
Development of the Green function method on a basis of

deterministic approach to approximate functional integration

Yu.Yu. Lobanov and V.D. Rushai

Joint Institute for Nuclear Research, Dubna

Within the general approach which is understood as the Green function method, we
develop a numerical method based on representation of the Green functions for a class of
problems in the form of functional integrals with respect to Gaussian measures, and sub-
sequent calculation of the integrals with the help of a deterministic approach. In this case
the solving of the problems is reduced to evaluation of usual (Riemann) integrals of rela-
tively low multiplicity. The method was applied to numerical solving of the Schrödinger
equation and the related diffusion equation, and also to description of time evolution of
some Markovian open quantum systems. The features of the method and possible area of
its application are discussed.
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1 Introduction

The functional integration finds a wide utilization in contemporary physics.
One of the interesting directions is investigation of the connection between partial
differential equations and functional integrals, which was first revealed by R. Feyn-
man who expressed Green function (propagator) of the Schrödinger equation in the
form of a path integral [1, 2]. The Feynman’s work has inspired M. Kac who wrote
Green function of a diffusion equation through a Wiener functional integral [3, 4].
Later I. Gelfand and A. Yaglom [5] raised a question on the relationship of par-
tial differential equations and functional integrals in general, and certain progress
has been achieved [6, 7]. Gelfand and Yaglom gave some examples when use of
the functional integrals in the differential equation theory gives advantages, but
they assumed that all the benefit will be understood later on. The development
of approximate functional integration techniques allows us to look at the problem
from a specific point of view. If Green functions of the differential equations can be
expressed through the functional integrals and the last can be calculated approxi-
mately, then we have a method of solving those equations numerically. In fact, it is
a kind of Green function method which has its own features and application area.
The features strongly depend on chosen technique of approximate functional inte-
gration. As it will be considered below, widely used Monte Carlo method does not
seem to be an appropriate choice in this case, at least for low-dimensional problems.

Along with the Monte Carlo method deterministic approaches were suggested
[8]–[10]. In 1951 R. Cameron offered a formula for approximate evaluation of Wiener
functional integrals, which is exact for functional polynomials of a third power
[8]. The formula is similar to the quadrature rules for usual (Riemann) integrals,
which are exact for algebraic polynomials of a certain power. Such an approach
has later been applied to a general case of Gaussian measures [9] and to the case
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of functional polynomials of an arbitrary given power [10]. The method has two
remarkable properties: it requires no space-time discretization, and high enough
rate of convergence to values of the functional integrals with growing multiplicity
of Riemann integrals which approximate functional ones. Owing to the properties
the method is suitable for utilization within the Green function method. Usually
the problem of numerical solution of differential equations is reduced in this case
to numerical evaluation of Riemann integrals of relatively low multiplicity.

Unlike the theory of Wiener integrals, Feynman’s theory of path integration
was not rigorous. In 1960 Cameron also established a link connecting the Feynman
path integral and the Wiener integral [13]. The approach was developed further
by Doss, Azencott, and Haba [14]–[16]. Haba obtained a formula which expressed
the Feynman propagator through a functional integral with respect to conditional
Wiener measure [16]. That makes it possible to apply the approximate formulas
exact for functional polynomials of arbitrary given power to the case of the Feyn-
man path integrals. We generalized Haba’s result to the case of propagator for
open quantum systems and obtained a formula which allows one to apply the de-
terministic approach to the numerical studying of time evolution of open quantum
systems [17].

2 Method of calculations

The equation
∂Q

∂t
=

1

2

∂2Q

∂x2
− V (x)Q(x, t) , (1)

x ∈ R, t ∈ (t0, +∞) with the boundary condition lim
|x|→∞

Q(x, t) = 0 serves as a con-

venient example for close scrutiny of the proposed numerical method. It describes
the classical diffusion with a distribution of negative sources, which is determined
by the function V (x) [4]. For a given initial condition Q0(x) = Q(x, t0) the solution
Q(x, t) can be expressed with the help of the Green function P (x, t; x0, t0) in the
following way [5]:

Q(x, t) =

∫ +∞

−∞

P (x, t; x0, t0)Q0(x0)dx0 . (2)

The Green function is regarded by Kac as a functional integral with respect to a
conditional Wiener measure. If t0 = 0, the Kac’s result can be written as [11]

P (x, t; x0, 0) =
1√
2πt

exp

{

− (x − x0)
2

2t

}

× (3)

×
∫

C[0,0;1,0]

exp







−t

1
∫

0

V
(√

tx(τ) + (x − x0)τ + x0

)

dτ







dW̃ ∗(x) .

Here
∫

C[0,0;1,0] F [x(τ)]dW̃ ∗(x) denotes the integral of functional F [x(τ)] with re-

spect to the conditional normalized Wiener measure with integration on the set
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C[0, 0; 1, 0] of continuous functions x(τ) satisfying the conditions x(0) = x(1) = 0.
If we try to calculate the integral in the right hand side of the equality (2)

numerically with the help of a quadrature formula, we have to replace the infinite
domain of the integration by a finite one 1). For the error of the numerical integra-
tion E0 which include an error caused by the replacement to be negligible the initial
function Q0(x) must vanish fast enough with |x0| → ∞. For instance, if the func-
tion is a narrow peak, then the narrower it the less is the error E0. No matter how
narrow the peak is, we can make an optimal choice of lattice points of the numerical
integration since the location of the peak is known. As the solution Q(x, t) for the
moment t is obtained from the initial condition Q0(x) with no transitional states,
the calculation with the use of the formula (2) gets especially efficient when the
spatial domain of the numerical solution changes with time very quickly. It usually
takes place just when the initial condition is a very narrow peak. It should be noted
that for traditional methods of numerical solving of partial differential equations
we have a reverse situation, i.e. the narrower the peak the more problems. Thus,
there is a principle of complementarity in a certain sense.

However, for all the reasonings to be proved in practice, a method of evaluation
of the functional integral representing the Green function should not impose too
strong additional restrictions. For example, Monte Carlo method is based on dis-
cretization of a considered time interval [0, t], so the solution for a moment of time
is actually not obtained directly from the initial condition. Similar a discretiza-
tion takes place in the widely used finite difference method of solving differential
equations and the advantage of the approach with the use of functional integrals
gets questionable. Alternatively, application of the used deterministic method does
not imply any discretization of space of independent variables, so the initial target
setting undergoes not much changes.

Here the approximate formula obtained in [10] will be employed:
∫

C[0,0;1,0]

F [x(τ)] dW̃ ∗(x) ≈

≈ 2−l(2π)−k/2

∫

Rk

du

1
∫

−1

dv1 . . .

1
∫

−1

dvl exp

{

−1

2

k
∑

s=1

u2
s

}

×

×F [Θl(v, τ) − Φl,k(v, τ) + Uk(u, τ)] ,

(4)

where u = (u1, . . . , uk), v = (v1, . . . , vl),

Θl(v, τ) =

l
∑

s=1

cl,sρ(vs, τ) , ρ(vs , τ) =

{

−τ sign (vs) , τ ≤ |vs| ,
(1 − τ) sign (vs) , τ > |vs| ,

Φl,k(v, τ) =

k
∑

s=1

2

sπ
sin(sπτ)

l
∑

j=1

cl,jsign (vj) cos(sπvj) ,

1) There are techniques and quadrature formulas for evaluation of integrals with the infinite
domain of integration, but they can not always be applied in a general case.
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Uk(u, τ) =
k

∑

s=1

√
2

sπ
us sin(sπτ) ,

[cl,s]
2 are roots of the polynomial

Ql(r) =

l
∑

s=0

(−1)s rl−s

s!
, s = 1, 2, . . . , l , r ∈ R .

The formula is exact for functional polynomials of the power ≤ 2l + 1. For the
functionals not belonging to the class and satisfying certain conditions the error
Efor of the formula is estimated as O(k−l−1) [10]. Thus, the approximate evaluation
of a Wiener functional integral is reduced to calculation of a usual (Riemann)
integral of multiplicity k+l with integration along the auxiliary variables u1, . . . , uk,
v1, . . . , vl. The variables x and t as well as other physical values are contained in
this approximating Riemann integral as parameters. The error Efor and therefore
the accuracy of solution to the differential equation may crucially depend on those
parameters. As the solution describes a time evolution, the main attention will be
devoted to the dependence on the time variable t.

If a satisfactory result cannot be obtained for a required time interval [0, t], one
can try to increase the value of k or l. However, increasing the multiplicity k + l

gives rise to increasing the error Eint of calculation of the approximating Riemann
integral, which for large enough k + l can become a main contribution to the total
error E = E0 + Efor + Eint. Tables 1, 2 demonstrate a dependence of Efor and
En = Efor + Eint on k and l in case of calculation of the functional integral having
the explicit expression:

I =

∫

C[0,0;1,0]

exp

{
∫ 1

0

px2(τ)dτ

}

dW̃ ∗x =

( √−2p

sinh
√−2p

)1/2

,

−∞ < p ≤ 0. For the selected value p = −30 the exact value of the integral
is 0.08185356. In case of such a functional the approximating integral along the
variables u1, . . . , uk can be taken explicitly. If l is small enough, the integral along
the rest variables v1, . . . , vl can be evaluated with a high accuracy, so that the
error Eint is negligible and we can obtain the value Efor with a sufficient accuracy.
In the tables the corresponding approximate value of the functional integral is
denoted through If . On the other hand, the result of direct numerical calculation
of the approximating integral along all the variables u1, . . . , uk, v1, . . . , vl is denoted
through In, the corresponding error is En which includes the error Efor. In the last
case the computer calculation time T is also given. The tables 1 and 2 represent
the results obtained accordingly for l = 1 and l = 2.

Although the results depend on used computers and numerical integration meth-
ods, the obtained data show a regularity. Decreasing the error Efor has a sense
until the condition Eint � Efor is satisfied. As seen from the tables, it can be
easily achieved for not large l + k. Now there are different numerical integration
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methods which give a high accuracy and a relatively small computation time in
case of Riemann integrals of low multiplicity [18, 19]. Further increasing l + k is
inexpedient.

It should be noted that direct computation of the approximating integral re-
quires a limitation of the infinite domain of the integration along the variables
u1, . . . , uk. Thus, the error Eint includes also an error arising from such a limita-
tion. One should heed that the neglected part of the integral be small enough for
any values of parameters contained in the functional F [x(τ)]. As it will be shown
below, the decrease rate of the integrand with growing |u1|, . . . , |uk| may crucially
depend on the function V (x).

Table 1.

k If Efor, % In En, % T, sec.

1 0.062104 24.1 0.062103 24.1 0.02

2 0.074310 9.2 0.074307 9.2 0.03

3 0.078450 4.2 0.078445 4.2 0.47

4 0.080085 2.2 0.080083 2.2 7.6

5 0.080832 1.2 0.080829 1.3 45.9

6 0.081215 0.8 0.081124 0.9 52.7

7 0.081430 0.5 0.085440 4.4 60.5

8 0.081558 0.4 0.126745 55 68.1

9 0.081640 0.3 0.125091 53 75.3

10 0.081694 0.2 0.351862 330 83.1

Table 2.

k If Efor, % In En, % T, sec.

1 0.097060 18.6 0.097067 18.6 5.6

2 0.084371 3.1 0.084380 3.1 9.4

3 0.082498 0.8 0.082490 0.8 28

4 0.082070 0.3 0.082070 0.3 34

5 0.081941 0.1 0.082171 0.4 41

6 0.081894 0.05 0.083983 2.6 120

7 0.081874 0.03 0.082839 1.2 138

8 0.081865 0.014 0.075436 7.8 156

9 0.081860 0.008 0.109991 34 174

10 0.081858 0.005 0.104792 28 182

In case of V (x) = 1
2 x2 and the initial condition in the form of Gaussian

Q0(x) =
1

√

2πξ2
exp

{

− x2

2ξ2

}
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Fig. 1. The function Q(x, t) calculated by the formulas (2) and (3) for ξ2 = 10−300 and
different moments of time t. The Green function (3) was computed by the formula (4)
with l = k = 1. Corresponding exact solutions obtained by the formula (5) are presented

by the solid lines.

the solution of the equation (1) can be expressed explicitly:

Q(x, t) =
1

√

2π(ξ2 cosh t + sinh t)
× (5)

× exp

{

−x2

2

(

coth t − ξ2

(ξ2 cosh t + sinh t) sinh t

)}

.

It allows one to compare the outcomes of the numerical calculations with the exact
solution. Fig. 1 shows a time evolution of the initial Gaussian distribution function
with extremely small dispersion ξ. Thus, we can examine the efficiency of the
method when the initial condition is a very narrow peak. As appears from the figure,
the high accuracy has been achieved for considered time intervals with the minimum
multiplicity of the approximating integral. It is also interesting to test the method
in a reverse situation when ξ is comparatively large. The results corresponding to
the case are shown on the fig. 2. The upper value of ξ was chosen in such a way
that within the range of variation of the dispersion, which is marked by the two
values of ξ, the computation time changes relatively slowly.

It may turns out in some cases that for large enough time interval [0, t] no
satisfactory accuracy can be achieved for a reasonable computation time. In such
a situation one can divide the interval into the parts [0, t1], [t1, t2], . . . , [tn−1, t],
t0 < t1 < t2 < · · · < tn−1 < t, so that the condition Eint � Efor be easily
accomplished for each of the subintervals. According to the formula (2), one can
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Fig. 2. The function Q(x, t) calculated by the formulas (2) and (3) for ξ2 = 100 and
different moments of time t. The Green function (3) was computed by the formula (4)
with l = k = 1. Corresponding exact solutions obtained by the formula (5) are presented

by the solid lines.

write:

Q(xj , tj) =

∫ +∞

−∞

P (xj , tj ; xj−1, tj−1)Q(xj−1, tj−1)dxj−1 , (6)

j = 1, . . . , n, tn = t, xn = x. Thus, there is an iteration procedure when the
solution for the moment of time tj is expressed through solution for the previous
moment tj−1 only. The propagator P (xj , tj ; xj−1, tj−1) depends actually on the
difference tj − tj−1, i.e. P (xj , tj ; xj−1, tj−1) = P (xj , tj − tj−1; xj−1, 0) [5]. The
using of the formula (6) means serial computation of n one-dimensional integrals
along the variables x0, . . . , xn−1, which is equivalent to calculation of the function
Q(x, t) by the formula (2) where the propagator is expressed through the integral
of multiplicity n − 1:

P (x, t; x0, 0) =

∫ +∞

−∞

· · ·
∫ +∞

−∞

P (x, t − tn−1; xn−1, 0)×

×P (xn−1, tn−1 − tn−2; xn−2, 0) × . . . × P (x1, t1; x0, 0) dx1 . . .dxn−1.

(7)

The equality is a consequence from the well known Kolmogorov–Chepmen–Smolu-
chovski formula [4]. If the integration along x0, . . . , xn−1 is considered as calcula-
tion of a n-dimensional integral and it is performed by a cubature formula, then the
described procedure is not actually iterative. The using of the formula (7) allows
one to expand the total interval [0, t] for which the propagator P (x, t; x0, 0) can be
evaluated with a satisfactory accuracy. On the other hand, the increase of n results
in the growing volume of calculations related to the multiple numerical integration
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Fig. 3. The function Q(x, t) calculated by the formulas (2) and (3) for ξ2 = 0.01 and
t = 10. The Green function (3) was computed by the formulas (4) with l = k = 1 and (7)
for n = 2 with intermediate point t1 = 5 and for n = 3 with intermediate points t1 = 3,

t2 = 6. The exact solution obtained by the formula (5) is presented by the solid line.

along the variables x1, . . . , xn−1. Besides, one has to replace the infinite limits of
integration in the formula (7) by finite ones. It is necessary to take into account
the changing of the spatial domain of the numerical solution with time in order
to determine the limits correctly. Within the iteration procedure the domain for
variable xk corresponding to the moment tk can be estimated using a solution for
the previous moment tk−1, which is considered as an initial condition.

The outcomes of calculation of the function Q(x, t) with different n and fixed
moment of time and values of l, k are presented in fig. 3. For comparison the
results obtained with fixed n and different k are shown in fig. 4. It follows from
the figures that the iteration procedure can be even more efficient than increasing
the multiplicity of the approximating Riemann integral. If necessary, one can also
combine those two techniques.

Quite similar consideration is given in the paper [11] for the case of Schrödinger
equation, and also in [17] where such an approach was employed for numerical
description of time evolution of open quantum systems. In the last case an ap-
proximate formula for evaluation of multiple functional integrals, which is exact for
functional polynomials of third summary power was used.

3 Summary and conclusions

In the frame of the paper it is only possible to outline the conditions the pro-
posed approach can be efficiently used. A complete determination of its ”compu-
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Fig. 4. The function Q(x, t) calculated by the formulas (2) and (3) for ξ2 = 0.01 and
t = 10. The Green function (3) was computed by the formulas (4) with l = 1 and different
values of k. The exact solution obtained by the formula (5) is presented by the solid line.

tational niche” can be fulfilled in process of wide practical use.

In many respects the method preserves initial target setting, which is impor-
tant when the spatial domain of the numerical solution changes with time quickly
enough. It usually takes place if the initial condition is a rapidly vanishing function.

The numerical solving of the equations is reduced in the method to evaluation
of Riemann integrals of low multiplicity. It does not exceed 5 in the given examples.
Now there are different deterministic methods of calculating integrals of multiplicity
up to 20. If needed, one can also use a Monte Carlo technique.

When applying the numerical methods, the problems of convergence and sta-
bility of obtained approximations with respect to a parameter appear. In the used
deterministic technique of functional integration such a parameter is the multiplic-
ity of the approximating Riemann integral. In this case convergence and stability
follow from the estimation of error for the formula (4) (or similar formulas exact for
functional polynomials of a power). For one’s part the problem of stability is not
urgent for the numerical calculation of Riemann integrals. Along with simplicity
of target setting it makes the method relatively simple in use.

As shown in [10], multiple functional integrals can also be approximated satis-
factorily by Riemann integrals of low multiplicity. It points out that the method
can be successfully employed for multidimensional problems.

The difficulties concerned with definition of a countably additive measure in the
space of paths in case of Feynman integral show that practical application of the
proposed approach may require development of the functional integration theory
related to specific partial differential equations. Besides, the corresponding methods
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of approximate calculation of the functional integrals should also be developed.
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