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tion functions of the Bose gas are calculated in the framework of the functional integration
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over the “low-energy” ones is used. The effective action functional for the low-energy vari-
ables is obtained in one loop approximation. The functional integral representations for
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A power-law asymptotical behaviour of the correlators of the one-dimensional Bose gas
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occupied by the non-homogeneous Bose gas infinitely increases. The power-law behaviour
is governed by the critical exponent dependent on the spatial arguments.
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1 Introduction

Experimental realization of Bose condensation in vapours of alcali metals con-
fined in the magneto-optical traps stimulated a considerable interest to the theory of
the Bose gas [1,2]. In particular, Bose condensation in the systems, which are effec-
tively two-dimensional or quasi one-dimensional, became a subject of experimental
and theoretical investigations. For more details one should be referred to [1,2]. The
field models, which describe the Bose particles with delta-like interparticle coupling
confined by an external harmonic potential, provide a reliable background for the-
oretical description of experimental situations [1,2]. For a translationally invariant
case, the field models in question correspond to a quantum nonlinear Schrödinger
equation which allows to obtain closed expressions for the correlation functions in
the one-dimensional case [3].

Some of the results of the papers [4–6] devoted to the correlation functions of the
weakly repulsive Bose gas confined by an external harmonic potential are reported
below. Since there are no exact solutions in the case of an external potential, the
functional integration approach (see [7–13] as a list, though incomplete, of appro-
priate refs.) is used in [4–6] for investigation of the two-point thermal correlation
functions. It will be demonstrated below that the presence of the external potential
results in a modification of the asymptotical behaviour of the correlation functions
in comparison to a translationally invariant case.

The paper is organized as follows. Section 1 has an introductory character. A
description of the one-dimensional model of non-relativistic Bose field in question,
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as well as a summary of the functional integration approach, are given in Section
2. Successive integration over the high-energy over-condensate excitations first
and then over the variables, which correspond to the low-energy quasi-particles,
is used in the given paper for a derivation of one loop effective action for the low
excited quasi-particles. The method of stationary phase is used in Section 3 for
approximate investigation of the functional integrals, which express the two-point
thermal correlation functions. Specifically, the asymptotical approach to estimation
of the correlators, which is discussed in the present paper, was proposed in [14]. It
is clear after [4–6] that the method [14] admits a generalization for the spatially
non-homogeneous Bose gas in the external potential as well. The asymptotics of
the two-point correlation functions of the non-homogeneous one-dimensional Bose
gas are obtained in Section 4. A short discussion in Section 5 concludes the paper.

2 The effective action and the Thomas−Fermi approximation

2.1 The partition function

Let us consider one-dimensional repulsive Bose gas on the real axis R 3 x confined
by an external potential V (x). We represent its partition function Z in the form
of the functional integral [7–13]:

Z =

∫
eS[ψ,ψ̄]DψDψ̄ , (1)

where S[ψ, ψ̄] is the action functional:

S[ψ, ψ̄] =

∫ β

0

dτ

∫
dx
{
ψ̄(x, τ)

( ∂

∂τ
−H

)
ψ(x, τ)−

−g
2
ψ̄(x, τ)ψ̄(x, τ)ψ(x, τ)ψ(x, τ)

}
,

(2)

and DψDψ̄ is the functional integration measure. Other notations in (1), (2) are:
H is the “single-particle” Hamiltonian,

H ≡ −~
2

2m

∂2

∂x2
− µ+ V (x) , (3)

m is the mass of the Bose particles, µ is the chemical potential, g is the coupling
constant corresponding to the weak repulsion (i.e., g > 0), and the external confin-
ing potential is V (x) ≡ 1

2 mΩ2x2. The domain of the functional integration in (1)
is given by the space of the complex-valued functions ψ̄(x, τ), ψ(x, τ) depending
on x ∈ R and τ ∈ [0, β]. With regard to x, the functions ψ̄(x, τ), ψ(x, τ) belong
to the space of quadratically integrable functions L2(R), while they are finite and
periodic with the period β = (kBT )−1 with regard to the imaginary time τ (kB is
the Boltzmann constant, and T is an absolute temperature).

At sufficiently low temperatures each of the variables ψ̄(x, τ), ψ(x, τ) is given
by two constituents:

ψ(x, τ) = ψo(x, τ) + ψe(x, τ) , ψ̄(x, τ) = ψ̄o(x, τ) + ψ̄e(x, τ) , (4)
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where ψ̄o(x, τ), ψo(x, τ) correspond to quasi-condensate (a true Bose condensate
does not exist in one-dimensional systems [11]), while ψ̄e(x, τ), ψe(x, τ) correspond
to the high-energy thermal (i.e. over-condensate) excitations. In the exactly solv-
able case, the existence of the quasi-condensate implies that a non-trivial ground
state exists [3]. Let us require the variables (4) to be orthogonal in the following
sense: ∫

ψo(x, τ)ψ̄e(x, τ) dx =

∫
ψ̄o(x, τ)ψe(x, τ) dx = 0 .

Then, the integration measure DψDψ̄ is replaced by the measure DψoDψ̄oDψeDψ̄e.
To investigate the functional integral (1), we shall perform a successive integra-

tion: first, we shall integrate over the high-energy constituents given by (4), and
then over the low-energy ones [8, 11]. At a second step, it is preferable to pass to
new functional variables, which describe an observable “low-energy” physics in a
more adequate way. After the substitution of (4) into the action (2) we take into
account in S only the terms up to quadratic in ψ̄e, ψe. This means an approxima-
tion, in which the over-condensate quasi-particles do not couple with each other. In
this case, it is possible to integrate out the thermal fluctuations ψ̄e, ψe in a closed
form and thus to arrive to an effective action functional Seff [ψo, ψ̄o]. It depends
only on the quasi-condensate variables ψo, ψ̄o:

Seff [ψo, ψ̄o] = ln

∫
e

eS[ψo+ψe,ψ̄o+ψ̄e]DψeDψ̄e , (5)

where the tilde in S̃ implies that “self-coupling” of the fields ψ̄e, ψe is excluded.
With respect of (5), the partition function of the model Z (1) takes an approximate
form:

Z ≈
∫

eSeff [ψo,ψ̄o]DψoDψ̄o . (6)

Let us consider the derivation of the effective action Seff [ψo, ψ̄o] (5) in more
details. The splitting (4) allows to derive Seff [ψo, ψ̄o] in the framework of the field-
theoretical approach of loop expansion [15]. We substitute (4) into the initial action

S[ψ, ψ̄] (2) and then go over from S to the action S̃, which is given by three terms:

S̃ = Scond + Sfree + Sint . (7)

In (7), Scond is the action functional of the condensate quasi-particles, which cor-
responds to a tree approximation [15]:

Scond[ψo, ψ̄o] ≡
∫ β

0

dτ

∫
dx
{
ψ̄o(x, τ)K̂+ψo(x, τ)−

−g
2
ψ̄o(x, τ)ψ̄o(x, τ)ψo(x, τ)ψo(x, τ)

}
.

(8)

At the chosen approximation the action for the over-condensate excitations Sfree

takes the form:

Sfree[ψe, ψ̄e] ≡
1

2

∫ β

0

dτ

∫
dx
(
ψ̄e, ψe

)
Ĝ−1

(
ψe
ψ̄e

)
, (9)
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where Ĝ−1 is the matrix-differential operator,

Ĝ−1 ≡ Ĝ−1
0 − Σ̂ . (10)

In (10) we defined:

Ĝ−1
0 ≡

(
K̂+ 0

0 K̂−

)
, Σ̂ ≡ Σ̂[ψo, ψ̄o] = g

(
2ψ̄oψo ψ2

o

(ψ̄o)
2 2ψ̄oψo

)
, (11)

where K̂± are the differential operators, K̂± ≡ ± ∂

∂τ
−H, and H is the single-particle

Hamiltonian (3). Eventually, Sint describes a coupling of the quasi-condensate to
the over-condensate excitations:

Sint[ψo, ψ̄o, ψe, ψ̄e] ≡
∫ β

0

dτ

∫
dx
{
ψ̄e(x, τ)

[
K̂+ − gψ̄oψo

]
ψo(x, τ)+

+ψe(x, τ)
[
K̂− − gψ̄oψo

]
ψ̄o(x, τ)

}
.

(12)

It is appropriate to apply the stationary phase method to the functional integral
(6). To this end, let us choose ψ̄o, ψo as the stationarity points of the functional
Scond (8), which are defined by the extremum condition δ(Scond[ψo, ψ̄o]) = 0. The
corresponding equations look like the Gross–Pitaevskii-type equations [1]:

(
∂

∂τ
+

~
2

2m

∂2

∂x2
+ µ− V (x)

)
ψo − g

(
ψ̄oψo

)
ψo = 0 ,

(
− ∂

∂τ
+

~
2

2m

∂2

∂x2
+ µ− V (x)

)
ψ̄o − g

(
ψ̄oψo

)
ψ̄o = 0 .

(13)

The contribution of the action functional Sint (12) drops out from (7), provided ψ̄o,
ψo are solutions of equations (13). Therefore the dynamics of ψe, ψ̄e is described,
in the leading approximation, by the action Sfree (9). The latter depends on ψ̄o, ψo
non-trivially through the matrix of the self-energy parts Σ̂, which enters into Ĝ−1

(10).
The Thomas–Fermi approximation is essentially used in the present paper in

order to determine the stationarity points ψ̄o, ψo. This approximation consists in

neglect of the kinetic term
~

2

2m

∂2

∂x2
in equations (13) [1, 2]. The Thomas–Fermi

approximation is valid for the systems containing a sufficiently large number of par-
ticles in the magneto-optical traps [1, 2]. The following condensate τ -independent
solution can be obtained:

ψ̄oψo = ρTF(x;µ) ≡ 1

g

(
µ− V (x)

)
Θ
(
µ− V (x)

)
, (14)

where Θ is the Heavyside function. Now the integration in (6) with respect to ψe,
ψ̄e is Gaussian. This leads to the one loop effective action in terms of the variables
ψo, ψ̄o:

Seff [ψo, ψ̄o] ≡ Scond[ψo, ψ̄o] − 1
2 ln Det

(
Ĝ−1

)
. (15)
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Here Ĝ−1 is the matrix operator (10) and ψo, ψ̄o have a sense of the new variables
governed by the action (15).

In order to assign a meaning to the final expression for the effective action (15),

it is necessary to regularize the determinant Det
(
Ĝ−1

)
. In our case, the operator

Ĝ−1 is already written as 2 × 2-matrix Dyson equation (10), where the entries of

Σ̂[ψo, ψ̄o] (11) play the role of the normal (Σ11 = Σ22) and anomalous (Σ12, Σ21)

self-energy parts. The Dyson equation (10) defines the matrix Ĝ, where the entries

have a meaning of the Green functions of the fields ψ̄e, ψe. The matrix Ĝ arises as
a formal inverse of the operator Ĝ−1.

It is appropriate to represent Ĝ−1 as follows:

Ĝ−1 = Ĝ−1
0 − Σ̂ ≡ Ĝ−1 −

(
Σ̂ − 2gρTF(x;µ)Î

)
, (16)

where Î is the unit matrix of the size 2 × 2, and the matrix Ĝ−1 is defined as

Ĝ−1 ≡
(
K̂+ − 2gρTF(x;µ) 0

0 K̂− − 2gρTF(x;µ)

)
≡
(
K+ 0
0 K−

)
. (17)

Here ρTF(x;µ) is the solution (14) and equation (16) implies that we simply added

and subtracted 2gρTF(x;µ) on the principle diagonal of the matrix operator Ĝ−1.

A formal inverse of Ĝ−1 can be found from the following equation, which defines
the Green functions G±:

(
K+ 0
0 K−

)(
G+ 0
0 G−

)
= δ(x − x′)δ(τ − τ ′)Î .

Using the relation ln Det = Tr ln, one gets:

−1

2
ln Det

(
Ĝ−1

)
= −1

2
Tr ln

(
Î − Ĝ

(
Σ̂ − 2gρTF(x;µ)Î

))
− 1

2
ln Det

(
K+ 0
0 K−

)
.

(18)
The first term in right-hand side of (18) is free from divergencies. Let us consider
the determinant of the matrix-differential operator in right-hand side of (18). Let
us denote the eigenvalues of the operators K± as ±iωB − λn, where ωB are the
bosonic Matsubara frequencies and λn are the energy levels labeled by the multi-
index n [5, 6]. Then, we calculate [5, 6]:

1

2β
ln Det

(
K+ 0
0 K−

)
=

1

β

∑

n

ln

(
2 sinh

βλn
2

)
≡ F̃nc(µ) ,

where F̃nc has a sense of the free energy of an ideal gas of the over-condensate
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excitations. Then, in the leading order in g, one gets:

−1

2
ln Det

(
Ĝ−1

)
≈ −βF̃nc(µ) +

+g

∫ β

0

dτ

∫
dx
(
G+(x, τ ;x, τ) + G−(x, τ ;x, τ)

)(
ψ̄oψo − ρTF(x;µ)

)
≡

≡ −βFnc(µ) − 2g

∫ β

0

dτ

∫
dx ρnc(x)ψ̄oψo . (19)

Here Fnc is the free energy of the non-ideal gas of the over-condensate quasi-
particles. The density of the over-condensate quasi-particles is ρnc(x) ≡ −G±(x, τ ;
x, τ), and it depends only on the spatial coordinate x. At very low temperatures
and sufficiently far from the boundary of the domain occupied by the condensate,
the quantity ρnc(x) can approximately be replaced by ρnc(0), since G±(x, τ ;x, τ) is
almost constant over a considerable part of the condensate [16].

It is appropriate to write the one loop effective action obtained in terms of new
independent real-valued variables of the functional integration. Namely, in terms
of the density ρ(x, τ) and the phase ϕ(x, τ) of the field ψo(x, τ):

ψo(x, τ) =
√
ρ(x, τ) eiϕ(x,τ) , ψ̄o(x, τ) =

√
ρ(x, τ) e−iϕ(x,τ) . (20)

In terms of these variables, the effective action takes the form [5, 6]:

Seff [ρ, ϕ] = −βFnc(µ) + i

∫ β

0

dτ

∫
dx

{
ρ∂τϕ+

~
2

2m
∂x(ρ∂xϕ)

}
+

+

∫ β

0

dτ

∫
dx

{
~

2

2m

(√
ρ ∂2

x

√
ρ− ρ(∂xϕ)2

)
+ (Λ − V )ρ− g

2
ρ2

}
,

(21)

where Λ = µ − 2gρnc(0) is the renormalized chemical potential. Here and below
we denote the partial derivatives of the first order over τ and x as ∂τ and ∂x,
respectively, whereas the partial derivatives of the second order — as ∂2

τ and ∂2
x.

The model in question in the present paper is spatially one-dimensional, and a
possible multi-valuedness of the angle variable ϕ is left aside.

We shall consider Seff (21) as the one loop effective action, where the thermal
corrections over the “classical” background are taken into account. The “classi-
cal” background corresponds to the solution (14). It should be noticed that our
derivation of the effective action can formally be used for two and three dimensions
also [4]. Notice that equation (21) remains correct at V = 0 also.

2.2 The excitation spectrum

Let us determine the spectrum of the low-energy quasi-particles. Now we are ap-
plying the stationary phase approximation to the integral (6), where the effective
action is given by (21), while the measure is DρDϕ. The corresponding stationarity
point is given by the extremum condition δ

(
Seff [ρ, ϕ]

)
= 0, which is equivalent to
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the couple of the Gross–Pitaevskii equations:

i∂τϕ+
~

2

2m

(
1√
ρ
∂2
x

√
ρ− (∂xϕ)2

)
+ Λ − V (x) − gρ = 0 ,

−i∂τρ+
~

2

m
∂x (ρ∂xϕ) = 0 .

(22)

We use the Thomas–Fermi approximation and drop out the term (∂2
x
√
ρ)/

√
ρ in the

first equation in (22). Solution with ∂τρ = 0 = ∂τϕ appears, provided the velocity
field v = m−1∂xϕ is taken equal to zero in (22). In this case, equations (22) lead
to the density of the condensate:

ρTF(x) ≡ Λ

g
ρ̃TF(x) =

Λ

g

(
1 − x2

R2
c

)
Θ

(
1 − x2

R2
c

)
. (23)

Explicit form of the external potential V (x) = 1
2 mΩ2x2 is taken into account in

the expression (23). The form of the solution (23) means that the quasi-condensate
occupies the domain |x| ≤ Rc at zero temperature. The length Rc defines the

boundary of this domain, R2
c ≡ 2Λ

mΩ2
(in three dimensional space, this would

correspond to a spherical distribution of the condensate). In the homogeneous case
given by the limit 1/Rc → 0, the Thomas–Fermi solution ρTF(x) is transformed into
the density ρTF(0) = Λ/g, which coincides with the density of the homogeneous
Bose gas [8].

According to the initial splitting (4), we suppose that thermal fluctuations in
vicinity of the stationarity point (23) are small, and therefore an analogous splitting
can be written for the condensate density also:

ρ0(x, τ) = ρTF(x) + π0(x, τ) , (24)

where ρ0(x, τ) is a specific solution of (22). We linearize equations (22) in a vicinity
of the equilibrium solution ρ0 = ρTF(x), ϕ = const. Eliminating the phase ϕ and
dropping out the terms proportional to ~

4, we go over from (22) to the Stringari

thermal equation [17]:

1

~2v2
∂2
τπ0 + ∂x

((
1 − x2

R2
c

)
∂xπ0

)
= 0 , (25)

where the parameter v has a meaning of the sound velocity in the center of the
trap:

v2 ≡ ρTF(0)g

m
=

Λ

m
. (26)

The substitution π0 = eiωτu(x) transforms (25) into the Legendre equation:

− ω2

~2v2
u(x) +

d

dx

((
1 − x2

R2
c

) d

dx
u(x)

)
= 0 . (27)
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Since the Thomas–Fermi solution (23) is non-zero only at |x| ≤ Rc, we shall consider
(27) at x ∈ [−Rc, Rc] ⊂ R, as well. After an analytical continuation ω → iE,
equation (27) possesses the polynomial solutions, which are given by the Legendre
polynomials Pn(x/Rc), if and only if

(
Rc
~v

)2

E2 ≡ 2

~2Ω2
E2 = n(n+ 1) , n ≥ 0 . (28)

In other words, equation (27) leads to the spectrum of the low lying excitations:

En = ~Ω

√
n(n+ 1)

2
, n ≥ 0, [18]. Notice that the corresponding equation for the

homogeneous Bose gas is obtained after a formal limit 1/Rc → 0 in (27) at finite x.
Provided the latter is still considered for the segment [−Rc, Rc] 3 x with a periodic
boundary condition for x, we arrive at the discrete spectrum of the following form:
Ek = ~vk, where k is the wave number, k = (π/Rc)n, n ∈ Z.

3 The two-point correlation functions

Let us go over to our main task — to the calculation of the two-point thermal
correlation function Γ(x1, τ1;x2, τ2) of the spatially non-homogeneous Bose gas. We
define it as the ratio of two functional integrals:

Γ(x1, τ1;x2, τ2) =

∫
ψ̄(x1, τ1)ψ(x2, τ2)e

S[ψ,ψ̄]DψDψ̄∫
eS[ψ,ψ̄]DψDψ̄

, (29)

where the action S[ψ, ψ̄] is given by (2).
We are interested in the behaviour of the correlators at the distances consider-

ably smaller in comparison with the size of the domain occupied by the conden-
sate. The main contribution to the behaviour of the correlation functions is due
to the low lying excitations at sufficiently low temperatures [8, 11]. To calculate
Γ(x1, τ1;x2, τ2), (29), we use the method of successive functional integration first
over the high-energy excitations ψ̄e, ψe, and then over the low-energy excitations
ψ̄o, ψo (see (4)). In the leading approximation, the correlator we are interested in
looks, in terms of the density–phase variables, as follows [5, 6]:

Γ(x1, τ1;x2, τ2) '
∫

exp
(
Seff [ρ, ϕ] − iϕ(x1, τ1) + iϕ(x2, τ2)+

+ 1
2 ln ρ(x1, τ1) + 1

2 ln ρ(x2, τ2)
)
DρDϕ×

×
(∫

exp
(
Seff [ρ, ϕ]

)
DρDϕ

)−1

,

(30)

where the integrand in the nominator is arranged in the form of a single exponential.
Here Seff [ρ, ϕ] is the effective action (21).

Since the fluctuations of the density are suppressed at sufficiently low tempera-
tures [16], one can replace ln ρ(x1, τ1), ln ρ(x2, τ2) in (30) by ln ρTF(x1), ln ρTF(x2),
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where ρTF is defined by (23). In accordance with the variational principle suggested
in [14], we estimate the functional integrals in (30) by the stationary phase method.
Each of the integrals is characterized by its own stationarity point given by vari-
ation of the corresponding exponent. For the correlation function Γ(x1, τ1;x2, τ2),
we obtain the following leading estimation:

Γ(x1, τ1;x2, τ2) '
√
ρTF(x1)ρTF(x2)×

× exp
(
−Seff [ρ0, ϕ0]+Seff [ρ1, ϕ1] − iϕ1(x1, τ1) + iϕ1(x2, τ2)

)
,

(31)

where the variables ρ0, ϕ0 are defined by the extremum condition δ
(
Seff [ρ, ϕ]

)
= 0,

and therefore they just satisfy the Gross–Pitaevskii equations (22). The fields ρ1,
ϕ1 are defined by the extremum condition:

δ
(
Seff [ρ, ϕ] − iϕ(x1, τ1) + iϕ(x2, τ2)

)
= 0 . (32)

The variational equation (32) leads to another couple of equations of the Gross–
Pitaevskii type. One of these equations turns out to be a non-homogeneous equa-
tion with the δ-like source, while another one is a homogeneous equation. In fact,
the homogeneous equation appears due to a requirement of vanishing of the coeffi-
cient at the variation δρ(x, τ), while the non-homogeneous equation is defined by
vanishing of the coefficient at the variation δϕ(x, τ).

It can consistently be assumed that the solution ρ1(x, τ) can be represented as
a sum of ρTF(x) and of a weakly fluctuating part, provided the boundary Rc is far
from beginning of coordinates: ρ1(x, τ) = ρTF(x) + π1(x, τ). Therefore, the terms√
π1 ∂

2
x

√
π1 and ∂xπ1∂xϕ1 are small and can be omitted. Taking into account a

linearization near the Thomas–Fermi solution, one can finally arrive at a couple of
the following equations:

i∂τϕ1 − gπ1 −
~

2

2m
(∂xϕ1)

2
= 0 ,

−i∂τπ1 +
~

2

m
∂x (ρTF∂xϕ1) = iδ(x− x1)δ(τ − τ1) − iδ(x− x2)δ(τ − τ2) .

(33)

Equations (33) lead [5, 6] to the following equation for the variable ϕ1:

1

~2v2
∂2
τϕ1+∂x (ρ̃TF(x)∂xϕ1) = i

mg

~2Λ

{
δ(x−x1)δ(τ−τ1)−δ(x−x2)δ(τ−τ2)

}
, (34)

where v means the sound velocity in the center of the trap (26), and ρ̃TF is defined
by (23). Now, with the help of (33) one can calculate the terms contributing into
the exponent in (31), [5, 6]:

−Seff [ρ0, ϕ0] + Seff [ρ1, ϕ1] '
i

2

(
ϕ1(x1, τ1) − ϕ1(x2, τ2)

)
. (35)

Substituting (35) into (31), one obtains the following approximate formula for the
correlator:

Γ(x1, τ1;x2, τ2) '
√
ρTF(x1)ρTF(x2) exp

(
− i

2

(
ϕ1(x1, τ1) − ϕ1(x2, τ2)

))
. (36)
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It is natural to represent solutions of equation (34) in terms of the solution
G(x, τ ;x′, τ ′) of the equation

1

~2v2
∂2
τG(x, τ ;x′, τ ′) + ∂x

((
1 − x2

R2
c

)
∂xG(x, τ ;x′, τ ′)

)
=

g

~2v2
δ(x− x′)δ(τ − τ ′) .

(37)
Bearing in mind the homogeneous equation (25), we shall call (37) as non-homoge-

neous Stringari equation. As it is clear after [19], the Green functionG(x1, τ1;x2, τ2)
has a meaning of the correlation function of the phases:

G(x1, τ1;x2, τ2) = −
〈
ϕ(x1, τ1)ϕ(x2, τ2)

〉
, (38)

where the angle brackets in right-hand side should be understood as an averag-
ing with respect to the weighted measure exp

(
Seff [ρ, ϕ]

)
DρDϕ. Using (38), it is

possible to represent, eventually, the correlation function as follows [5, 6]:

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2) exp

(
− 1

2

(
G(x1, τ1;x2, τ2) +G(x2, τ2;x1, τ1)

))
,

(39)
where ρ̃(x1), ρ̃(x2) are the renormalized densities. The solution G(x1, τ1;x2, τ2) of
equation (37) is defined up to a purely imaginary additive constant, which has a
meaning of a global phase.

The governing equations reported in [4] for the spatial dimensionalities d = 3,
2, 1 are in a direct agreement with (33), provided the τ -dependence is neglected
in (33). The correlation functions of the phases are obtained in [4] without an
influence of ∂xρTF ∂xϕ1 as follows (the notation f(x,x′) is used for them in [4], but
G(x,x′) is used below to keep contact with (38)):

G(x,x′) = − Λ

4πβ~2v2ρTF(S)

1

| x − x′ | , (d = 3) , (40a)

G(x,x′) =
Λ

2πβ~2v2ρTF(S)
ln

| x− x′ |
λT

, (d = 2) , (40b)

G(x,x′) =
Λ

2β~2v2ρTF(S)
| x − x′ | , (d = 1) . (40c)

where x, x′ label spatial arguments at d = 3, 2, 1 and S ≡ 1
2 (x+x′). In (40b), the

thermal length λT = ~βv is introduced, where v =
√

Λ/m is the sound velocity
given by (26). It is already clear that the correlation functions can no longer depend
on | x−x′ | alone: they depend also on the center of mass coordinate S, consistent
with the breakdown of translational invariance induced by the trap.

Let us remind first the correlation functions in d = 3, 2. In this case, the points
x = x1 and x = x2 in ϕ1 ≡ ϕ1(x;x1,x2) are singular and introduce a divergence
problem [8]. This difficulty can be avoided by considering a first-order coherence

function Γ(1)(x1,x2) which is defined in [4] as

Γ(1)(x1,x2) '
Γ(x1,x2)

〈ψo(x1)〉 〈ψ̄o(x2)〉
, (41)

10
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where Γ(x1,x2) is given by (36). Then, Γ(1)(x1,x2) is both finite and well de-
fined because identically the same singularities appear [8] in a direct calculation of
〈ψo(x1)〉 and 〈ψ̄o(x2)〉. We find that

Γ(1)(x1,x2) ' exp

(
Λ

4πβ~2v2ρTF(S)

1

| x1 − x2 |

)
. (42)

Evidently for d = 3,

Γ(1)(x1,x2) −→ 1 +
Λ

4πβ~2v2ρTF(S)

1

| x1 − x2 |

for | x1 − x2 |� Λ/(4πβ~
2v2ρTF(S)), thus indicating long-range order and long-

range coherence. The correlation length given by Λ/4πβ~
2v2ρTF(S)) is therefore a

slowly varying function of x1 and x2. Notice that we have assumed x1 and x2 are
not close to the boundaries.

In the case d = 2, the correlations decay by a power law for arbitrary small
temperatures,

Γ(1)(x1,x2) '
(

λT
| x1 − x2 |

)Λ/(2πβ~
2v2ρTF(S))

. (43)

The exponent of this power-law is proportional to T so that, at very low tempera-
tures, correlations may thus prevail over almost macroscopic distances. At T = 0
exactly, Γ(1) will have a non-zero off-set due to the presence of a true condensate.

For d = 1, one can obtain for G instead of (40c) an exact expression as follows
(i.e., the term ∂xρTF ∂xϕ1 in the governing equations is now accounted for):

G(x,x′) ≡ G(x, x′) =
gRc

β(2~v)2
ln

[(
1 + |x− x′|/(2Rc)

)2 − (x+ x′)2/(4R2
c)(

1 − |x− x′|/(2Rc)
)2 − (x+ x′)2/(4R2

c)

]
.

(44)
Then, we obtain Γ(x1,x2) ≡ Γ(x1, x2) in the following form:

Γ(x1, x2) '
√
ρTF(x1)ρTF(x2)

[
1 + |x1 − x2|/Rc − x1x2/R

2
c

1 − |x1 − x2|/Rc − x1x2/R2
c

]−gRc/(4β~
2v2)

. (45)

In the limit | x1 − x2 |�
{
Rc, S

}
, we obtain Γ(x1, x2) in the form:

Γ(x1, x2) '
√
ρTF(x1)ρTF(x2) exp

(
− Λ

2β~2v2ρTF(S)
|x1 − x2|

)
. (46)

The correlation length depends now on x1 and x2. Without the trap, the correlation
length reduces to 2β~

2ρTF(0)/m, where ρTF(0) is the density of the ground state of
a homogeneous system at zero temperature, in complete agreement with the exact
solution [3].

It is obvious that the correlation functions (43) and (46) vanish for large sep-
aration of the arguments at arbitrary small temperatures T > 0, and that there

11
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is no long-range order in d = 2 or d = 1. The correlation functions (42), (43),
(46) coincide with those obtained under translational invariance without the trap
to the extent that there is now an additional factor ρTF(S) in the exponents. True
long-range order arises only in d = 3.

4 The asymptotics of the correlation functions

Therefore, the problem concerning the study of the asymptotical behaviour of
the two-point thermal correlation function Γ(x1, τ1;x2, τ2) given by the representa-
tion (39), is reduced to solution of the non-homogeneous Stringari equation (37).
The corresponding answer (or its asymptotics) should be subsequently substituted
into (39). In the present section, we shall obtain explicitly solutions of (37), and
we shall consider the corresponding asymptotics of Γ(x1, τ1;x2, τ2). Let us begin
with the limiting case of a homogeneous Bose gas.

4.1 The homogeneous Bose gas

The homogeneous case is given by V (x) ≡ 0, and the related equation appears from
(37) at 1/Rc → 0:

1

~2v2
∂2
τG(x, τ ;x′, τ ′) + ∂2

xG(x, τ ;x′, τ ′) =
g

~2v2
δ(x − x′)δ(τ − τ ′) . (47)

We consider (47) for the domain [−Rc, Rc]× [0, β] 3 (x, τ) with the periodic bound-
ary conditions for each variable. The δ-functions in right-hand side of (47) are
treated as the periodic δ-functions. This allows us to represent the solution of this
equation as the formal double Fourier series:

G(x, τ ;x′, τ ′) =
( −g

2βRc

) ∑

ω,k

eiω(τ−τ ′)+ik(x−x′)

ω2 +E2
k

, (48)

where ω = (2π/β)l, l ∈ Z. The notation for the energy Ek = ~vk, where
k = (π/Rc)n, n ∈ Z, is used in (48). Besides, the representation (48) requires
a regularization, which consists in neglect of the term given by ω = k = 0.

Let us deduce from (48) two important asymptotical representations for the
Green function. Then, in the limit of zero temperature and of infinite size of
the domain occupied by the Bose gas, one can go over to the asymptotics of
Γ(x1, τ1;x2, τ2). When a strong inequality β−1 ≡ kBT � ~v/Rc is valid, we obtain:

G(x, τ ;x′, τ ′) '

' g

2π~v
ln

{
2
∣∣∣ sinh

π

~βv

(
|x− x′| + i~v(τ − τ ′)

)∣∣∣
}
− g

4βRc

|x− x′|2
~2v2

+ C ,
(49)

where |x − x′| ≤ 2Rc, |τ − τ ′| ≤ β, and C is some constant, which is not written

12
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explicitly. When an opposite inequality β−1 ≡ kBT � ~v/Rc is valid, we obtain:

G(x, τ ;x′ , τ ′) '

' g

2π~v
ln

{
2
∣∣∣ sinh

iπ

2Rc

(
|x− x′| + i~v(τ − τ ′)

)∣∣∣
}
− g

4βRc
|τ − τ ′|2 + C′ ,

(50)

where |x− x′| ≤ 2Rc, |τ − τ ′| ≤ β, and C′ is another constant.
Let us substitute the estimate (49) into the representation (39) and take simulta-

neously the limit β~v/Rc → 0 (the size is growing faster than inverse temperature).
Then, we obtain the following expression for the correlator in question:

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2)

∣∣∣ sinh
π

~βv

(
|x1 − x2| + i~v(τ1 − τ2)

)∣∣∣
−g/2π~v

. (51)

Further, applying the relation (50) and taking the limit Rc/(β~v) → 0 (the inverse
temperature grows faster than the size), we obtain for Γ(x1, τ1;x2, τ2):

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2)

∣∣∣ sinh
iπ

2Rc

(
|x1 − x2|+ i~v(τ1 − τ2)

)∣∣∣
−g/2π~v

. (52)

It follows from (51) and (52), that in the limit of zero temperature, (~βv)−1 → 0,
and of infinite size, 1/Rc → 0, the two-point correlation function behaves like

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2)∣∣|x1 − x2| + i~v(τ1 − τ2)

∣∣1/θ
. (53)

The latter formula is valid in the limit β~v/Rc → 0, as well as in the limit
Rc/(β~v) → 0. In (53) θ denotes the critical exponent: θ ≡ 2π~v/g, and the
arguments x1 and x2, τ1 and τ2 are assumed to be sufficiently close each to other.
Using the notations v =

√
Λ/m for the sound velocity and ρ = Λ/g for the density

of the homogeneous Bose gas, we obtain for the critical exponent the following
universal expression:

θ =
2π~ρ

mv
. (54)

4.2 The trapped Bose gas. High temperature case: kBT � ~v/Rc

Let us turn to non-homogeneous Bose gas described by equations (1)–(3). Now,
we should consider the non-homogeneous Stringari equation (37) for the arguments
(x, τ) ∈ [−Rc, Rc] × [0, β] with the periodic boundary condition only respectively
to τ (contrary to equation (47), δ(x−x′) is a usual Dirac’s δ-function supported at
the point x′ ∈ R). The Green function satisfying (37) can be written as a formal
Fourier series:

G(x, τ ;x′, τ ′) =
1

β

∑

ω

eiω(τ−τ ′)Gω(x, x′) , (55)

13



C. Malyshev, N.M. Bogoliubov

where ω = (2π/β)l, l ∈ Z. The spectral density Gω(x, x′) in (55) is then governed
by the equation

− ω2

~2v2
Gω(x, x′) +

d

dx

((
1 − x2

R2
c

) d

dx
Gω(x, x′)

)
=

g

~2v2
δ(x− x′) . (56)

Solution of equation (56) can be obtained in terms of the Legendre functions
of the first and second kind, Pν(x/Rc) and Qν(x/Rc), [20], which are linearly
independent solutions of the homogeneous Legendre equation (27). As a result we
get [5, 6]:

Gω(x, x′) = <Gω(x, x′) + i=Gω(x, x′) , (57)

where

<Gω(x, x′) =
gRc

2~2v2
ε(x− x′)

{
Qν

( x

Rc

)
Pν

( x′
Rc

)
−Qν

( x′
Rc

)
Pν

( x

Rc

)}
,

=Gω(x, x′) = − gRc
2~2v2

{
2

π
Qν

( x

Rc

)
Qν

( x′
Rc

)
+
π

2
Pν

( x′
Rc

)
Pν

( x

Rc

)}
,

(58)

ν looks as follows:

ν = −1

2
+

√
1

4
−
(Rc

~v

)2

ω2 ,

and ε(x − x′) is the sign function ε(x) ≡ sign(x). Validity of the solution (57),
(58) can be verified by direct substitution into (56), where an expression for the
Wronskian of two linearly independent solutions Pν and Qν [21] should be used.

The Green function (57) can be represented in the form, which allows to study
the corresponding asymptotical behaviour. When the coordinates x1, x2 are chosen
to be far from the boundary of the trap, x1, x2 � Rc, but at the same time the
inequalities |x1−x2| � 1

2 (x1 +x2) and |x1 −x2| � Rc are valid, the corresponding
limit should be called as quasi-homogeneous. In the case of strong inequality β−1 =
kBT � ~v/Rc, we approximately obtain for non-zero frequencies: |ω| � ~v/(2Rc).
Using the standard asymptotics of the Legendre functions [20, 22], we determine
the behaviour of Gω(x, x′) in the quasi-homogeneous limit at large |ω| as follows:

Gω(x, x′) ' − Λ

2~vρTF(S)

exp
(
−(~v)−1|ω||x− x′|

)

|ω| . (59)

Here S means a half-sum of the spatial arguments of the correlator, S ≡ 1
2 (x1+x2),

and v is given by (26).
Further, we find that the term β−1G0(x, x

′) in (55) is just given (in the quasi-
homogeneous limit) by G(x,x′) (40c). Using (40c) and (59) for evaluation of the
series (55), one obtains the answer:

G(x, τ ;x′, τ ′) ' Λ

2π~vρTF(S)
ln

{
2
∣∣∣ sinh

π

~βv

(
|x− x′| + i~v(τ − τ ′)

)∣∣∣
}
. (60)
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Therefore, the Green function (39) takes the following form at β−1 � ~v/Rc:

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2)∣∣∣ sinh

π

~βv

(
|x1 − x2| + i~v(τ1 − τ2)

)∣∣∣
1/θ(S)

, (61)

where the critical exponent θ(S) depends now only on the half-sum of the coordi-
nates S:

θ(S) =
2π~ρTF(S)

mv
. (62)

The result (61), which is valid for the spatially non-homogeneous case, is in a
correspondence with the estimation (51) obtained above for the homogeneous Bose
gas. Therefore, the expression (61) is also concerned with validity of the condition
that the size of the domain occupied by the Bose condensate grows faster than
inverse temperature, i.e. with the condition ~βv/Rc → 0.

The relation (61) can be simplified for two important limiting cases. Provided
the condition

1 � |x1 − x2|
~βv

� Rc
~βv

(63)

is fulfilled in the quasi-homogeneous case, we obtain from (61) that the correlator
decays exponentially:

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2) exp

(
− 1

ξ(S)

∣∣|x1 − x2| + i~v(τ1 − τ2)
∣∣
)
,

ξ−1(S) =
Λ

2β~2v2ρTF(S)
.

(64)

The correlation length ξ(S) is defined by the relation (64), which depends now on
the half-sum of the coordinates:

ξ(S) ≡ ~βv

π
θ(S) =

2~
2βρTF(S)

m
. (65)

In an opposite limit,

|x1 − x2|
~βv

,
|τ1 − τ2|

β
� 1 � Rc

~βv
, (66)

the asymptotics of Γ(x1, τ1;x2, τ2) takes the following form:

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2)∣∣|x1 − x2| + i~v(τ1 − τ2)

∣∣1/θ(S)
. (67)

The obtained asymptotics (67) is analogous to the estimation (53), which charac-
terizes the spatially homogeneous Bose gas. But the critical exponent θ(S) in (67)
differs from θ (54), since the latter does not depend on the spatial coordinates.
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4.3 The trapped Bose gas. Low temperature case: kBT � ~v/Rc

Let us go over to another case, which also admits investigation of the asymptotical
behaviour of the two-point correlator Γ(x1, τ1;x2, τ2). We begin with the non-
homogeneous Stringari equation (37), which can be rewritten in the following form:

∂2
τG(x, τ ;x′, τ ′) +

1

α2
∂(x/Rc)

((
1 − x2

R2
c

)
∂(x/Rc)G(x, τ ;x′, τ ′)

)
=

=
g

Rc
δ
(
x−x′

Rc

)
δ(τ − τ ′) ,

(68)

where the notation α ≡ Rc/(~v) is introduced. The asymptotical behaviour can
be investigated in two cases: β/α� 1 (the previous subsection) and β/α� 1 (see
below). The functions √

n+
1

2
Pn

( x

Rc

)
, n ≥ 0 ,

where Pn(x/Rc) are the Legendre polynomials, constitute a complete orthonormal
system in the space L2 [−Rc, Rc]. This fact allows to obtain the following represen-
tation for the Green function G(x, τ ;x′ , τ ′) in the form of the generalized double
Fourier series:

G(x, τ ;x′, τ ′) =
( −g
βRc

)∑

ω

∞∑

n=0

n+ 1
2

ω2 +E2
n

Pn

( x

Rc

)
Pn

( x′
Rc

)
eiω(τ−τ ′). (69)

Summation
∑
ω

in (69), as well as in (48) and (55), goes over the Bose frequencies,

and the following notation for the energy levels (28) is adopted:

En = ~Ω

√
n(n+ 1)

2
=

√
n(n+ 1)

α
. (70)

After summation over the frequencies and after regularization consisting in ne-
glect of the term corresponding to zero values of ω and n, G(x, τ ;x′, τ ′) (69) takes
the form:

G(x, τ ;x′, τ ′) =
( −g
βRc

)[( β
2π

)2 ∞∑

l=1

cos
(

2π∆τ
β l

)

l2
+

+
β

2

∞∑

n=1

n+ 1
2

En
Pn

( x

Rc

)
Pn

( x′
Rc

)(
coth

(1

2
βEn

)
cosh(En∆τ) − sinh(En∆τ)

)]
,

(71)
where ∆τ ≡ |τ−τ ′|. The representation (71) can be studied in both cases: β/α� 1
and β/α � 1. For instance, using (71) at coinciding arguments τ = τ ′ to obtain
Γ(x1, τ ;x2, τ) in the limit β/α � 1, we just obtain [6] the representations (45) or
(under the quasi-homogeneity condition) (46).
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Let us turn to the case β/α � 1, where βEn � 1, ∀n ≥ 1. In other words, let
us suppose that kBT � En and, so, kBT � ~Ω. Then, one obtains from (71):

G(x, τ ;x′, τ ′) =
−gβ
4Rc

[(1

2
− ∆τ

β

)2

− 1

12

]
−

− g

2~v

∞∑

n=1

n+ 1
2√

n(n+ 1)
Pn

( x

Rc

)
Pn

( x′
Rc

)
exp
(
−
√
n(n+ 1)

∆τ

α

)
.

(72)

Notice that a difference between two neighbouring energy levels (70) can be
estimated. After some appropriate series expansions, which are valid at ∀n > 1,
one obtains:

En+1 −En ≈ 1

α

[
1 +

1

8n2
− 1

4n3
+ . . .

]
. (73)

Equation (73) demonstrates that the levels (70) are approximately equidistant pro-
vided the inverse powers of n are neglected in (73) for sufficiently large n > n0. In
its turn, the following estimation is also valid:

n+ 1/2√
n(n+ 1)

= 1 +
1

8n2
− 1

8n3
+ . . . . (74)

It is remarkable that the terms ∝ n−1 are absent both in (73) and (74). Let
us remind that leading asymptotical estimations, which are obtainable with so-
called logarithmic accuracy, are important for physical applications. The problem
at hands just admits an estimation with leading logarithmic accuracy, since inverse
powers of n can be omitted with the same (and good) accuracy in (73) and (74) at
sufficiently large n. Convergency of the series (72) is not affected in this situation,
since ∆τ is non-zero.

It is known that at sufficiently large n, the following asymptotics for the Leg-
endre polynomials Pn is valid [21]:

Pn(cosϑ) =

√
2

πn sinϑ
cos
[(
n+ 1

2

)
ϑ− π

4

]
+O(n−3/2) , 0 < ϑ < π . (75)

Let us split the sum over n in (72) into two parts:
n=n0∑
n=1

and
n=∞∑

n=n0+1
. Further,

let us assume that n0 is large enough to substitute at n > n0 the Legendre poly-
nomials Pn by their asymptotical expressions given by (75) (and denoted below
as P̄n(cosϑ)). Then, using (73) and (74), we can put G(x, τ ;x′ , τ ′) (72) into the
following approximate form [6]:

G(x, τ ;x′ , τ ′) ≈ −gβ
4Rc

[(
1

2
− ∆τ

β

)2

− 1

12

]
− g

2~v

n0∑

n=1

[
n+ 1

2√
n(n+ 1)

Pn

( x

Rc

)
Pn

( x′
Rc

)

× exp
(
−
√
n(n+ 1)

∆τ

α

)
− P̄n

( x

Rc

)
P̄n

( x′
Rc

)
exp
(
−
(
n+ 1

2

) ∆τ

α

)]
−

− g

2~v
e−∆τ/(2α)

∞∑

n=1

tnP̄n

( x

Rc

)
P̄n

( x′
Rc

)
,

(76)
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where t ≡ exp(−∆τ/α), and n0 is the number, which is fixed (its specific value is
forbidden to go to infinity). Expression (76) is valid when τ and τ ′ are close either
to zero or to β. Besides, we assume that τ 6= τ ′ in order to keep convergency of
(76), while the term omitted can be estimated [6].

Provided a smallness of x/Rc, x
′/Rc and ∆τ/α is taken into account, a leading

logarithmic behaviour of the series in (76) can be established by the standard
tools [21]. Since in the logarithmic approximation the first two terms in (76) are less
important in comparison to the third one, we write down the leading contribution
to the Green function G(x, τ ;x′, τ ′) in the quasi-homogeneous limit as follows:

G(x, τ ;x′, τ ′) ' −Λ

2π~v

1

ρTF(S)
ln

Rc∣∣|x− x′| + i~v(τ − τ ′)
∣∣ , (77)

where ρTF is given by (23), S is a half-sum of x and x′, and it is assumed that

u∗ ≡
∣∣|x− x′| + i~v(τ − τ ′)

∣∣
Rc

� 1 . (78)

Besides, at sufficiently large n0, in our consideration it is more appropriate to keep
n instead of n + 1

2 in (75). Expression (77) takes place provided the following
conditions of validity of the logarithmic estimation are respected:

1 � n0 <
1

u∗
� 1

u∗
ln

1

u∗
. (79)

A specific value of n0 can be related to the size of the trap Rc: at a restricted
range of deviations between the spatial arguments x and x′, increasing of Rc implies
increasing of an upper bound for admissible values of n0. However, due to (79), the
estimation obtained for G(x, τ ;x′, τ ′) (77) does not depend explicitly on a specific
choice of n0. In the limit 1/Rc → 0, the total coefficient in front of the logarithm in
(77) acquires the value −1/θ, where the critical exponent θ is defined like in (53),
(54).

Eventually, we obtain the following estimation for the two-point correlator
Γ(x1, τ1;x2, τ2):

Γ(x1, τ1;x2, τ2) '
√
ρ̃(x1)ρ̃(x2)∣∣|x1 − x2| + i~v(τ1 − τ2)

∣∣1/θ(S)
, (80)

where the notation for the critical exponent θ(S) is given by (62).
The estimation obtained (80), where the critical exponent is θ(S) (62), con-

stitutes the main result of the present subsection devoted to the case given by
kBT � ~v/Rc. From a comparison with the spatially homogeneous Bose gas, one
can see that now the derivation of the estimate (80) is just analogous to a tran-
sition from the relation (52) to the final asymptotics (53). Then, validity of the
corresponding limiting condition Rc/(~βv) → 0 means that the result (80) is also
due to the fact that the condensate boundary Rc increases slower than the inverse
temperature.
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Therefore, under the different conditions, kBT � ~v/Rc and kBT � ~v/Rc,
we demonstrated in the present section that the behaviour of the correlator in the
limit of zero temperature, (~βv)−1 → 0, and of infinite size of the trap, 1/Rc → 0,
is given by the coinciding estimations (67) and (80), i.e. the two-point correlation
function Γ(x1, τ1;x2, τ2) has a unique power-law behaviour in this limit.

5 Conclusion

The model considered describes a spatially non-homogeneous weakly repulsive
Bose gas subjected to an external harmonic potential. The functional integral re-
presentation for the two-point correlation function is estimated by means of the
stationary phase approximation. The main results are obtained for the case when
the size of the domain occupied by the quasi-condensate increases, while the tem-
perature of the system goes to zero. In the one-dimensional case, the behaviour
of the two-point correlation function at zero temperature is governed by a power
law. However, in contrast with the case of spatial homogeneity of the Bose gas,
the corresponding critical exponent depends on the same spatial arguments as the
correlator itself. It is just the presence of the external potential which is responsible
for the non-homogeneity of the critical exponent.
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