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We employ the su(2|1) superalgebra representation of the t–J model Hamiltonian to
rigorously enforce the local constraint that guarantees a given lattice site to be either
empty or singly occupied. This constraint arises because a Coulomb repulsive energy
dominates over hopping energy and results in strong electron correlation which determines
the basic physics of high-Tc superconductors. We apply this technique to derive a boson–
spinless fermion model for the t–J Hamiltonian, which provides a microscopic scenario to
take into account local spin fluctuations to the pseudogap phenomenon.
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1 Introduction

It is now widely believed that the physics of high-Tc cuprate superconductors
on a 2D space lattice is basically governed by strong electron–electron correlations,
which arise due to a strong Coulomb repulsion. Due to that repulsion two electrons
cannot be simultaneously locate on one and the same lattice site, which completely
blocks charge propagation even in a half-filled band, where each site is occupied by
just one electron. This state known as a Mott insulator exhibits however strong
short-range spin-spin electron correlations. Upon doping that ground state develops
low-lying excitations, the magnetic correlations turn the system into a spin liquid
and finally, charge and spin are recombined into quasiparticles leading to a new
type of superconductivity.

To make any quantitative predictions within this picture, one has to take into
account analytically the crucial constraint of no double occupancy (NDO). This
will allow us to deal properly with the strong electron-electron correlations which
are essential to describe the ground state of a Mott insulator. The mean field (MF)
slave-boson/fermion theory is a commonly used approach to address the t–J model
when dealing with spin–charge separation in the context of a spin liquid, or the
resonating valence bond (RVB) state. Within this scheme the electron operator is
represented by a product of two commuting operators, that carry separately spin
and charge degrees of freedom. Within this approach the NDO constraint trans-
forms itself into the requirement that exactly only one field excitation can exist at
each lattice site. Rigorous implementation of this local constraint of one particle
per site poses however severe technical problem, whereas its MF treatment results
in qualitatively different phase diagrams for slave fermions and slave bosons. There-
fore it would be desirable to start with a theory where the local NDO constraint is
taken into account rigorously prior to any MF approximations.
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In the present paper we attempt to formulate such a theory. Technically we
work within the t–J model for the Hubbard operators, which enforces the local
NDO constraint from the very beginning. Since the Hubbard operators are the
generators of the su(2|1) superalgebra [1, 2], we employ the su(2|1) coherent-state
path integral for the t–J partition function. The effective action is then a function
of the local coordinates of the SU(2|1) homogeneous coherent-state manifold which
represents the phase space of the Hubbard operators.

To illustrate an application of this technique we show that within the RVB and
linear spin wave (LSW) approximations this effective action reduces to that of the
boson–spinless fermion model (BSFM). Spinless fermions emerge due to the NDO
constraint. Unlike the standard phenomenological boson-fermion model (BFM),
which is believed to capture the essential physics of the anomalous normal state of
the underdoped cuprates, the boson–fermion interaction in the BSFM is a nonlocal
function of the lattice sites due to the spinless character of the fermions. Besides,
the origin of elementary excitations in BSFM is quite different from that in BFM.

Numerical calculations carried out in 1D case show however that BSFM has
similar behavior to the BFM with respect to the pseudogap phenomenon which
is a characteristic feature of the anomalous normal state of underdoped cuprates.
Finally we emphasize that in contrast with the BFM, the BSFM is directly related
to the t–J model and has in turn a stronger microscopic basis.

Applications of our theory to describe the superconducting state of high-Tc

materials will be given elsewhere [3].

2 t−J Hamiltonian and the NDO constraint

We start from the t–J Hamiltonian on a square lattice [4]

Ht−J = P

(

−t
∑

ijσ

c†iσcjσ + h.c. + J
∑

ij

(

−→
Q i

−→
Q j −

1
4 ninj

)

)

P (1)

projected onto the space with no doubly occupied sites. Here ciσ is the electron
annihilation operator at site i with the spin projection σ =↑↓, niσ = c+

iσciσ , and
−→
Qi = 1

2

∑

σσ′ c†iσ
−→τ σσ′ciσ′ is the electron spin operator with the −→τ ’s being Pauli

matrices. Hamiltonian (1) contains a kinetic term of strength t responsible for the
hopping of electrons from one lattice site to its nearest neighbor, and a potential
term of strength J which describes nearest-neighbor spin exchange interaction. If
J � t, the t–J model can be mapped onto a Hubbard model with strong Coulomb
repulsion. For other values of coupling constants those two models exhibit quite
different behaviors.

At every lattice site the Gutzwiller projection operator P =
∏

i (1 − niσni−σ)
eliminates the doubly occupied states | ↑↓〉 thereby reducing the quantum Hilbert
space to a lattice site product of the 3-dimensional spaces spanned by the vectors
|0〉i, | ↑〉i, | ↓〉i. Physically this modification of the original Hilbert space takes into
account the extra strong electron correlation effects in addition to the simple Pauli
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exclusion principle. It is this new type of correlation that is believed to account for
the unusual and extremely rich physics of high-Tc superconductors.

Explicitly, the projected electron operators take the form

Pc†iσP = c+
iσ (1 − ni−σ) =: Xσ0

i ,

and are known as the Hubbard [5] or X-operators. Note that Hubbard operators
are represented (at each lattice site) by 3×3 matrices. Note also that on the P -
projected Hilbert space one has niσni−σ = 0.

The NDO constraint,
∑

σ niσ ≤ 1, now holds rigorously at each lattice site and
in terms of the Hubbard operators, the t–J model becomes

Ht−J = −t
∑

ijσ

Xσ0
i X0σ

j + h.c. + J
∑

ij

(

−→
Q i

−→
Q j −

1
4 ninj

)

, (2)

where the electron spin operator now reads
−→
Qi = 1

2

∑

σσ′ Xσ0
i

−→τ σσ′X0σ′

i .
The fermionic operators Xσ0

i ’s project the electron creation operators onto a
space spanned by the basis {|0〉i, |σ〉i} and take the form Xσ0

i = |σ〉i〈0|i. Together

with the bosonic generators, Xσσ′

i = |σ〉i〈σ
′|i the full set of operators Xab

i , a, b =
0, ↑, ↓ forms on each lattice site a basis for the fundamental representation of
the semisimple doubly graded Lie algebra u(2|1) given by the (anti)commutation
relations

{Xab
i , Xcd

j }± = (Xad
i δbc ± Xbc

j δad)δij ,

where the (+) sign holds only when both operators are fermionic. In fact the
identity

X00 +
∑

σ

Xσσ = 1

reduces this superalgebra to the eight-dimensional su(2|1) superalgebra.
Since su(2|1) can be viewed as a supergeneralization of the conventional spin

su(2) algebra, the t–J Hamiltonian appears as a superextension of the Heisenberg
magnetic Hamiltonian, with a hole being a superpartner of a su(2) magnetic excita-
tion [1]. This superalgebra can also be thought of as a natural generalization of the
standard fermionic algebra spanned by generators c+

σ , cσ and unity I for the case in
which the fermionic operators are subject to the NDO constraint. The incorpora-
tion of this constraint manifests itself in more complicated commutation relations
between the X operators in comparison with those produced by the conventional
fermionic operators.

In order to get around the problem of dealing with rather complicated com-
mutation relations of su(2|1), one in practice frequently uses the so-called ”slave
particle” representations of the Hubbard operators. In the Lie algebra language
these representations correspond to the oscillator representations of the Lie alge-
bra generators. For example, let Xλλ′ , λ = 1, 2, 3 be a matrix corresponding to
the operator X . Consider a composite creation operator d† = (a†, b†, f †), where a
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and b stand for bosonic field and f for a fermionic one. Then, the slave-fermion
representation reads

X =
∑

λλ′

d†λXλλ′dλ′ ,
∑

λ

d†λdλ = a†a + b†b + f †f = 1 ,

where the last equation is a linear Casimir operator of u(2|1), whose lowest non-
trivial eigenvalue equals to 1, fixes the lowest 3D representation spanned by the
Hubbard operators.

Although one is dealing now with the standard bosonic and fermionic operators,
equation a†

iai + b†i bi + f †
i fi = 1 must hold at each lattice site, which poses a severe

technical problem in practical calculations. Usually this local constraint is replaced
by a global one, which however results in uncontrollable approximations.

The above technical problems motivates our present attempt at working directly
within the su(2|1) superalgebra representation of the t–J Hamiltonian. Since the X
operators are generators of the su(2|1) superalgebra we are led naturally to employ
the su(2|1) coherent-state path-integral representation of the t–J partition function.
This provides a mathematical setting well adjusted to address the t–J model with
the NDO constraint naturally built in the formalism from the very beginning. This
approach can also be derived starting from the slave fermion theory, as shown in
Appendix.

3 su(2|1) coherent states and path integral

The normalized su(2|1) coherent state (CS) associated with the 3D fundamental
representation takes the form

|z, ξ〉 =
(

1 + z̄z + ξ̄ξ
)−1/2

exp
(

zX↓↑ + ξX0↑) | ↑〉 , (3)

where z is a complex number and ξ is a complex Grassmann parameter. The
set (z, ξ) can be thought of as local coordinates of a given point on CP1|1. This
supermanifold appears as a N = 1 superextension of a complex projective plane,
or ordinary two-sphere, CP1 = S2, to accommodate one extra complex Grassmann
parameter [6]. At ξ = 0 the su(2|1) CS reduces to the ordinary su(2) CS, |z, ξ =
0〉 ≡ |z〉 parametrized by a complex coordinate z ∈ CP1. Note that the classical
phase space of the Hubbard operators, CP1|1, appears as a N = 1 superextension
of the CS manifold for the su(2) spins.

In the basis |z, ξ〉 =
∏

j |zj , ξj〉, the t–J partition function takes the form of the
su(2|1) CS phase-space path integral,

Zt−J = tr exp(−βHt−J ) =

∫

CP1|1

DµSU(2|1)(z, ξ) eSt−J , (4)

where

DµSU(2|1)(z, ξ) =
∏

j,t

dz̄j(t)dzj(t)

2πi

dξ̄j(t)dξj(t)

1 + |zj |2 + ξ̄jξj
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stands for the SU(2|1) invariant measure with the boundary conditions, zj(0) =
zj(β), ξj(0) = −ξj(β). The t–J effective action on CP1|1 now reads

St−J = −

∫ β

0

〈

z, ξ
∣

∣

∣

d

dt
+ Ht−J

∣

∣

∣
z, ξ

〉

dt ,

which gives

St−J =
1

2

∑

j

∫ β

0

˙̄zjzj − z̄j żj + ˙̄ξjξj − ξ̄j ξ̇j

1 + |zj |2 + ξ̄jξj
dt −

∫ β

0

Hcl
t−J dt . (5)

The first part of the action (5) is a kinetic term that appears at each lattice site
as an integral of the SU(2|1) symplectic one-form while the classical image of the
Hamiltonian Hcl

t−J = 〈z, ξ|Ht−J |z, ξ〉.
The Berezin covariant symbols of the classical observables corresponding to the

supergenerators of SU(2|1) have already been evaluated in [6] and are given by

Qcl
3 = − 1

2

(

1 − |z|2
)

w , (Q+)cl = zw , (Q−)cl = z̄w , (X00)cl = ξ̄ξw ,

(X0↓)cl = −zξ̄w , (X0↑)cl = −ξ̄w , (X↑0)cl = −ξw , (X↓)cl = −z̄ξw ,

where w :=
(

1 + |z|2 + ξ̄ξ
)−1

.
Upon making two successive changes of variables,

z → z

√

1 + ξ̄ξ , ξ → ξ
√

1 + |z|2 ,

the SU(2|1) invariant measure and the kinetic term in eq. (4) are decoupled into
the SU(2) invariant spinon and U(1) invariant fermion pieces. The corresponding
transformations of the classical observables can easily be evaluated. In particular,

Qcl
3 → −

1

2

1 − |z|2

1 + |z|2
+

1

2
ξ̄ξ = Scl

3 +
1

2
ξ̄ξ ,

ncl
e = X↑↑

cl + X↓↓
cl =

1 + |z|2

1 + |z|2 + ξ̄ξ
→ 1 − ξ̄ξ .

This representation turns out to be useful to implement the RVB spin-charge sep-
aration and is used in the next section.

4 The boson−spinless fermion model

The origin of the pseudogap is one of the most important current problems in
high temperature superconductors. The pseudogap opens at temperatures much
higher than the superconducting transition temperature and shows up as a reduc-
tion of the density of states at the Fermi level. The pseudogap deepens with the
lowering of the temperature and at the superconducting transition temperature
smoothly evolves into the superconducting gap. This normal state gap is observed
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by various techniques, including angle-resolved photoemission spectroscopy [7],
NMR [8], infrared [9], and transport [10] measurements. Although it is gener-
ally believed that the pseudogap reflects the strongly interacting regime of the
electronic correlations [11], the understanding of this phenomenon is still far from
complete.

The opening of the pseudogap, and its connection with the true superconduct-
ing gap is still a matter of debate. In one possible scenario the onset of super-
conductivity is controlled by phase fluctuations which continue to produce a finite
pairing amplitude well above Tc. Within this framework the boson–fermion model
(BFM) [12–15] has been successful in describing how the pseudogap evolves into
the true superconducting gap. The Hamiltonian for the BFM is given by

HBFM = (ε0 − µ)
∑

iσ

c†iσciσ − t
∑

〈ij〉,σ
c†iσcjσ +

+(E0 − 2µ)
∑

i

b†i bi + g
∑

i

[b†i ci↓ci↑ + bic
†
i↑c

†
j↓] . (6)

Here the c
(†)
iσ ’s denote annihilation (creation) operators for electrons with spin σ

at site i and b
(†)
i ’s stand for bosonic operators describing tightly bound localized

electron pairs. E0, ε0 and g are phenomenological parameters and the chemical
potential µ is assumed to be common to the two kinds of fields in order to ensure
charge conservation. This ”standard” BFM is therefore understood as a system
of localized tightly bound electron pairs (bosons) which hybridize with itinerant
electrons. The BFM is usually introduced in a phenomenological level and the
microscopic origin of the pair correlations remains unspecified. Recently an effective
plaquette BFM was shown to be the low energy limit of a Hubbard model in a square
lattice. This was achieved by applying a contractor renormalization method [16] to
a plaquettized lattice to compute the boson effective interaction.

In this section we apply the su(2|1) path-integral technique to show that within
the RVB–LSW approximation the t–J Hamiltonian (2) may result in yet another
variant of BFM composed of spinless fermions and bosonic spin waves. While the
standard BFM consists of interacting electrons and bosons represented by tightly
bound electron pairs of polaronic origin, the spin–charge separation inherent in
the RVB phase naturally implies other types of elementary excitations. Within
our approach spinless U(1) charged fermions are generated by the NDO constraint,
while the bosonic fields correspond to chargeless spinon excitations describing SU(2)
spin singlets in the LSW approximation. Therefore our model markedly contrasts
with the standard BFM of itinerant spin- 1

2 electrons and tightly bound electron
pairs, and is therefore referred to as the boson–spinless fermion model (BSFM).

We start by formulating the RVB approximation to the t–J Hamiltonian (2).
This Hamiltonian possesses two global U(1) symmetries: UNe

(1) and UQ3
(1).

These correspond to the conservation of the total electron number operator Ne =
∑

i(X
↑↑
i + X↓↓

i ), and the total spin projection operator Q3 = 1
2

∑

i(X
↑↑
i − X↓↓

i ),
respectively.
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A conventional Hartree–Fock decoupling is applied to the magnetic part of the
t–J Hamiltonian

HJ := J
∑

〈i,j〉

(

~Qi
~Qj −

1
4 ninj

)

= −J
∑

〈i,j〉
b†ijbij

yielding

HJ ' −J
∑

〈i,j〉

(

∆ijb
†
ij + ∆∗

ijbij − |∆ij |
2
)

,

where b†ij = 1√
2

(

X↑0
i X↓0

j − X↓0
i X↑0

j

)

is the valence bond ”singlet” pair creation

operator and ∆ij is the RVB order parameter defined on each bond between the
nearest neighbor sites. The condition ∆ij 6= 0 breaks the global UNe

(1) symmetry,
though it does not directly result in superconductivity. It instead indicates the
onset of the electron spin–singlet formation.

The t–J partition function becomes

Zt−J =

∫

∏

j

Dµ
(j)
SU(2)

∫

∏

j

Dµ
(j)
U(1) exp[At−J ],

At−J =
1

2

∑

j

∫ β

0

(

˙̄zjzj − z̄j żj

1 + |zj |2
+ ˙̄ξjξj − ξ̄j ξ̇j

)

dt −

∫ β

0

Hcl
t−Jdt (7)

with ξi corresponding to the U(1) charged spinless fermion degrees of freedom
(holons), and zi representing pure SU(2) spins (spinons). Here

DµSU(2) =
dz̄ dz

πi (1 + |z|2)
2

stands for the SU(2) invariant measure, while DµU(1) = dξ̄ dξ denotes the Berezin
integration over Grassmann variables.

The classical Hamiltonian, that enters the partition function (7), reads

Hcl
t−J = −t

∑

〈i,j〉
ξiξ̄j〈zi|zj〉 −

J∆RVB

2

∑

〈i,j〉
ξiξj Φ̄ij + h.c. −

−µ′
∑

i

(1 − ξ̄iξi) − λ
∑

i

[

2Scl
3 (z̄i, zi) + ξ̄iξi

]

. (8)

Here we have dropped the constant term and explicitly introduced a chemical po-
tential, µ′, as well as the Lagrange multiplier λ to control the number of electrons
N cl

e =
∑

i(1 − ξ̄iξi) and the magnitude of the total electron magnetic moment
2Qcl

3 =
∑

i(2Scl
3i + ξ̄iξi), respectively. Note that the classical observables that cor-

respond to the su(2) spin algebra generators are given by (Acl := 〈z|A|z〉)

Scl
3 = −

1

2

1 − |z|2

1 + |z|2
, Scl

+ =
z̄

1 + |z|2
, Scl

− =
z

1 + |z|2
.
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In eq.(8) |z〉 stands for the su(2) coherent state and

〈zi|zj〉 =
(1 + z̄izj)

√

(1 + |zi|2)(1 + |zj |2)

is related to the spinon–singlet amplitude

Φij =
zj − zi

√

(1 + |zi|2)(1 + |zj |2)

by the equation |〈zi|zj〉|
2 = 1 − |Φij |

2. Explicitly, the spinon–singlet amplitude
takes the form

Φij = Ψ↓(zi)Ψ↑(zj) − Ψ↑(zi)Ψ↓(zj) ,

where Ψ↑↓(z) is a spinon wave function in the su(2) coherent state representation,
Ψ↑↓(z) := 〈↑↓ |z〉.

The LSW approximation amounts to expanding up to leading order in powers
of |z|2 the action (7) as well as a measure factor in the path integral, which is
justified in view of the fact that we are in the dilute limit of the spinon singlets,
i.e. when |Φij |

2 � 1. The spinon singlets describe small quantum fluctuations of
the spinon field that directly interact with holons. Those fluctuations arise around
a classical spinon configuration (zi = 0) that, however, contributes trivially to eq.
(8) and the partition function. Since the term proportional to ∆RVB drops out of
the Hamiltonian (8), this classical background physically corresponds to a gas of
noninteracting spinless fermions with a modified chemical potential µ′ → µ′ − λ.

In the paramagnetic phase 〈Q3,i〉 = 0, and the spinon fluctuations become
bounded by the condition 〈|zi|

2〉 ≤ 1
2 . Within the LSW approximation the spinon–

singlet amplitude reduces to Φij = zj − zi, and the partition function becomes

ZBSFM =

∫

∏

j

dz̄j dzj dξ̄j dξj exp[ABSFM] ,

ABSFM =
1

2

∑

j

∫ β

0

(

˙̄zjzj − z̄j żj + ˙̄ξjξj − ξ̄j ξ̇j

)

dt −

∫ β

0

Hcl
BSFMdt ,

where the classical Hamiltonian now reads

Hcl
BSFM = −t

∑

〈i,j〉
ξiξ̄j −

J∆RVB

2

∑

〈i,j〉
ξiξj(z̄j − z̄i) + h.c. −

−µ′
∑

i

(1 − ξ̄iξi) − λ
∑

i

[

−1 + 2z̄izi + ξ̄iξi

]

. (9)

Let us at this stage clarify the physical meaning of the applied LSW approxima-
tion. Suppose we choose in representation (8) a classical spinon configuration with
all zi = 0. In this case the operator 2Q3i reduces to −Nei, so that Eq. (8) describes
in this limit, as it should, a UNe

(1) charged gas of noninteracting spinless fermions
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that exhibits no magnetic properties. Assuming it further that the interaction
strength J∆RVB/2 � t, we consider the interaction term as a small perturbation.
When zi becomes nonzero we can naturally arrive at the representation (9) that
now describes a weak interaction regime for spinless fermions and a dilute gas of
the su(2) spinon singlets at a fixed value of the total electron magnetic moment.

The above partition function represents the BSFM Hamiltonian

HBSFM = −t
∑

〈i,j〉
fif

†
j − 2v

∑

〈i,j〉
fifj(b

†
j − b†i ) + h.c. +

+∆B

∑

i

b†i bi − µ
∑

i

(2b†i bi + f †
i fi) ,

{fi, f
†
j } = [bj , b

†
j ] = δij . (10)

The parameters of the boson–fermion system are expressed in terms of the param-
eters of the original t–J Hamiltonian and the RVB state: v = 1

4 J∆RVB; ∆B = 2µ′;
µ = µ′ + λ. In contrast to the standard BFM (6) the boson–fermion interaction
term in (14) is a nonlocal function of the lattice sites. This is a consequence of the
spinless character of fermions due to the NDO constraint. Elementary fermionic
and bosonic excitations appear in this model as the RVB holons and spinon waves,
respectively.

The UQ3
(1) symmetry of eq. (8) under global gauge transformations zi → eiθzi,

ξi → eiθ/2ξi reduces to the conservation of the projection of the total electron
magnetic moment 2Q3 =

∑

i(2b†i bi +f †
i fi −1) in eq. (10). A global U(1) symmetry

characterizes the standard BFM (6) indicating that bosons are doubly charged with
respect to fermions of a charge e. However, within the BSFM approach the role
of the charge e is played by the lowest eigenvalue of Q3, s = 1

2 . The bosonic b
field is doubly “s”-charged with respect to the fermionic f field. Since a long-
range magnetic order is excluded, the local boson and fermion particle densities are
related in our calculations by the condition 2nB + nF − 1 = 0. In contrast to the
conventional BFM, the boson and fermion excitations bear now information on the
magnetic properties of the system, rather than on a charge transport.

5 Conclusions

To conclude, we employ the su(2|1) coherent-state path integral representation
of the t–J partition function to describe strongly correlated lattice electron sys-
tem relevant for high-Tc superconductivity. Strong correlation manifest itself by
the local NDO constraint which is taken into account rigorously in this approach.
The effective action is a function of local coordinates on the SU(2|1) homogeneous
coherent-state supermanifold, CP1|1, which represents the phase space of the Hub-
bard operators.

To illustrate a possible application of this technique we show that within the
RVB and LSW approximations this effective action reduces to that of the boson–
spinless fermion model. Spinless fermions appear due to the NDO constraint.
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We express the parameters of the effective BSFM Hamiltonian in terms of those
of the t–J model and the RVB state. The spin–charge separation inherent in the
RVB phase results in a specific structure of the BSFM: it describes spinless fermions
interacting with the dilute gas of the spinon singlets in such a way that the total
electron spin projection which plays in the LSW approximation the role of the
total effective charge is conserved. Numerical calculations [17] show that a local
minimum in the fermionic density of states occurs similar to the standard BFM
close to the Fermi level. The minimum deepens with the decreasing of temperature
and vanishes when the temperature is sufficiently high.

Appendix: su(2|1) path integral vs slave fermion approach

The fact that the electron system with the NDO constraint lives on the compact
manifold, supersphere CP1|1 can be explained as follows [3]. Let us for a moment
suppose that the so-called slave-fermion representation for the electron operators
is used, i.e.

ciσ = fia
+
iσ , (11)

where fi is a on-site spinless fermionic operator, whereas aiσ is the spinful boson.
The NDO constraint now reads

∑

σ a+
iσaiσ + f+

i fi = 1. Within the slave-fermion
path integral representation

Zt−J =

∫

Dµflat eSt−J (aσ,aσ ,f), (12)

with the integration measure Dµflat =
∏

i Dai↑Dai↑Dai↓Dai↓DfiDfi, this con-
straint transforms into

∑

σ

aiσaiσ + f ifi = 1 , (13)

with aiσ and fi standing now for complex numbers and complex Grassmann pa-
rameters, respectively. Equation (13) is exactly that for the supersphere CP1|1

embedded into a flat superspase. Any mean-field treatment of (12) should respect
this constraint, which, however, poses a severe technical problem. If one however
resolves this equation explicitly by making the identifications

ai↑ =
eiφi

√

1 + zizi + ξiξi

,

ai↓ =
zie

iφi

√

1 + zizi + ξiξi

, (14)

fi =
ξie

iφi

√

1 + zizi + ξiξi

,

one can further treat the variables zi, ξi as if they were indeed free of any con-
straints.
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Note that the electron operator (11) is invariant under a local gauge transfor-
mation,

aiσ → aiσeiθi , fi → fie
iθi ,

which is tantamount to taking φi → φi+θi. This additional local gauge symmetry is
a consequence of the redundancy of parameterizing the electron operator in terms of
the auxiliary boson/fermion fields. In contrast, the su(2—1) projected coordinates

zi = ai↓/ai↑, ξi = fi/ai↑

are seen to be manifestly gauge invariant.
Evaluating the superdeterminant

sdet

∥

∥

∥

∥

∂(a↓, ā↓, f, f̄)

∂(z, z̄, ξ, ξ̄)

∥

∥

∥

∥

=
1

1 + |z|2 + ξ̄ξ

and substituting of (14) into (12) we are led to the su(2|1) path-integral represen-
tation of Zt−J given by Eq. (4). Note that the U(1) gauge field φi drops out of the
representation (4).
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