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1 Introduction

In the last years many papers, in particular those of ’t Hooft [1], but also of
several other authors [2–4], have described a possible way out from some of the
unpleasant (or, to cite Feynman, ”peculiar”) features of Quantum Mechanics.

The idea proposed by ’t Hooft is, in extreme synthesis, that a classical deter-
ministic theory (at the Planck scale) supplemented with a dissipation mechanism
(information loss) should produce at larger scales the observed quantum mechanical
behaviour of our world. The emergent model, after that the dissipation mechanism
has been implemented, can be described with the usual tools of Quantum Mechan-
ics, namely, states which evolve in Hilbert space, unitary evolution matrix, wave
equation, etc. .

Originally motivated (also) by the challenge of Quantum Gravity, the accent
on the Planck scale collocation of the deterministic underlying theory has been
more recently weakened in favour of the description of several classes of determin-
istic classical systems, where quantum behaviours emerge from classical dynamics
constrained with dissipation mechanism(s) (see [2–4]).

Inspired by this use of the dissipation to obtain ”the apparent quantization of the

orbits which resembles the structures seen in the real world” [5], the present paper
aims to describe in a quantum-like language some enigmatic aspects of the known
planetary systems (including our Solar System), which, however, can be regarded
as deterministic systems par excellence. In particular, a phenomenological law that
seems to resemble closely a quantum feature, and brings to many reflections in this
direction, is the so called Titius–Bode law for planetary distances.

This work is driven by the analogy between the ’t Hooft idea of the quantization
of a classical deterministic system via the dissipation at the Planck scale, and the
dissipation occurred during the formation period of a planetary system, which
has produced the ”quantization” of the orbits described by the Titius–Bode rule.
In the present paper, the dissipation mechanism which should have brought the
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proto-planetary nebula to the stable, ”quantized” orbits of today (in the sense of
the Titius–Bode law), is not yet explicitly constructed. Nevertheless, an ”effective”
quantum-like model (in the form of a wave equation) is developed and applied to
the description of planetary systems, and a dissipation mechanism is realistically
devised as responsible of the discrete nature of planetary orbits.

2 Titius−Bode law

The Titius–Bode law is an empirical rule which gives, in the hypothesis of
circular orbits, the distances of the planets from the Sun as a function of a single
parameter, an integer n. There are several versions of the law. The eldest one is
perhaps the following

r(n) = 0.4 + 0.3 · 2n ,

where r(n) is given in Astronomical Unit (1 A.U. ' 150 · 106 km). For n =
−∞, 0, 1, 2, . . . this law gives the distance respectively of Mercury, Venus, Earth,
Mars, etc., including the asteroids belt (actually, Cerere was discovered following
the indications of this law) and Uranus, which at the moment of the first formulation
of the law (1766 – 1772) had not yet been discovered.

In this original formulation, the law was not able to account for the distance of
Neptune and Pluto. More recent versions of the law have been elaborated during the
XX sec., as for example the Blagg law (1913) and the Richardson law (around 1943)
(see the book of Nieto [6] for history, explicit formulations, theories and extensive
comments). In these last versions the law is able to describe not only the planetary
distances within the solar system, including planets like Neptune and Pluto, but
also can be successfully applied to the systems of satellites orbiting Jupiter, Saturn
and Uranus. The agreement between the predicted and the observed distances of
the various satellites from the central body is really astonishing, of the order of a
few percents, as can be checked in the tables of Nieto [6].
The main feature shared by these modern versions of the Titius–Bode law is that
the rule can be expressed, if we neglect second order corrections, by an exponential
relation as

r = ae2λn , (1)

where the factor 2 is introduced for convenience reasons and n = 1, 2, 3, . . ..
For the Solar System we have

2λ = 0.53707 , e2λ ' 1.7110 ,

a = 0.21363 A.U.

The amazing thing found by Blagg was that the geometric progression ratio e2λ

is roughly the same both for the Solar System, and also for the satellite systems
of Jupiter (e2λ ' 1.7277), Saturn (e2λ ' 1.5967), and Uranus (e2λ ' 1.4662). Of
course the parameter a, which is linked to the radius of the first orbit, will take
case by case the opportune values (see for more comments the Nieto book [6]).

2



The Titius–Bode law and . . .

A plenty of theories have been developed during the last 240 years in order to
explain the Titius–Bode law.

There have been dynamical models connected with the theory of the origin of
the solar system, electromagnetic theories, gravitational theories, nebular theories.
All of them can be found in literature (see, for example, [7]) and they have been
excellently reviewed in the book [6]. Therefore they will not be described in details
here. We remind that also the idea of using a Schrödinger-type equation in order
to give account of the law (1) is not new (see for example the papers [8])1).

The aim of the present paper is to develop a model able to describe, in the
language of a Schrödinger-like equation, the observed law of planetary distance, as
an eigenvalue problem.

3 Bohr model of the hydrogen atom

In this section we remind sketchly the Bohr model for the hydrogen atom. The
electron orbits are supposed circular (this will be held for planetary orbits also).
The two main equations are the equation for the force (i.e. the equation of motion)

m
v2

r
=
e2

r2
,

where m and e are the mass and charge of the electron; and the quantization
condition on the (z-component) of the angular momentum

mvr = n~ , n = 1, 2, 3, . . . . (2)

In the Bohr model, all the orbits belong to the same plane, and this is also taken
for true in the planetary models. From the two equations above, one easily derives











r =
~

2

me2
n2

v =
~n

mr
.

The first equation is the law of electron distance from the nucleus in the Bohr
model. With this law, from the classical expression for the total energy we get the
energy spectrum of the bound orbits

E =
1

2
mv2 − e2

r
= − e

2

2r
= −me

4

2~2

1

n2
.

Now we shall try to apply analog ideas to the solar and planetary systems.

1) However, in some of Ref. [8], a Schrödinger equation has been used mainly to calculate
distances of a set of planets (e.g. terrestrial planets, as Mercury, Venus, etc., or gigantic planets,
as Jupiter, Saturn, etc.), but not of the whole planetary system. This because in [8] the newtonian
potential 1/r is usually assumed together with a Bohr-like quantization condition, and these two
things together yield (as it is well known) a law for the orbital radii as r ∼ n2 (not as r ∼ e2λn).
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4 Model a la Bohr for a planetary system

In this section we introduce a model for the ”quantization” of a planetary sys-
tem. The model acquires its discrete, or ”quantum”, properties from a modification
of the Bohr quantization rule for the angular momentum. The equations here pro-
posed, for a generic planet of mass m, orbiting a central body of mass M , are











m
v2

r
=
GMm

r2
,

J

m
= vr = seλn

(3)

where n = 1, 2, 3, . . . and s is a constant. Some comments are immediately required:

• Because of the principle of equivalence the masses m on the LHS and on the
RHS of eq. (3) cancel out each other.

• The constant s in the RHS of the second of eqs. (3) has the dimensions of
an action per unit mass. It plays the role of ~ and it must be understood as an
action typical of the planetary system under consideration. It is not possible to
use ~ itself, because this would fix the wrong initial radius in the Titius–Bode law,
that is the constant a in r = ae2λn.

• The constant λ is the one obtained from the observation (2λ = 0.53707 for the
Sun, 2λ = 0.54677 for Jupiter, 2λ = 0.46794 for Saturn, 2λ = 0.38271 for Uranus).

• In the second of the eqs. (3), we quantize the angular momentum per unit

mass. This is somewhat a consequence of the principle of equivalence. If we did
not do so, we would obtain a law for r(n) where the scale of distance changes from
a planet to another, as the planetary masses change. We should in fact remind that
not all the planets have the same mass, as instead the electrons have.

From the eqs. (3) one immediately gets

v =
seλn

r
⇒ r(n) =

s2

GM
e2λn , (4)

which is the Titius–Bode law if we identify a = s2/(GM).
We can also compute the energy spectrum for the i-th planet from the eq. (4)

E(i) =
1

2
miv

2 + U(r) =
1

2
miv

2 − GMmi

r
= −GMmi

2r
= −

(

GM

s

)2
mi

2e2λn
,

where n = 1, 2, 3, . . .. As we see, the energy of the i-th planet is not properly
quantized by itself. This is because the mass mi changes in general with the planet,
and this would imply different sets of energy levels for different planets. Instead,
the energy per unit mass

E :=
E(i)

mi
= −

(

GM

s

)2
1

2e2λn
(5)
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is exactly quantized, i.e. it is a quantity which depends on n only (apart from the
general constants G, M , s). Therefore, the energy levels per unit mass are valid
for the whole set of planetary orbits.

Also here some comments are needed, in order to complete the explanation given
before.

• The constant s can be computed in terms of the mass of the central body and
of the parameter a (remind that the radius of the first orbit is ae2λ)

s =
√
GMa .

• This constant is not the same for all the planetary systems (Sun, Jupiter,
Saturn, Uranus). In fact, if it were so, this would imply that the parameter a =
s2/(GM) should be in inverse proportion to the mass M of the central body, which
is not true. Therefore the constant s is not universal, like ~, but it depends on the
planetary system under consideration.

• If the quantization rule (3) had been written with the mass of the planet,
namely

mvr = s̃eλn ,

this would have implied for r(n)

r(n) =
s̃2

GMm2
i

e2λn

that is, the parameter a = s̃2/(GMm2
i ) would change from planet to planet, con-

trary to the generality of the Titius–Bode law, which maintains the same parameters
within the same planetary system.

• The quantization rule (3) does not allow us to compute some known experi-
mental constant, as instead it happens in the case of the Bohr model of the hydrogen
atom, where the Rydberg constant was computed from the model. Nevertheless, a
semiclassical quantum language is introduced.

• It should be noted also that a condition like vr = seλn presents some difficulties
for a wave interpretation. In fact, the Bohr quantization condition for the H-atom
can be easily interpreted in terms of de Broglie’s stationary matter waves

mvr = n~ ⇒ pr = n~ ⇒ r = n
~

p
⇒ 2πr = n

(

h

p

)

,

where `B = h/p and n is an integer. The quantity h/p can be interpreted as a
wavelength of a stationary wave just because n is an integer. The analog condition
in our model yields (for a given planet of mass m)

vr = seλn ⇒ r = eλn sm

p
⇒ 2πr = eλn

(

2πsm

p

)

.
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The number eλn is not an integer, in general. Hence is difficult to interpret
(2πsm)/p as a wavelength of a stationary wave. Moreover, even using a de Broglie-
like relation (n`B = 2πr), the wavelength of the matter wave associated to the
planet has to be of the same order of the parameter a. In fact

`B = 2π
r

n
= 2π

ae2λn

n
.

In principle, this could create interference phenomena in the probability amplitudes,
but these phenomena are not observed at classical level in planetary systems. We
must therefore postulate a unknown mechanism which suppresses these interferences
of probability waves. From this last observation, it appears clearly that the model
we are building is not actually a quantum model, in the sense of ordinary quantum
theory. Rather, it resembles some quantum-like properties, mainly the quantization
of the orbital radii.

In spite of all these difficulties, we shall see that a wave equation can still be
written in coherence with the condition vr = seλn, and this wave equation will be
able to describe the main features of planetary systems.

5 Permitted orbits, dissipation and gravity

One of the main objections that it is possible to rise against the existence of
permitted discrete orbits in a planetary system is the following: It is a common
experience, in this era of space travels, that a satellite can be put in any orbit we
wish around the Earth, the Sun, or any other planet. Why therefore there should
exist stable permitted orbits? In what sense they are ”permitted”? How they are
reached? To answer to these questions, it is fundamental to remind the concepts
of dissipation and limit cycles emphasized by ’t Hooft in his seminal papers [1]
(see also further references therein). Although in the proto-planetary nebula dust,
particles and other bodies could be found at any distance from the central body,
after a huge amount of time, friction and mutual gravitational actions produced
a dissipation of the total energy and brought matter to stabilize in several orbits,
the limit cycles, where particles and dust aggregated to form planets. It is in this
way that we can speak about ”permitted orbits”: they are the ”limit cycles” of the
dissipative processes started in the primitive nebula.

Of course, it is in principle possible to put, today, a body in any orbit we wish.
But if we wait for a time of the order of 5 ·109 years, and if the body has a sufficient
mass, it is likely that we finally find it in one of the permitted limit cycles.

It is interesting to compute and compare the dissipation time taken by an elec-
tron to fall on the first permitted orbit in the hydrogen atom, and the time taken
by a planet, say Jupiter, to fall from the infinite to its own orbit. We suppose that
the loss of energy occurs by emission of electromagnetic or gravitational waves,
respectively. For the electron, we use the classical dipole emission formula

dE

dt
=

2e2

3c3
ẍ2 .
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The acceleration can be roughly valued with the Bohr model

a =
v2

r
=

e2

mr2
.

Therefore

P =
dE

dt
=

2e6

3m2c3r4
.

The total energy of an electron in a orbit of radius r is E = e2/(2r). Hence, the
decay time is

∆t =
E

P
=

3m2c3r3

4e4
= 0.4 · 10−10 sec .

For Jupiter, if we suppose that the energy dissipation is completely due to gravi-
tational waves, we compute for the radiated power (see for example [9])

P =
32GΩ6m2r4

5c5
= 5.5 · 103 watt ,

where Ω is the revolution frequency. Given a total energy of EJ = GMm/(2r), we
can write for the decay time

∆t =
EJ

P
=

5

64

Mc5

Ω6mr5
= 3 · 1031 sec ' 1024 years ,

a time much longer than the life of the Universe. Evidently the dissipation mech-
anisms at work in the solar (and planetary) system are much more efficient than
the simply energy loss via gravitational radiation. The more efficient mechanisms
(friction, viscosity, etc.) bring the planets on stable orbits (limits cycles) in less
than 5 · 109 years.

On the contrary, the dissipation of energy via electromagnetic radiation brings
the electron on stable orbitals in less than 10−10 sec.. Electrons dissipate very
rapidly and collapse on limit cycles in very short times. We can perhaps say that a
dissipation mechanism is at work in the ”quantization” of the solar system as well
as of the atom (see also [2–4]).

6 Wave equation for a planetary system

The relative success of the Bohr-like model introduced in section 4, at least in
reproducing the exponential nature of the Titius–Bode law, induces us to look for
the corresponding Schrödinger-like equation. This could be quite at odd with the
observations made at the end of section 4. There we noted that it seems difficult
even to define a wavelength for a stationary ”matter” (or probability) wave, which
closes around to the classical orbit. And even if a wavelength could be defined,
since it would be of the same order of the orbit radius, unwanted interference
phenomena would occur among planets along their orbits. In other words, the
de Broglie matter waves interpretation, which is the intermediate step between a
Bohr-like and a Schrödinger-like model, seems to be missed.
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Despite all that, we shall now see how a wave equation can be correctly con-
structed, and how this equation predicts the energy spectrum and the exponential
positions of the orbits, when the usual probabilistic interpretation of the wave
function ψ(~x, t) is adopted.

We suppose, hence, to associate to a planetary system a scalar field ψ(~x, t),
the so called wave function. We shall see that the wave function does not give
us information on the behaviour of the single planet, but rather on the structure
(orbits, energy levels, etc.) of the whole planetary system.

On comparing the Bohr quantization condition mvr = n~ with the condition
given in (3), vr = seλn, we see that the most straightforward correspondence is

s←→ ~

m
or ~←→ sm .

This correspondence allows us to write immediately the wave equation for station-
ary states. In fact, from the Schrödinger eigenvalue equation

[

− ~
2

2m
∇2 + U(r)

]

ψ = Eψ

we can write
[

−s
2m

2
∇2 + U(r)

]

ψ = Eψ .

Defining

E :=
E

m
= energy per unit mass,

V (r) :=
U

m
= potential energy per unit mass,

we get
[

−s
2

2
∇2 + V (r)

]

ψ = Eψ , (6)

which we adopt as the fundamental wave equation of our planetary system.
We note again that the quantity correctly quantized is E , the energy per unit

mass, and not the energy itself. As we already said for the problem a la Bohr, this
is a consequence of the fact that the masses of the planets change from planet to
planet, contrary to what happens for the electrons.

7 Wave equation for the Titius−Bode problem

In this section we look for a wave equation corresponding to the model (3).
Such equation should implement the particular quantization condition on the an-
gular momentum, namely vr = seλn. This condition seems to go to touch the
delicate structures of the angular momentum algebra and of the spherical har-
monic functions, and indeed it does. We have also another requirement: we wish
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to describe the observed fact that all the planetary orbits lie (more or less) in
the same plane. From this elementary observation, we are pushed to consider a
2-dimensional Schrödinger-like equation, that is to write down the previous wave
equation in a plane. This choice will simplify and clarify very much the problem
on how to modify the standard Schrödinger equation in order to accommodate for
the condition (3).

The equation (6) can be written in operatorial form

Ĥmψ = Eψ ,

where Ĥm is the hamiltonian per unit mass

Ĥm =
~p 2

2
+ V (r) (7)

and the association is made
~p ←→ −is ~∇ .

In fact ~p 2 = ~p · ~p = −s2∇2.
The equation (7) written in planar polar coordinates reads

Ĥm =
1

2

(

p̂2
r +

p̂2
φ

r2

)

+ V (r) . (8)

With the usual associations of ordinary quantum mechanics, in planar polar coor-
dinates,

p̂2
r −→ −s2

1

r

∂

∂r

(

r
∂

∂r

)

,

p̂φ −→ −is
∂

∂φ
=⇒ p̂2

φ −→ −s2
∂2

∂φ2
,

the hamiltonian (8) reads

Ĥm = − s2

2r2

[

r
∂

∂r

(

r
∂

∂r

)

+
∂2

∂φ2

]

+ V (r) .

The operator which accounts for the angular momentum is p̂φ. The motion takes
place in the plane (x, y), that is, the only non zero component of the angular
momentum is Jz. When we solve the usual Schrödinger equation we proceed in the
construction of the spherical harmonic functions Ylm(θ, φ) = AlmP

m
l (cos θ)eimφ

and the operator p̂φ acts on the eigenfunctions eimφ. These belong to the Hilbert
space L2([0, 2π]) of the squared integrable functions on the interval [0, 2π]. On such
space, p̂φ is hermitian (self-adjoint) and its eigenvalues are ms, m ∈ Z. In fact

p̂φ eimφ = −is
∂

∂φ
eimφ = ms eimφ .
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This corresponds to the quantum condition (a la Bohr) vr = ms (see eq. (2)). But
we want to have eigenvalues different from ms, we want seλm (see eq.(3)). And, if
possible, we do not want to spoil or loose the eigenfunctions eimφ and their Hilbert
space L2([0, 2π]). This aim can be reached if we define the operator

P̂ϕ eimφ := i emλ eimφ (9)

for every eimφ ∈ L2([0, 2π]), m ∈ Z, where λ is the phenomenological parameter
given in (1) (2λ ' 0.53707 for the Solar System).

The operator P̂ϕ can be defined to be linear, and being defined on an orthonor-
mal basis of L2([0, 2π]), is therefore well defined on all L2([0, 2π]). In the Appendix
we shall show that the operator P̂ϕ is nothing else than the exponential of ∂φ, that
is

P̂ϕ = ie−iλ∂φ .

Therefore we substitute the usual association

p̂φ −→ −is
∂

∂φ

with the new one
p̂φ −→ −isP̂ϕ .

In this way we have

p̂φeimφ = −isP̂ϕeimφ = −is(iemλ)eimφ = seλmeimφ .

The operator p̂φ can be proved to be self-adjoint (see Appendix). Of course, the

operator P̂ϕ is here introduced by hand. Further studies will be devoted to a fully
explanation of its physical meaning and of its link with ∂φ.

The new hamiltonian per unit mass reads

Ĥm = − s2

2r2

[

r
∂

∂r

(

r
∂

∂r

)

+ P̂2
ϕ

]

+ V (r) .

The wave function in these polar planar coordinates can be written as

ψ(r, φ) = R(r)Φ(φ) ,

where the separation of variables was supposed, in order to proceed towards a
solution of the Schrödinger-like equation. The normalization condition is

∫

R2

|ψ(r, φ)|2d2x =

∫ ∞

0

R2(r)r dr ·
∫ 2π

0

|Φ(φ)|2dφ = 1 . (10)

The time-independent Schrödinger-like equation is

Ĥmψ = Eψ ,
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where V (r) = −GM/r. This can be written as

r
∂

∂r

(

r
∂ψ

∂r

)

+ P̂2
ϕψ +

2r2

s2
(E − V (r))ψ = 0 (11)

which, with the position ψ(r, φ) = R(r)Φ(φ), becomes

r

R

∂

∂r

(

r
∂R

∂r

)

+
1

Φ
P̂2

ϕψ +
2r2

s2
(E − V (r)) = 0 .

Separating the variables we get the two equations











1

r

∂

∂r

(

r
∂R

∂r

)

− µ

r2
R+

2

s2
(E − V (r))R = 0 ,

P̂2
ϕΦ = −µΦ ,

where we suppose µ ∈ R.

8 The radial equation

The radial equation is quite similar to the standard one of the hydrogen atom
theory, apart of course for the radial part of the laplacian, which here is 2-dimen-
sional. For its solution we shall therefore use standard techniques (see e.g. [11]).

Let’s now look for the asymptotic behaviour of R(r). We ask R(r) to be finite
everywhere including r = 0. Under the hypothesis

lim
r→0

V (r)r2 = 0 ,

which is fulfilled by V (r) = −GM/r, the radial equation for r → 0 becomes

r
∂

∂r

(

r
∂R

∂r

)

− µR = 0 . (12)

We seek R(r) in the form of a power series and we retain only the first term for
small r. That is, we put R(r) = krt for r → 0. Substituting this in the equation
(12) we find

t2 = µ .

We want R(r) real, therefore t must be real, and µ ≥ 0. So we have two roots

t1 = −√µ ,
t2 = +

√
µ .

But t1 ≤ 0, hence rt1 → ∞ for r → 0. So t1 does not yields a R(r) finite near
the origin, and must be discarded. The only acceptable solution is t2 = +

√
µ ≥ 0.
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Therefore we put R(r) ∼ krt2 for r → 0. For the Newtonian potential V (r) =
−GM/r the radial equation reads

∂2R

∂r2
+

1

r

∂R

∂r
− µ

r2
R+

2

s2

(

E +
GM

r

)

R = 0 .

We choose as natural units for mass, length, and energy, respectively,

M ,
s2

GM
,

G2M2

s2

so that the radial equation can be rewritten as

∂2R

∂r2
+

1

r

∂R

∂r
− µ

r2
R+ 2

(

E +
1

r

)

R = 0 . (13)

To study the discrete spectrum (bound orbits, E < 0), we introduce in place of E ,
r, the variables

n =
1√
−2E

and ρ =
2

n
r = 2

√
−2E r

with E < 0, n > 0, and their inverse relations

E = − 1

2n2
, r =

n

2
ρ .

The equation (13) then becomes

∂2R

∂ρ2
+

1

ρ

∂R

∂ρ
+

(

−1

4
+
n

ρ
− µ

ρ2

)

R = 0 . (14)

We already know that R(ρ) ∼ ρt2 for ρ→ 0. If now we take ρ→∞, then eq. (14)
reads

∂2R

∂ρ2
− 1

4
R = 0 ,

whose solutions are e±ρ/2. We want R(ρ)→ 0 for ρ→∞, therefore we must choose
the second, R(ρ) ∼ e−ρ/2 for ρ→∞.

Now we make the substitution

R(ρ) = ρt2e−ρ/2w(ρ)

and the eq. (14) becomes

ρw′′ + (2t2 + 1− ρ)w′ + (n− t2 − 1
2 )w = 0 .

We look for a solution of this equation which diverges at infinity no more rapidly
than a finite power of ρ, while for ρ → 0 we should have w → w0 finite. Such a
solution is the confluent hypergeometric function (see Appendix)

w(ρ) = F (α, γ, ρ) = F (t2 + 1
2 − n, 2t2 + 1, ρ) . (15)

In particular, it behaves as a polynomial (w → ρp for ρ→∞) only if α = −N with
N ≥ 0 integer. Thus

t2 + 1
2 − n = −N =⇒ n = t2 + 1

2 +N , N = 0, 1, 2, 3, . . . .

12



The Titius–Bode law and . . .

9 The angular equation and the spectrum of E

Now we need to know what is t2 =
√
µ. To this aim, we solve the angular

equation

P̂2
ϕΦ = −µΦ , µ ≥ 0 . (16)

We take Φ ∈ L2([0, 2π]) and we know that an orthonormal basis in L2([0, 2π]) is

1√
2π

eimφ , m = 0,±1,±2, . . . .

From eq. (16), we see that we are looking for eigenvectors and eigenvalues of the
operator P̂2

ϕ. From the definition (9) we immediately get

P̂2
ϕeimφ = −e2λmeimφ ,

which means that

• the eigenvectors of P̂2
ϕ are um = eimφ/

√
2π;

• the eigenvalues of P̂2
ϕ are {−e2λm}m∈Z , and therefore µm = e2λm, m =

0,±1,±2, . . ..
Hence we have

t2 =
√
µ = eλm , m = 0,±1,±2, . . . ,

then

n = t2 + 1
2 +N = eλm + 1

2 +N

with N = 0, 1, 2, 3, . . ., m = 0,±1,±2, . . ..
Finally, we are able to write down the spectrum of the energy

E = − 1

2n2
= − 1

2(eλm + 1
2 +N)2

which in ordinary units reads

E = −1

2

(

GM

s

)2
1

(eλm + 1
2 +N)2

(17)

with N = 0, 1, 2, 3, . . ., m = 0,±1,±2, . . ..

Some considerations are now in order:

• We see that for N fixed and large positive m, the levels behave like

E ∼ −1

2

(

GM

s

)2
1

e2λm
,

which is the formula (5) obtained from the ”Bohr” model.

13
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• Clearly, the closest agreement between the relations (17) and (5) is reached
for

N = 0 and m = 1, 2, 3, . . . .

We call this sequence the principal sequence. The formula (17) seems to suggest
the existence of other sequences, like, for example,

m = 1 , N = 0, 1, 2, . . . ,

m = 2 , N = 0, 1, 2, . . . ,

or also
N = 0 and m = 0,−1,−2,−3, . . . .

These sequences can give rise, in principle, to possible resonances (whose properties
and connections with the observational data are going to be explored in future
works), or to system of rings (about this see section 11).

10 Mean value of r

In order to complete our analysis of the solution of eq. (11), we want to compute
the mean values taken by the variable r in various eigenstates. We are particularly
interested in the eigenstates of the principal sequence, N = 0, m = 1, 2, 3, . . ., which
is the one matching the observational data in the closest way. For ψ = R(r)Φ(φ),
the normalization condition (10) holds, and the Φ(φ) = eimφ/

√
2π are already

normalized to unity. Therefore we are left with the condition on R(r) only

1 =

∫ ∞

0

dr rR(r)2 .

The function R is given in term of the variable ρ by

R(ρ) ∼ ρt2 e−ρ/2 w(ρ)

with w(ρ) given by eq. (15) and ρ = 2r/n. First, we find the correct normalization
constant for R(ρ) by translating the normalization condition for R(r) into the one
for R(ρ). We write

R(ρ) = Aρt2 e−ρ/2 w(ρ) ,

so we have

1 =

∫ ∞

0

dr rR(r)2 =
n2

4

∫ ∞

0

dρ ρR(ρ)2 =
n2

4
A2

∫ ∞

0

dρ ρ2t2+1 e−ρ[w(ρ)]2 .

Since we are mainly interested in the mean values of r for the eigenstates belonging
to the principal sequence, (N = 0, m = 1, 2, 3, . . .), we set N = n − t2 − 1

2 = 0.
This means n = t2 + 1

2 and

w(ρ) = F (0, 2t2 + 1, ρ) = 1 .

14
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This simplify very much the calculation of the integral. In fact we have

1 =
n2

4
A2

∫ ∞

0

dρ ρ2t2+1e−ρ =
n2

4
A2

∫ ∞

0

dρ ρ(2t2+2)−1e−ρ =
n2

4
A2Γ(2t2 + 2) ,

where Γ is the Euler’ Γ-function. Thus we have

A2 =
4

n2 Γ(2t2 + 2)
=

2

n3 Γ2t2 + 1)
, (18)

where we used 2n = 2t2 + 1 and Γ(x+ 1) = xΓ(x).

We can now compute the mean value of r:

r̄ =

∫ ∞

0

dr r2R(r)2 =
n3

8

∫ ∞

0

dρ ρ2R(ρ)2 =
n3

8
A2

∫ ∞

0

dρ ρ2t2+2e−ρ [w(ρ)]2 .

We are interested in the principal sequence. So, N = 0 and w(ρ) = 1, and we use
for A the value just obtained in eq. (18). Hence

r̄ =
n3

8
A2

∫ ∞

0

dρ ρ2t2+2e−ρ =
n3

8
A2

∫ ∞

0

dρ ρ(2t2+3)−1e−ρ =
n3

8
A2Γ(2t2 + 3) =

=
1

4

Γ(2t2 + 3)

Γ(2t2 + 1)
=

1

4
(2t2 + 2)(2t2 + 1) =

1

2
n(2n+ 1) = n2 +

n

2
.

Since N = 0, then n = t2 + 1
2 = eλm + 1

2 . Therefore

r̄ = n2 + 1
2 n =

(

eλm + 1
2

)2
+ 1

2

(

eλm + 1
2

)

∼ e2λm , (19)

where the last holds for large and positive m.
Restoring the ordinary units, we have for the mean value of r, for large and

positive m

r̄ ∼ s2

GM
e2λm ,

which agrees with the Bohr model developed in section 4.

11 Prediction of the rings

It is tempting to speculate on the other possible sequences, in particular the
one N = 0 and m = 0,−1,−2,−3, . . .. First, we note that for N = 0 the mean
value r̄ is still given by the relation (19), or in ordinary units

r̄ = a
[

(eλm + 1
2 )2 + 1

2 (eλm + 1
2 )
]

, (20)

where a = s2/(GM). Clearly, the formula (20) matches the phenomenological for-
mula (1) only for large, positivem. This could be expected as due to the ”quantum”
origin (i.e. from a wave equation) of the formula (20). But the interesting feature

15
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of the equation (20) is that it can be considered also for m = 0,−1,−2,−3, . . .. In
the limit m→ −∞ we have for (20)

r̄ −→ 1
2 a (21)

contrary to the limit given by phenomenological rule (1), which predicts r̄ → 0 for
m→ −∞. The sequence m = 0,−1,−2,−3, . . . would in such a way correspond to
a system of permitted concentric orbits, accumulating on the limit orbit r̄ = a/2:
clearly, a system of rings. We can check the predictive ability of the relation (21)
using the planets equipped with a system of rings: Jupiter, Saturn, Uranus.

The procedure is the following:

— Calculate the parameter a from the phenomenological Titius–Bode rule, using
the radius r1 of the first satellite orbit:

a =
r1
e2λ

.

— Calculate the radius that the inner ring should have:

Rin−ring =
a

2
=

r1
2e2λ

.

We can check the above relation also in the reverse form

2e2λRin−ring = r1 .

Using the observational data given, for example, in [10] we can write, for:

Jupiter:

2e2λRin−ring = 2 · 1.7277 · 122 500 = 423 280 km .

This value agrees almost perfectly (within an error of less than 1 %) with the
radius of the orbit of Io, which is 421 600 km. To be precise, we should say that we
discarded the ring ”Halo” because it has a thickness of 20 000 km, and therefore
does not seem a ”real” ring, but rather just a halo. As first ring we use the ring
”Main”. Besides, we considered Io as the first satellite (as regard the distance from
Jupiter), instead of Metis, Adrastea, Amalthea or Thebe. This because the latter
satellites have sizes of, at most, 100 km and masses which are 10−4 – 10−6 the mass
of Io. This choice takes into account the well known fact that Titius–Bode rule
works well for quite large and quite massive objects. For example, it does not work
for comets or light asteroids. This criterium will be adopted also in the forthcoming
considerations about the Saturn and Uranus systems.

Saturn:

2e2λRin−ring = 2 · 1.5967 · 66 000 = 210 700 km . (22)

Here we have used the radius of the ring ”D”, the inner one. We see that the number
(22) lies half a way in between the orbits of Mimas (185 520 km) and Enceladus
(238 020 km), which are the first two ”big” satellites. The error is in the range of
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11.5 % − 13.5 %. If we use the radius of the ring ”C”, namely Rin−ring = 74 500 km,
we get for the radius r1 = 237 900 km, which agrees almost perfectly with orbital
radius of Enceladus (less than 1 % error). However, Enceladus is not the first
satellite but only the second. Here also, as already done for Jupiter, we have
discarded the too light bodies, and the satellites discovered only with spacecrafts
(therefore, very small). The reasons are the same as in the above.

Uranus:

2e2λRin−ring = 2 · 1.4662 · 41 840 = 122 690 km .

This value agrees with the radius of the orbit of Miranda (129 780 km), the first
”big” moon considered, within an error of 5.5 %. Here we considered as first inner
ring the ring ”6”. Miranda is the first satellite with relevant mass and size. In fact
it was discovered from the Earth by Kuiper in 1948. If we use the ring ”Alpha”
as inner ring, we get for the radius of the first satellite orbit r1 = 131 140 km, in
agreement within 1 % with the Miranda orbital radius.

Even if the agreement between the predicted inner radius of the rings and the ob-
servational data is not perfect (however with errors around 10 %), and the statistics
of only three cases is really poor, nevertheless this ”prediction” seems to corrobo-
rate the quantum-like model presented in this paper. On the other hand, it should
be noted that these errors are of the same order of those affecting the phenomeno-
logical Titius–Bode rule, therefore acceptable.

Moreover, noting that the Sun, for example, does not have rings, we must also
say that the model does not predict a compulsory presence of the rings. However,
it allows us to describe the existing rings.

12 Conclusions

In this paper we have shown that a wave equation is able, under certain restric-
tive hypothesis, to describe some basic properties of the planetary systems, namely
the law of the distances of the planets (or satellites) from the central body. The
wave equation adopted for this scope is a deformation of the Schrödinger equation.

We have been pushed to the choice of a deformed Schrödinger equation by the
analogy between the mechanism devised by ’t Hooft to produce quantization at
atomic level via dissipation, and the dissipation occurred during the history of the
proto-planetary nebula. An analogue of such a dissipation mechanism could have
been at work (of course, on much larger time scales) during the evolution of the
planetary systems. From the primitive nebula, where all the orbits were filled by
dust and rubble, we arrive, after 5 billion years of evolution, to the ”quantized”
orbits of today.

Of course, having marked the analogies, also the evident differences must be
underlined. We do not have quantum jumps in the Solar System, we do not have
quantum interferences between planets, neither quantum superpositions nor zero-
point energy. A planetary system is not a quantum system. On the contrary, we
have shown that a deformation of the Schrödinger equation (one of the basic tools

17



Fabio Scardigli

of Quantum Mechanics) seems to be able to play a role also in the description of
some quantum-like features of planetary systems. The descriptive power (somehow
”mysterious”) of eigenvalue wave equations seems to be confirmed. Indirectly, this
quantum-like description of the planetary systems seems also to strengthen the ’t
Hooft ideas on the origin of quantization from dissipation.

Appendix

Linearity, self-adjointness and explicit form of p̂φ = −isP̂ϕ

P̂ϕ is defined on the orthonormal basis um = eimφ/
√

2π of L2([0, 2π]) as

P̂ϕeimφ := i emλeimφ .

Defining p̂φ = −isP̂ϕ we have

p̂φeimφ = semλeimφ .

Hence um = eimφ/
√

2π are the eigenvectors of p̂φ with the eigenvalues µm = semλ.

Moreover we define P̂ϕ to be linear by stating

{

P̂ϕ(einφ + eimφ) := i enλeinφ + i emλeimφ = P̂ϕ(einφ) + P̂ϕ(eimφ) ,

P̂ϕ(αeinφ) := iαenλeinφ = αP̂ϕ(einφ) .

Being P̂ϕ linear on an orthonormal basis, then P̂ϕ is linear all over L2([0, 2π]). We
remind also the

Theorem: If a linear operator is self-adjoint on an orthonormal basis of a Hilbert

space H, then it is self-adjoint over all H.

Therefore we have simply to show that p̂φ is self-adjoint on the basis um. In
fact we have

〈p̂φum|un〉 =

∫ 2π

0

dφ (p̂φum)∗un =
1

2π

∫ 2π

0

dφ (p̂φeimφ)∗einφ =

=
semλ

2π

∫ 2π

0

dφ e−imφeinφ = semλδmn

and

〈um|p̂φun〉 =

∫ 2π

0

dφu∗m(p̂φun) =
senλ

2π

∫ 2π

0

dφ e−imφeinφ = senλδmn .

Besides, we check the identity

P̂ϕ = i e−iλ∂φ .

In fact, since
−iλ∂φeimφ = λmeimφ ,
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we have

e−iλ∂φeimφ =

(

1 + (−iλ)∂φ +
1

2
(−iλ)2∂2

φ + · · ·+ 1

n!
(−iλ)n∂n

φ + · · ·
)

· eimφ =

=

(

1 + λm+
λ2m2

2!
+ · · ·+ λnmn

n!
+ · · ·

)

· eimφ = emλeimφ .

Hence, the thesis.

Confluent hypergeometric function

The confluent hypergeometric function is defined via the series

F (α, γ, z) = 1 +
α

γ

z

1!
+
α(α+ 1)

γ(γ + 1)

z2

2!
+ . . . , (23)

which converges for all finite z; the parameter α is any number in C, and the
parameter γ must be different from zero and from any negative integer. If α is a
negative integer (or zero), the function F (α, γ, z) becomes a polynomy of degree
|α|.

The function F (α, γ, z) is a solution of the differential equation

zu′′ + (γ − z)u′ − αu = 0 , (24)

as can be directly checked.
With the substitution u = z1−γu1 the eq. (24) is transformed in

zu′′1 + (2− γ − z)u′1 − (α− γ + 1)u1 = 0 .

From here we see that, for a non integer γ, eq. (24) admits also the integral

z1−γF (α− γ + 1, 2− γ, z) ,

which is linearly independent from (23), so that the general solution of eq. (24) has
the form

u = c1F (α, γ, z) + c2z
1−γF (α− γ + 1, 2− γ, z) .

The second term, contrary to the first, has a singularity in z = 0.
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C.F. von Weizsäcker: Zeit. für Astroph. 22 (1943) 319;
D. ter Haar: Astrophys. J. 111 (1950) 179.

[8] L. Nottale: Astron. Astrophys. 315 (1996) L09;
M. de Oliveira Neto, L. A. Maia and S. Carneiro: Chaos, Solitons, Fractals 21 (2004)
21; arXiv: astro-ph/0205379;
A. Rubcic and J. Rubcic: Fizika B 7 (1998) 1;
A.G. Agnese and R. Festa: Phys. Lett. A 227 (1997) 165;
A.G. Agnese and R. Festa: Hadronic J. 21 (1998) 237;
P.S. Wesson: Phys. Rev. D 23 (1981) 1730.

[9] S. Weinberg: Gravitation and Cosmology: principles and applications of the General

Theory of Relativity. J.Wiley & Sons, New York, 1972.

[10] http://www.solarviews.com/eng/

[11] L. Landau and E. Lifshits: Quantum Mechanics — non relativistic theory. Pergamon
Press, Oxford, 1975.

20


