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In this work the problem of the square root operator is analyzed. To this end we
considered a relativistic geometrical action of a particle in the superspace in order to
quantize it and to obtain the spectrum of physical states but remaind the Hamiltonian
in the natural square root form. We show, after complete quantization of the model,
that the physical states that the square root Hamiltonian can operate correspond to the

representations with the lowest weights A = i and A = %.
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1 Introduction and summary

It is known [6] the problem of the square root operator in theoretical physics, in
particular Quantum Mechanics and QFT. Several attempts for to avoid the problem
of locality and quantum interpretation of Hamiltonian as square root operator was
written in the literature: differential pseudoelliptic operators, several expansions
of the fractional-exponential operator, etc. [5]. The main characteristic of all these
attempts is to eliminate the square root of the Hamiltonian. In this manner, the
set of operators into the square root operates freely on the physical states, paying
the price of to lose locality and quantum interpretation of the spectrum of a well
formulated field theory.

More recently, [15-17], several works appear where the problem of the quanti-
zation procedure and the square root operators was carefully analyzed. In these ar-
ticles was demonstrated for different simple problems (harmonic oscillator, massive
particle on hyperboloid, etc) that the spectrum changes drastically if the hamil-
tonian operator has the square root form or not: the explicit computation of the
Casimir operator of the symmetry group put in evidence this difference.

In this work, strongly motivated for the several fundamental reasons described
above, we considered the simple model of superparticle of Volkov and Pashnev [1],
that is the type G4 in the description of Casalbuoni [2,3] in order to quantize it
and to obtain the spectrum of physical states remaind the Hamiltonian in the nat-
ural square root form. To this end, we used the Hamiltonian formulation described
by Lanczos in [7] and the inhomogeneous Lorentz group as representation for the
obtained physical states [12-14]. The quantization of this model is performed com-
pletely and the obtained spectrum of physical states, with the Hamiltonian operator
in its square root form, is compared with the spectrum obtained with the hamil-
tonian in the standard form (i.e: quadratic in momenta). We show that the only
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states that the square root Hamiltonian can operate correspond to the representa-

tions with the lowest weights A = % and A = %. In this manner, we also show that
the superparticle relativistic actions as of Ref. [1] is a good geometrical and natural

candidate for describe quartionic states [9-11] (semions).

2 The superparticle model

In the superspace the coordinates are given not only by the spacetime x,, coor-
dinates, but also for anticommuting spinors #* and . The resulting metric [1,4]

must be invariant to the action of the Poincare group, and invariant also to the
supersymmetry transformations

e =&

=41 (00,8 01, 8) 0=, T T

The simplest super-interval that obeys the requirements of invariance given
above, is the following

ds? = whwy, + aw®we — a*wwe (1)

where
wy = dz, —i(dﬁaug—HUMdg), wr=0%, w¥=40

are the Cartan forms of the group of supersymmetry [4].
The spinorial indexes are related as follows

0% = 50‘595,, 0o = Hﬁaﬁa, €aB = —€Ba s B = _gPr g =¢l2=1

and of analog manner for the spinors with punctuated indexes. The complex con-
stants a and a* in the line element (1) are arbitrary. This arbitrarity for the choice
of a and a*are constrained by the invariance and reality of the interval (1).

As we have extended our manifold to include fermionic coordinates, it is nat-
ural extend also the concept of trayectory of point particle to the superspace. To
do this we take the coordinates z(7), 6(7) and " () depending on the evolution
parameter 7. Geometrically, the function action that will describe the world-line
of the superparticle, is

S = —m/ dT\/cjuc;“ +abf, — a*?agd = / dr L (x, 9,?) , (2)

T2
T1

where u?“: T, —i (9 oug -0 JHH) and the upper point means derivative with respect
to the parameter 7, as is usual.
The momenta, canonically conjugated to the coordinates of the superparticle,
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are

oL m2 o
P = g (i)“w

oL

: 2
—3 m*a -
Pa = —8004 IPH (a”)aﬁH —|— —L 904; (3)
2
Po = 2L _ip g (omy. . — 95,
90 L

It is difficult to study this system in the Hamiltonian formalism framework because
of the constraints and the nullification of the Hamiltonian. As the action (2) is
invariant under reparametrizations of the evolution parameter

r 7= f(r)

one way to overcome this difficulty is to make the dynamic variable x( the time.
For this, it is sufficient to use the chain rule of derivatives (with special care of the
anticommuting variables)!) and to write the action in the form

S = —m/ ’ TodT \/[1 — iVV%]2 — [xz — VWO]2 + aéaéo‘ — @*gdgd ,

where the W{j was defined by

o =40 [1-iw9],

&' = i [l — W),

whence xo(7) turns out to be the evolution parameter

IO(T2) 2 . .12 . . RXRR
= —m/ dzg 1 — iW’%} — [a:l — Wlo} + af*0, —a*0 04 = /da:o L
Tl)

Physically this parameter (we call it the dynamical parameter) is the time measured
by an observer’s clock in the rest frame.

Therefore, the invariance of a theory with respect to the invariance of the coor-
dinate evolution parameter means that one of the dynamic variables of the theory
(zo(7) in this case) becomes the observed time with the corresponding non-zero
Hamiltonian

. . 1 1 .
=Pt +11%0, + 1%y — L = \/TRQ - (Pﬂm + p 111, — p HaHo‘e) , (4)

where
o= Pa+iPu(0") 40,
Hd = 'Pd — 173”00‘ (O"u)aa

1) We take the Berezin convention for the Grassmannian derivatives: §F(6) = %—Z 60
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That gives the well know mass shell condition and losing, from the quantum point
of view, the operatibility of the Hamiltonian.

In the work [1], where this type of superparticle action was explicitly presented,
the problem of nullification of Hamiltonian was avoided in the standard form. This
means that the analog to a mass shell condition (4) in superspace was introducing
by mean a multiplier (einbein) for to obtain a new Hamiltonian

H== {m2 — PP — (Pﬂ?i - lnana L Hdﬂd> } . (5)
2 a a*

With this Hamiltonian it is clear that, in order to perform the quantization of the

superparticle the problems disappear: Py is restored into the new Hamiltonian,

and the square root is eliminated. The full spectrum from this Hamiltonian was

obtained in! where the quantum Hamiltonian referred to the center of mass was

23/2 \p

Hcm :m2 _M2 +
|al

[1 —(00)u gﬁ'sa} (6)

being the mass distribution of the physical states the following: two scalar super-

multiplets M7, = % +4 /\TQL\ +m?2 and My, = */\TQL\ +m?2 — %; and one vector

supermultiplet M, = m.

We will show in this report that is possible, in order to quantize the superparticle
action, remain the Hamiltonian in the square root form. How is very obvious, in the
form of square root the Hamiltonian operator is not linearly proportional with the
operator n, = 5°5*. The Fock construction for the Hamiltonian into the square root
form agrees formally with the description given above for the reference [1], but the
operability of this Hamiltonian is over basic states with lowest helicities A = 1, 2.
This means that the superparticle Hamiltonian preserving the square root form
operates over physical states of particles with fractionary quantum statistics and

fractional spin (quartions).

3 Hamiltonian treatment in Lanczo’s formulation

In order to solve our problem from the dynamical and quantum mechanical point
of view, we will use the formulation given in [7,8]. This hamiltonian formulation
for dynamical systems was proposed by C. Lanczos and allows to us preserve in the
new Hamiltonian the square root form. We start from expression (4)

] 1
H= \/m2 - <7>i7>z+ ZTIeTl, — —*HaHd),
a a

if
= g (PO) Pivﬂavﬂd) $07xi7 904550'4)
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whith the arbitrary function g given by

\/m2 = PP — (PP + LTI°TI, — L 11411,

9

\/TTL2 — ('P[Pl + %HO‘HQ — ai* H""Hd) + Po

the new hamiltonian H takes the required ”square root” form

| 1 .
H = g(H + 730) = \/m2 - P()PO - <P1Pl + a HaHa — E Haﬂd) (8)

and the variable Py is clearly identified by the dynamical expression

dPo oM dPy oM

- = — or — =——".
dr 990 U Tar ot
This means that Py = —H + const.
In order to make an analysis of the dynamic of our problem, we can compute the
Poisson brackets between all the canonical variables and its conjugate momentum
[1-3]

9)

75# = {PwH}pb =0, (10)
o o 1 I

0% = {0 7H}pb:awa (11)

—a —& 1 II¢

g :{9, } -, 12

H pb a* H ( )
. 1 i, 5 1, 8
tp = {zu, HY = 7 Pu+ - %(0u) 050 + e 0% (o) 011" ¢, (13)
_ — T1°
Ha - {Hon H}pb - CL*H PaﬂH ’ (14)
. —2i
. — ITL- = PP,

s = {Ils, H},, = oH I°Pgq , (15)
where P 5 = Py (0/),;- From above expressions is easily seen the set of classical
equations for to solve

.. 4P2 .
Iy, = - —== | s, 16
() 1o
.. 4P2 .
My = - | —== | 4. 17
() 1
. 4P? 9 . i .
Assigning W = w”, and having account that II = —II, , the solution to the
equations (16) and (17) takes the form
Ha — aeiw7_|_ ae—iw‘r’
3 U (18)

_ _ 7 plwT ¢ a—iwT
s = —7ae™" — &0 :
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By mean the substitution of above solutions into (14) and (15), we find the relation
between &, and 7,
= (2= ) Pase’
Mo =\ ooy ) P

From eqgs. (18) and above we obtain

_ iwT 2 __B —iwT
M, = 607+ (2 ) PuEle, (19)
2 . — .
Hd — _ B 4 iwr _ ¢ 710.17'7
() €Pane ~ e (20)

where we used that the constant two-component spinors &, verify &, = ¢F. Inte-
grating expressions (11) and (12), we obtain explicitly the following

i ; 2 -5 _
9(1 =, — " iwr 2 . iwT ’
S~ THw [5 T o Last © } &
_ i 2 : -
c=C 4+ —— | —- BD, . olwT a—iwT
B = Cat s |- P + a7, (22)

where ¢, and ¢, = ¢ are two-component constant spinors.
Analogically, from expression (13), we obtain x,, in explicit form

1 H = 1 (1, - 1 . -
o0 = = 3y [Pa St (€0,8)] 74 o |2 0.0 + e (o) +

ot [caa T~ T 0. (23)

4 Quantization

Because the correspondence between classical and quantum dynamics, the Pois-
son brackets between coordinates and canonical impulses are transformed into quan-
tum commutators and anti-commutators

[, Pul = i{xuvpu}pb = 19w,
{6, Ps} = i{Ga,Pg}pb = —1d5", (24)

{67} = i{Hd,Pﬁ-}pb — —igy®

and the new Hamiltonian (8) operates quantically as follows

1 1
\/m2 — PP — (Pﬂm + Tl — — HO‘Hd> W) =0, (25)

where |U) are the physical states. From the (anti)commutation relations (24) it is
possible to obtain easily the commutators between the variables £, &4, Cay C4» Qus
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P, 1
(6ol =P {60 =5

To obtain the physical spectrum we use the relations given by (26) taking the
hamiltonian the following form

Pae [Qua 73#] = —igu - (26)

23/2 (7)#)2 23/2 _3
— 0673 .
o et

Passing to the center of mass of the system, and defining new operators s, =

(1/V M)y, 36 = (1/VM)Ey, do = V2MCy, ds = V2MC,,, where M = Py, Hem is

H = \/TTL2 — P()PO — 'Pi'Pi - (27)

23/2M
lal

Hem = \/m2 — M2+ [1 —(00)ag gﬁsa} (28)

being _
{5a:5a} = —(00) g > {da,da} = —(00) a4 (29)

the anti-commutation relations of the operators s, 54, da, ds. Now the question is:
how operates the square-root H Hamiltonian given by expression (28) on a given
physical state? Is very well known the problem of locality and interpretation of
the operator like (25). Several attemps for to avoid these problems was written in
the literature [5,6]: differential pseudoelliptic operators, several expansions of the
fractional-exponential operator, etc. The main characteristic of all these attempts is
to eliminate the square root of the Hamiltonian. In this manner, the set of operators
into the square root operates freely on the physical states, paying the price of to lose
locality and quantum interpretation of the spectrum of a well possed field theory.
Our plan is: taking the square root to a bispinor in order to introduce the phys-
ical state into the square root Hamiltonian. In the next section we will perform the
square root of a bispinor and obtain the mass spectrum given by the Hamiltonian

H.

5 Mass spectrum and square root of a bispinor

The square root from a spinor was extracted in Kharkov in 1965 by S. S. San-
nikov [13]. Taking the square root from a spinor was performed also by P.A.M.
Dirac [14] in 1971.

We know that the group SL(2, C) is locally isomorph to SO(3,1), and SL(2,R)
is locally isomorph to SO(2,1). By instance, the generators of the group SO(3,1) for
our case can be constructed of the usual operators a, a* (or ¢ and p) in the following
manner. We start from an irreducible unitary infinite dimensional representation
of the Heisenberg—Weyl group, which is realized in the Fock of spaces of states of
one-dimensional quantum oscillator [10-12]. Creation operators and annihilation
operators of these states obey the conventional commutation relations [a*t,a] = 1,
[a,a] = [at,a™] = 0. To describe this representation to the Lorentz group one may

7
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0
also use the coordinate-momentum realization (¢, p = —i =) of the Heisenberg

dq

algebra, which is relates to the a, a™ realization by the formulas

+_49-1p L q+tip

V2 T TA

as usual. Let us introduce the spinors

we (i) n= i) &

The commutation relations take the form

a (30)

(Lo, Ls] = i€ap, [LQ,LB} —iegs- (32)
The generators of SL(2,C) are easily constructed [11] from L, and Lg

Sap = iSu(0")ap = 1 {La, Ls} ,
1
4

Sap = 18u(0")as = 1 {Lar L} (33)
and satisfy the commutation relation
[Sy, Su] = —iew,SP. (34)
Then the quantities
Bo= (U] La|W), Do = (0| Ly|0) (35)

are the two-components of a bispinor, and |¥) is the square root of this bispinor,
that is very easy to verify. Notice that the four components of the bispinor operates
on the same function |¥). In terms of ¢ the basic vectors of the representation can
be written as [10,12,13]

(g|n) = @nlg) = 7 V4 (2"n!) /2 H,(q)e ™0 /?, (36)

/dq O (@)n(q) = Omn , (37)

where are the Hermite polynomials and form a unitary representation of SO(3,1),
and

n) = (n1)~/* (a*)" |0) (38)

the normalized basic states where the vacuum vector is annihilated by a. The
Casimir operator, that is S, 5%, has the eigenvalue A(A — 1) = —% and indeed
corresponds to the representations with the lowest weights A = % and A = %. The

8
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wave functions which transforms as linear irreducible representation of ISO(2,1),
supgroup of ISO(3,1) generated by operators (33) are

+oo

Uy/a(2,0,9) = > for(,0)02r(q) , (39)
k=
oo

U3/a(2,0,9) = Y fori1(x,0)@2r41(q) (40)
k=0

We can easily seen that the hamiltonian H (28) operates over the states |¥), which
become into H as its square @, and ®4. It is natural to associate, up a proportional
factor, the spinors d, and ds with

do = (P1)a),, = (Yiya| La [P1/a) » da — (Prja) 4 = (Vja| La [Pr/a)  (41)

and of analog manner the spinors s, and S5 with
sa = (Ps7a),, = (Vsja| La [Uspa) » 5o — (Pa/a)y = (Vsjaf La [Psa) . (42)

The relations (41) and (42) give a natural link between the spinors &, (¢;) and
Ca (C4), solutions of the dynamical problem, with the only physical states that
can operate freely with the Hamiltonian H: the “square root” states |¥) from the
bispinors ®,,.

Commutation relations (29) obey the Clifford’s algebra for spinorial creation-
annihilation operators. Of this manner operators s, and d, in the representation
given by the associations (41) and (42) acting on the vacuum give zero: s, |0) =
dy [0) = 0. The Fock’s construction in the center of mass consist in the following
vectors:

Sy = [0)eiMt 1o = da [0) Mt Py =d’d,(0) e,
Ega = S4& |0> eth Vaﬁ = Edag |0> eth s Ega = Edﬁﬁﬁﬁ |0> eth y (43)
Py = 5%, |0) Mt =, = EQE%B |0y elMt Sy = Eﬂﬁﬁg%d |0) etM?

From expression (38) and taking account that the number operator is Pse = Ns,

because 3° and s work as creation-annihilation operators, we can easily obtain the
mass for the different supermultiplets:

i) ng=0— My, = —% +, /# + m2; scalar supermultiplet (S1,Z14, P1);

i) ng =1 — M, = m; vector supermultiplet;

iii) ng =2 — Moy, = , /# +m?2 + %; scalar supermultiplet.

9
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We emphasize now that the computations and algebraic manipulations given
above was with dg — ((1’1/4)01 and 54 — (tI’3/4)d (the square of the true states)
into the square root Hamiltonian. Notice from expressions (35), (41) and (42) that
the physical states for the Hamiltonian in the square root form are one half the
number of physical states for the Hamiltonian quadratic in momenta.

Looking at the commutation relations (29) one can see that the square norm
of the vector supermultiplet and the states Zi1,, Z40 becames negative (i.e. the
spectrum has “ghosts”).

On the other hand, there is the possibility in the discussed problem to eliminate
these “ghost states”. This possibility is connected with the fact that the product
of the masses of scalars supermultiplets equals to square of the mass of the vector
supermultiplet. There is way: if we fix the mass of the first scalar supermultiplet

21/2 2
Mls = — + Ty
|a |a|?

+m2=pu (44)
sending the parameter a — 0 and m — oo keeping the condition (44), we get
infinite values for the mass of the second scalar and vector supermultiplet.

It means, as was pointed in [1], that effective contributions of these multiplets
to the processes of scattering is equal to zero, and only one scalar supermultiplet
with a fixed mass p is left in the model. The discussed procedure is analogous to
the transition from linear to non-linear realization o-models thru taking the limit
when the mass of o-particles goes to infinity.

It is interesting to note that the arbitrary c-parameters a and a* generate a
deformation of the usual line element for a superparticle in proper time, and it
deformation is responsible, in any meaning, of the multiplets given above. This is
not a casuality: one can easily seen how is modified the quantum Hamiltonian (28)
in the center of mass of the system by the c-parameters a and a* . The implicancies
of this type of superparticle actions with deformations of the quantization will be
analyzed in a future work.

6 Conclusions

In this work the problem of the square root quantum operators was analyzed
considering the simple model of superparticle of Volkov and Pashnev [1]. The
quantization of this model was performed completely and the obtained spectrum
of physical states, with the Hamiltonian operator in its square root form, was
compared with the spectrum obtained with the Hamiltonian in the standard form
(i.e. quadratic in momenta). To this end we used the Hamiltonian formulation
described by Lanczos in [7] and the inhomogeneous Lorentz group as representation
for the obtained physical states [12-14] without any other manipulation of the
usual quantum equations from the mathematical or operatorial point of view. We
shown that, in contrast to [1], the only states that the square root Hamiltonian

1

can operate correspond to the representations with the lowest weights A = 7 and

A= %. For instance, we conclude that: quantically is not the same to operate

10



On the quantization of the superparticle action in proper time and the Lorentz group SO(3,1)

with the square root Hamiltonian that with its square; the main problem is not
the square root operator itself but the group theoretical description for the states
under which operates such type of Hamiltonians. It is interesting to see that:
the results present here for the superparticle are in completely agreement with the
results, symmetry group and discussions for non-supersymmetric examples given in
references [15-17); and seeing the lowest weights of the states under the square root
Hamiltonian can operate, and because not concrete action is known for to describe
particles with fractionary statistics, superparticle relativistic actions as of [1] can
be good geometrical and natural candidates for describe quartionic states [9-12]
(semions).

I am very grateful to the Directorate of the JINR, in particular of the Bogoliubov Labo-
ratory of Theoretical Physics, for their hospitality and support.
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