (2n + 1)π + ϕ(0). If σ0 is the initial spin
polarization of the dot and σf is the final spin polarization, the corresponding
amplitude is given by

A
(

σf , (2n+1)π+ϕ(0), tf |σ0, ϕ(0), 0
)

=

∫ (2n+1)π+ϕ(0)

ϕ(0)

Dϕ
〈

σf , tf |eiS[ϕ,~σ]
∣

∣

∣
σ0

〉

, (4)

where [5]

S[ϕ,~σ] =

∫ tf

0

dt

{

mR2

2
(ϕ̇)2 − ~

φ

φ0
ϕ̇+

α2m

2~2
+

~
2

8mR2
−

−
[

~ωc

2
σz +

αRmϕ̇

~

(

e−iϕσ+ + eiϕσ−
)

]}

.

(5)

and (σz , σ±) are Pauli matrices.
In order for the electron to enter the ring at ϕ(0), to perform 2n + 1 half-

turns and go outside of the ring at the opposite contact, it has to be reflected
at any connection between ring and leads 2|n| − 2 times, and transmitted twice.
Therefore, if r̄ is the reflection amplitude at any contact, and t̄ is the transmission
amplitude, the total amplitude for the electron at energy EF will be given by

A(σf , σ0|EF ) = |t̄|2
∞
∑

n=−∞

∫ ∞

0

dtf (r̄)2(|n|−1) exp

(

i
EF tf

~

)

×

×A
(

σf , (2n+ 1)π + ϕ(0), tf |σ0, ϕ(0), 0
)

.

(6)

Transmission is elastic and ballistic. We fix the energy of the incoming electron at
the Fermi threshold, what requires Fourier transforming with respect to the final
time tf .

The amplitude in Eq.(6) appears as a sum over different “topological sector”,
each one characterized by the integer n. To proceed in calculating the amplitude,
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we choose to perform a saddle point approximation on the orbital path of the
particle and to treat the spin dynamics exactly.

Saddle point equations are the motion equation of the particle and of its spin
and they are entangled. It follows that, to solve for the classical orbiting trajectory
of the particle we have to write the full set of saddle point equations including those
referring to the semiclassical spin dynamics.

The Haldane’s mapping [6] allows us to account properly for the explicit depen-
dence of L of Eq.(2) on the spin coordinates. Here, we just provide the recipe for
expressing real time amplitudes as path integrals in real time.

First of all, let s be the total “length” of the spin (in our case, s = 1
2 ); Φ and

Θ are its polar angles in spin space. The full action for the problem becomes [6]:

S =

∫

dt

{

mR2

2
(ϕ̇)2 − ~

φ

φ0
ϕ̇− s

~ωc

2
cos(Θ)−

−s αmR
~

ϕ̇ sin(Θ) cos(Φ − ϕ) + sΦ̇ cos(Θ) +
mα2

~2

}

.

(7)

Classical trajectories are obtained by solving Lagrange equations for the coordinates
ϕ(t), Φ(t), Θ(t) derived from Eq.(7):

δS

δϕ
= 0 ⇒ mR2ϕ̈ = 0 ,

δS

δΦ
= 0 ⇒ sin(Θ)

[

Θ̇ +
αmR

~
ϕ̇ sin[Φ − ϕ]

]

= 0 , (8)

δS

δΘ
= 0 ⇒ sin Θ

(

Φ̇ +
~ωc

2

)

+
αmR

~
cosΘ cos(Φ − ϕ) = 0 .

Eqs.(8) implies that ϕ̇ = ϕ̇0 = constant, along classical trajectories. It can
be shown that the Eqs.(8) describe the precession of a classical spin along the
direction of a time dependent magnetic field. The classical dynamics of the spin
can be studied by substituting ϕ(t) with ϕ̇0t+ϕ0, and by solving the corresponding
system of first-order differential equations for Θ(t) and Φ(t).

In what follows we will only use the first of Eqs.(8), which shows that, in the
classical limit, the orbital dynamics does not depend on the spin dynamics.

Next we expand the path integral up to second order in the deviations from
the classical solution for the orbital equation of motion within the nth topological
sector:

ϕn(t) = ϕ(0) + sgn(n)π(2|n| − 1)

(

t

tf

)

. (9)

Insertion of Eq.(9) into Eq.(6), gives, after the gaussian integration over final times
has been performed, the approximated transmission amplitude at fixed spin polar-
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Fig. 1. DC conductance across the ring vs. φ/φ0 at kSOR = 0 (left panel); ring’s DC
conductance vs. kSOR = 0 at φ/φ0 = 0.

izations at energy EF :

A(σf , σ0|EF ) =

√

m

2Ẽ0

|t̄|2
∞
∑

n6=0,n=−∞

{

(r̄)2(|n|−1) exp

[

i
mR2

2~tn

(

π(2|n| − 1)
)2
]

×

× exp
[

−i
φ

φ0

(

π(2|n| − 1)
)

sign(n)

]

exp

[

i
EF tn

~

]

×

× exp

[

i
[

1 + (kSOR)
2
] tn

16τ0

]}

〈

σf |Ûcl(tn, 0)|σ0

〉

,

(10)

with Ẽ0 = EF +
~[1 + (kSOR)2]

16τ0
, τ0 =

mR2

2~
, kSOR =

4ατ0
~R

.

The effective propagation matrix in spin space, Ucl(t, t
′), is defined as

Ucl(t, t
′) = T̂

{

exp

[

− i

~

∫ t

t′
dτ ~b(τ) · ~σ

]}

, (11)

(T̂ is the time ordering operator) and the effective time dependent magnetic field
seen by the electron spin is

~b(t) ≡ (bz , b+, b−) =

(

~ωc

2
, kSOR~ϕ̇neiϕn(t), kSOR~ϕ̇ne−iϕn(t)

)

. (12)

The amplitudes of Eq.(10) have been numerically calculated in Ref. [5], and have
accordingly been used to compute the DC conductance from Landauer’s formula.
The results are shown in Figs.(1, 2).

In Fig.1, we report oscillations in the DC conductance across the ring as a
function of φ/φ0, and of kSOR, for different values of the reflection amplitude at
the contacts, r̄.

In the left panel, we show AB oscillations vs. φ/φ0. For r̄ > 0, interference
effects appear, due to sectors with winding numbers |n + 1

2 | > 1. We see that,
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Fig. 2. DC conductance across the ring vs. kSOR at φ/φ0 = 0 (left panel); DC conduc-
tance vs. φ/φ0 at increasing value of SOI.

as r̄ increases, the conductance is reduced, except when the constructive interfer-
ence condition is fulfilled, that is, when φ/φ0 is close to an integer value. In the
right panel, we plot the conductance vs. kSOR at φ/φ0 = 0, for increasing r̄. In
the case of ideal coupling, r̄ = 0, oscillation of the conductance reveal the local-
ization/antilocalization conditions, due to spin orbit coupling, that is expected in
mesoscopic structures [7,8]. As seen in the figure,multiple reflections do not induce
higher harmonics in the localization, but an enhancement in the damping.

In the right panel of Fig.(2), we plot the conductance as a function of φ/φ0

at Ẽ0 = 0 and r̄ ∼ 0 for different values of kSOR (For reference, in the left panel
we show the DC conductance vs. kSOR at φ = 0). The overall agreement with
the experimental data leads us to the conclusion that, in real samples the coupling
between the contacts and the leads is approximately ideal (r̄ ∼ 0). The change in
periodicity of the oscillations at increasing kSOR is evident.

To understand the emerging periodic structure of the Berry phase oscillations, in
Ref. [5] we performed the Fourier transform of the DC conductance across the ring
for different values of SOI strength. The result is that, as soon as SOI is turned on,
several structures appear, on top of the fundamental peak, due to Aharonov–Bohm
oscillations. For small values of SOI, two satellite peaks arise. These two peaks,
together with the Aharonov–Bohm central peak, eventually evolve into a four peak
structure, for large SOI. In order to qualitatively understand such a behavior, we
may consider the expansion of the formula for the conductance, within adiabatic
approximation (kSORϕ̇� ωc). We obtain

∑

σσ′

|A(σ;σ′)|2 ≈ 2 − 2
∑

±

{

cos2 χ cos

[

2π
φ

φ0
± π cosχ

]

+ sin2 χ cos

[

π
φ

φ0
± πωc

ϕ̇

]}

,

(13)

where cosχ =
[

1 + (kSORϕ̇/ωc)
2
]−1/2

.

Eq.(13) gives back simple AB oscillations when there is no SOI. For small spin
orbit coupling, sin(χ) becomes 6= 0, while cos(χ) is still ∼ 1. Therefore, the latter
term in Eq.(13) gives rise to satellite frequencies, as ωc/ϕ̇ ∝ φ/φ0. When SOI
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increases, cos(χ) itself becomes ∝ φ/φ0, and a four-peak structure develop, which
is a signature of Berry phase [5, 9, 10]. Dephasing effects are discussed in Ref. [5].

3 Three-level avoided crossing in a Quantum Dot and Berry phase

In this Section we show that it is possible to add a special type of Berry phase
to the many-electron wavefunctions, describing interacting electrons in a QD, by
adiabatically cycling voltages applied to the gates, when the dot is tuned close to
accidental degeneracy points of the energy spectrum.

The device we focus onto is a vertical quantum dot (QD), disk-shaped in the
(x, y)-plane, with applied external electric and magnetic fields, orthogonal to the
dot’s plane. At this stage of the derivation, we assume the dot to be isolated, that
is, it is not connected to any metallic lead. The applied field can be tuned, in order
to get control on the added phase. In particular, both the applied magnetic field
B and electric field E are directed along the z-axis. B is uniform, while E takes a
small angular modulation as

E = e+ g1 cos(θ) + g2 sin(θ) , (14)

where ρ and θ are the polar coordinates on dot’s plane.
In the following, we take g1 and g2 to be equal to the real, and to the imaginary

part of a complex number g, respectively.

0 2 4 6 8

ωc(meV)
6,5

7

7,5

E
/ω

0

Jz=-1.5
Jz=-0.5
Jz= 0.5
Jz= 1.5
Jz= 2.5
Jz ≥ 3.5

B*

Fig. 3. Level structure of the three-electron quantum dot for B ∼ B∗

∼ 6 meV. Relevant
levels in this paper are the lower two ones at J = 3

2
(full line) and the one at J = 5

2

(broken-dotted line)

In Fig. 3, we report the levels vs magnetic field B for a dot with N = 3 interact-
ing electrons, including spin-orbit coupling. In the following, we focus on the first
avoided crossing at low energy, taking place at ωc ≈ 6meV, which corresponds to
an applied field B = B∗. The total angular momentum of the states Jz = M + Sz

is marked aside and used to label the states. We use a short notation for the
Slater determinants of low J which contribute to these states. The locations in
the state follow the natural sequence of single particle orbital quantum numbers:
(n,m = n) = (0, 0), (1, 1), (2, 2), separated by commas. In the presence of a mag-
netic field, we take m = n as always favored, with respect to m ∈ (−n, . . . , n− 1).
Let us now analyze the most relevant Slater determinants which contribute to the
states with J = 3

2 (full lines). The orientation of the electron spin is labeled by
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u =↑, d =↓. Both ud at the same location imply double occupancy of the same
orbital with opposite spins. A zero at any location indicates that the corresponding
orbital is empty.

At zero magnetic field the lowest state in energy, which we denote by | 32 , o〉,
is mostly |d, ud, 0〉, because the e–e interaction disfavors double occupancy of the
n = 0 level, which has an ”s”-like single particle orbital. The next one, | 32 ,−〉
is mostly |ud, u, 0〉, but it soon turns into |d, d, d〉, upon increasing B, with some
nonzero component on |ud, u, 0〉, as the avoided crossing at ωc ≈ 1.5 is approached.
There is one more relevant state in the middle of the gap (broken-dotted line),
denoted by |J = 5

2 〉 in the following, of the kind |d, u, d〉.
At the level crossing near ωc = 6 meV, the electric field Eq.(14) couples the

states | 32 , o〉, | 52 〉 and | 32 ,−〉 with each other (there is another state with J = 1
2 in

the gap (broken line) which is not coupled to the remaining ones: therefore, we will
neglect it in the following). Before the crossing, the states | 32 , o〉 and | 32 ,−〉 mostly
possess |d, ud, 0〉 and |d, d, d〉-character, respectively. After the crossing, they swap
with each other.

The isotropic spin-orbit interaction ê couples the states | 32 , i = o,−〉 with each
other, as they belong to the same J . On the other hand, the matrix elements of the
g-terms between single particle orbitals with orbital z-components of the angular
momenta equal to m, m′, and spin equal to σ, σ′, are non zero for m = m′ or
m = m′ + 2, provided that σ′ = −σ. The relevant amplitudes take the form

An′m′+, nm− = 〈n′m′| ρ sin θe−iθ(∂ρ +
m

ρ
)|nm〉 =

=
1

i

(

δm′+2,m − δm′,m

)

× 1

2

∫ ∞

0

√
t dt Rn′|m′|(t)

(

2
√
t∂t +

m√
t

)

Rn|m|(t) ,
(15)

where Rn′|m′|(t) are the radial solutions of the 2− d harmonic oscillator expressed
in terms of Laguerre polynomials

Rn|m|(t) ∝ e−t/2 t|m|/2 L
|m|
(n−|m|)/2(t) .

Here t = ρ2/l2, where l =
√

~/mω0, ω0 =
√

ω2
d + ω2

c/4, [5].
Hence, the non zero matrix elements of ĝ are M1 = 〈d, u, d|ĝ|d, d, d〉 and M2 =

〈d, u, d|ĝ|ud, u, 0〉. It follows that ĝ couples | 32 ,−〉 with | 52 〉, but it does not signifi-
cantly couple | 32 , o〉 to | 52 〉.

At b > 0 the order is reversed: the state with i = o is the lowest one in energy,
and it is mostly |d, d, d〉. The middle one is still | 52 〉, while the highest energy state,
| 32 ,−〉, is mostly |d, ud, 0〉.

Near the three-level degeneracy, once restricted to the ”physical” space spanned
by the three states above, turns out to be: (up to a term, proportional to the identity
matrix)

h[b, g1, g2, e] =





−b 0 g∗

0 2b e
g e −b



 , (16)
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where b ∝ (B −B∗) parametrizes the “distance” from the degeneracy point.
In the next section, we show that, upon properly cycling the parameters in the

truncated Hamiltonian, it is possible to generate a peculiar type of Berry phase, at
the quantum dot.

4 Truncated Hamiltonian and adiabatic phase

It is possible to fully decompose the matrix h in the basis of su(3) generators,
as

h =

(

−3

2
b

)

T3 +

(√
3

2

)

T8 + g1T4 + g2T5 + eT6 , (17)

where the su(3) generators are reported in appendix.

In the following, we will denote by ~λ the set of parameters that define the linear
combination of Gell-Mann generators. In paricular, from Eq.(17) we get:

(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) =

(

0, 0,−3

2
b, g1, g2, e, 0,

√
3

2
b

)

. (18)

The eigenvalues of h are simply expressed in terms of the coordinates R and Ψ,
given by

R =

√

b2 +
e2 + |g|2

3
, sin(3Ψ) = −b(b

2 + 1
2 e

2 − |g|2)
R3

. (19)

In decreasing order, the energy eigenvalues are given by

E` = 2R sin
[

Ψ + 2
3 (`− 1)π

]

. (20)

The corresponding eigenvectors |e`, ~λ〉 are expressed as three-component column

vectors as (~λ are the parameters of the Hamiltonian h)

∣

∣

∣
e`, ~λ

〉

= C`











g∗

−e b+ E`

2b−E`

b+E`











, (21)

where C` =

(

|g|2 + e2
(

b+E`

2b−E`

)2

+ (b+E`)
2

)−1/2

.

We now imagine of performing an adiabatic modulation of the parameters of
h. In particular, we will keep b and e constant, and will make the parameter g
adiabatically evolve as g → geiωt. This corresponds, for instance, to applying an
electric field depending on both space and time of the form

E = e+ g

[

eiπ/4 cos

(

θ − 2πt

T

)

+ e−iπ/4 cos

(

θ +
2πt

T

)]

, (22)
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where T is the cycling period.
Because some of its parameters have become explicitly dependent on time, the

Hamiltonian itself will be dependent on time t. Accordingly, the ”adiabatic” basis
|e`, ~λ〉 will take an explicit dependence on time, |e`, t〉. The states |e`, t〉 are periodic

in t, with period equal to T . Although the states |e`, ~λ〉 are now explicitly dependent
on time, still, at any t, they provide an orthonormal basis for the (3-dimensional)
space of the states of the system, since

〈e`, ~λ(t)|e`′ , ~λ(t)〉 = δ`,`′ ∀t . (23)

As a consequence of Eq.(23), at any time t the state of the system |ψ(t)〉 may be
fully decomposed in the basis of adiabatic eigenstates of the system as

|ψ(t)〉 =

3
∑

`=1

exp

[

−i

∫ t

0

dτ E`(τ)

]

c`(t)|e`, ~λ(t)〉 . (24)

By imposing to |ψ(t)〉 in Eq.(24) to obey the Schrödinger equation, we eventually
obtain the time evolution of the c′`’s in the adiabatic approximation

c`(t) = exp

[

−
∫ t

0

dτ
〈

e`, ~λ(τ)
∣

∣

d

dτ

∣

∣e`, ~λ(τ)
〉

]

c`(0) . (25)

From Eq.(25) we find that adiabaticity implies that, if the system undergoes a cycle

in parameter space, starting from one of the states |e`, ~λ(t)〉, it ends up in the same
state, with an extra phase given by the sum of the usual ”dynamical” contribution
Γd = −E`T , and of a ”geometrical”, Berry phase, Γ`, given by

Γ` = −
∫ T

0

dt Im
〈

e`, ~λ(t)
∣

∣

d

dt

∣

∣e`, ~λ(t)
〉

= −
∮

C

Im
〈

e`, ~λ
∣

∣d
∣

∣e`, ~λ
〉

, (26)

where d means usual differentiation with respect to ~λ.
In our case, explicit calculation of Γ` gives

Γ` = 2π|g|2(C`)
2 . (27)

In Fig.4, we report the eigenvalues of the adiabatic Hamiltonian as a function of
b, for r =

√

|g|2 + e2, with |g| = e. In Fig.5, we show the Berry phase calculated,
according to Eq.(27), for the lowest-energy state E3. By looking at the figures.
we see that, the situation is completely different, according to whether b < 0, or
b > 0. Indeed, for b < 0, the lowest energy level E3 is clearly nondegenerate, and
the intermediate energy level (E2) lies much higher in energy than E3 (and close
to E1). As a consequence, the Berry phase goes down to zero. On the other hand,
for b > 0, the two almost degenerate levels coincide with E3 and E2. Therefore, it
is natural to expect a Berry phase to appear, in this case [11].

In Fig.(5), we see that the Berry phase Γ3 converges to π, for large enough b.
This can be understood by computing the approximate form of the adiabatic state

10
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E 1

E 3

E 2

b

E

0

Fig. 4. Energy levels E1, E2, E3 of the model Hamiltonian of Eq.(16) vs. b for −1 ≤ b ≤ 1;
r = 0.1.

1−1 0

π

b

Γ

Fig. 5. Γ3 vs. b for −1 ≤ b ≤ 1 and for r = 0.1.

|e3, ~λ〉 for b/r � 1. Indeed, from Eq.(21), one obtains

|e3, ~λ〉 −→
b/r�1

1√
2





e−i(2πt)/T

0
1



 , (28)

that provides a Berry phase Γ3 equal to π.
The particular features of Γ3 in Fig.5 are peculiar of the device we are dealing

with. Remarkably, we may see that the device we describe works, somehow, as a
“phase switcher”. Indeed, for b < 0 the switcher is “off”, and basically no phase
is generated at the dot upon cycling in parameter space. On the other hand, as
soon as b gets > 0, the switcher turns “on”, a finite Berry phase is generated at
the dot, and the phase itself keeps ∼ π as b/r becomes large enough 1). Such a
behavior might suggest of using a device like this as a possible solid-state qubit.

1) The apparent discrepancy with the result reported in [12] is due to a factor 2 missing in that
paper.
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However, in order to use it like so, one has to design an efficient way of reading out
the dot’s phase. In [12], for instance, it is proposed to capacitively couple the dot
to one arm of an interferometric ring. Electrons travelling through the arm of the
ring coupled to the quantum dot “read out” the phase at the dot. A measurement
of DC conductance across the ring should, therefore, contain an interference term,
depending upon Berry phase. Detecting, or not, such a contribution to the total
DC conductance, should be an efficient way of probing whether, or not, a Berry
phase has aroused at the quantum dot. This proposal for detecting the Berry phase
at the quantum dot is briefly described in the next section.

5 Reading out the Berry phase at the quantum dot

In order to ensure an effective “phase readout” by the travelling electron, the
actual coupling between dot and arm must be extended in space. This should
correspond to an effective interaction Hamiltonian in the form [12]

Hd−ring = q(t)

∫

dx f(x)Ψ†(x)Ψ(x) , (29)

where q(t) is the charge operator at the quantum dot, Ψ(x) is the field of the
itinerant electrons, so that Ψ†(x)Ψ(x) is the total charge density in the ring’s arm,
f(x) is a smooth function, of support L, describing the coupling between dot and
arm 2).

Deriving in detail all possible interaction terms arising from the Hamiltonian in
Eq.(29) requires going through a long and boring sequence of calculations. In fact,
it is more useful to trade Hd−ring fir a much simpler, “toy” HamiltonianHW , which,
nevertheless, is capable of catching the relevant physical aspects of the problem.
In deriving HW , it comes out to be useful to resort to chiral Fermionic modes,
obtained expanding Ψ(x) about the Fermi points at ±kF . In particular, by taking
into account only long wavelength excitations about the Fermi surface, one obtains

Ψ(x) ≈ eikF xψL(x) + e−ikF xψR(x) . (30)

The free Hamiltonian for the chiral Fermionic fields is

H0 =

∫

dk
vF

2π
k
[

ψ†
L(k)ψL(k) + ψ†

R(k)ψR(k)
]

, (31)

while HW takes the form

HW = Φ̇(t)

∫ L/2

−L/2

dx
[

ψ†
L(x)ψL(x) − ψ†

R(x)ψR(x)
]

+

+vχ(t)

∫ L/2

−L/2

dx
[

e2iΦ(t)ψ†
L(x)ψR(x) + e−2iΦ(t)ψ†

R(x)ψL(x)
]

≡ (32)

≡ VΦ(t) + Vχ(t) .

2) For simplicity, we neglect spin henceforth
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The function Φ(T ) is related to the Berry phase Γ3. In general, however, the
relation between the two of them is quite involuted, due to nondynamical effects,
that spoil adiabaticity of the whole procedure. The relevant thing is, however, that,
if there is no Berry phase then Φ(t) = 0, and vice versa. If the time evolution of
Φ(t) is smooth enough, we may get rid of the potential VΦ(t) by reabsorbing it in
the chiral fields as

ψL(x, t) → eiΦ(t)ψL(x, t) , ψR(x, t) → e−iΦ(t)ψR(x, t) . (33)

The rephasing of the chiral field operators in Eq.(33) implies a rephasing of the
corresponding Green functions GXY (x, t;x′, t′) (X,Y = L,R), by a phase factor
depending on Φ(t). For instance, for the LL Green function one gets

GLL(x, t;x′, t′) → GLL(x, t;x′, t′)ei[Φ(t)−Φ(t′)] , (34)

and similar expressions for all the other relevant Green functions.
Because of the extra factor appearing in the Green functions and, therefore, in

the transmission amplitudes across the ring’s arm, one may infer that, at Φ 6= 0,
the total DC conductance across the ring, G, is given by

G[Φ] = G[Φ = 0] · 1
2 · [1 + cos(Φ(t+ T ) − Φ(t))] , (35)

where X(t) denotes averaging X(t) in time over a period T .

We are grateful to E. Kochetov for useful discussions.

Appendix: su(3)-algebra

In this appendix we recall the 3×3 hermitean matrices giving Gell-Mann repre-
sentation of SU(3)-generators 3). They are given by

T1 =





0 1 0
1 0 0
0 0 0



 , T2 =





0 −i 0
i 0 0
0 0 0



 , T3 =





1 0 0
0 −1 0
0 0 0



 ,

T4 =





0 0 1
0 0 0
1 0 0



 , T5 =





0 0 −i
0 0 0
i 0 0



 , T6 =





0 0 0
0 0 1
0 1 0



 ,

T7 =





0 0 0
0 0 −i
i 0 0



 , T8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

The commutators among Gell-Mann matrices are formally given by

[Ta,Tb] = 2i
8
∑

c=1

fabc Tc

3) The results of this Appendix are reported from Appendix A of Ref. [13]
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with

f123 = 1 , f458 = f678 =

√
3

2
, f147 = f246 = f257 = f345 = f516 = f637 =

1

2
.

The anticommutators, instead, are given by

{Ta,Tb} =
4

3
δab + 2

8
∑

c=1

dabc Tc

with

d118 = d228 = d338 = −d888 =
1√
3
, d448 = d558 = d668 = d778 = − 1

2
√

3
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
.
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