
Path integrals, and classical and quantum constraints

John R. Klauder

Department of Physics and Department of Mathematics

University of Florida, Gainesville, FL 32611, USA

Systems with constraints pose problems when they are quantized. Moreover, the
Dirac procedure of quantization prior to reduction is preferred. The projection operator
method of quantization, which can be most conveniently described by coherent state path
integrals, enables one to directly impose a regularized form of the quantum constraints.
This procedure also overcomes conventional difficulties with normalization and second
class constraints that invalidate conventional Dirac constraint quantization procedures.
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1 Introduction

In order to discuss the quantization of systems with constraints it is first impor-
tant to briefly review what are two absolutely essential features of the very process
of quantization itself. First of all, we hold it self evident that:

1. The abstract operator formulation of quantum mechanics is correct and fun-

damental.
As a corollary of this viewpoint we next observe that:
2. In order to properly describe quantum mechanics, it is necessary that any

functional representation of quantum mechanics have an associated underlying op-

erator formulation.
In particular this second property applies to:

a) The Schrödinger partial differential equation formulation of quantum me-
chanics,

and to:

b) Any version of a path integral formulation of quantum mechanics.

Although this paper is concerned with path integrals, it is pedagogically useful to
spend a few paragraphs on how these principles apply to the Schrödinger equation.
The operator form of this equation is given (in units where ~ = 1) by

i
∂Ψ(t)

∂t
= H(t)Ψ(t) ,

where Ψ(t) denotes the time dependent abstract vector Ψ ∈ H, the abstract Hilbert
space, and H(t) denotes the (possibly) time-dependent, self-adjoint Hamiltonian op-
erator. As an example suppose that the system in question is a certain anharmonic
oscillator characterized by the fact that

H = 1
2 (P 2 +Q2) + λQ4 ,
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where P and Q denote abstract, irreducible, self-adjoint Heisenberg operators that
satisfy not only the Heisenberg commutation relation [Q,P ] = i11, but they also
satisfy the Weyl form of these relations, namely that

eipQ e−iqP = eipq e−iqP eipQ ,

for all real c-numbers p and q. It was shown by von Neumann [1] that, apart from
unitary equivalence, there is only one realization of the operators P and Q, namely,

the Schrödinger representation P → −i
∂

∂x
and Q→ x, acting on the Hilbert space

L2(R) of functions ψ(x), x ∈ R. Substitution of this representation for P and Q
into the abstract operator form for H yields the usual Schrödinger equation for this
example, namely

i
∂ψ(x, t)

∂t
= − 1

2 ψ
′′

(x, t) + 1
2 x

2ψ(x, t) + λx4ψ(x, t) .

So much for the obvious associations that apply to the Schrödinger equation.
However, it is useful to enquire what may happen if the connection to the oper-

ator formalism is broken. The classical Hamiltonian for the anharmonic oscillator
is normally taken to be

H(p, q) = 1
2 (p2 + q2) + λq4 ,

but after a canonical coordinate transformation of a suitable kind it is possible to
express the classical Hamiltonian for the same system in the form

H̄(p̄, q̄) = 1
2 p̄

2 ,

or in still other coordinates in the form

H̃(p̃, q̃) = 1
2 (p̃2 + q̃2) ,

etc. All of these functionally unequal forms properly describe the same physical
system in the indicated canonical coordinates. Clearly, to promote the coordinates
in these distinct cases to canonical Heisenberg operators would lead to Hamiltonian
operators with quite different spectra and they all can not be physically correct.
How is one to know which set of canonical coordinates to promote to canonical op-
erators so as to obtain the correct physical spectrum for the specific system under
consideration? The answer, according to Heisenberg, Schrödinger, and Dirac [2],
is that the classical canonical coordinates should be chosen as “Cartesian coordi-
nates”.

To put some further substance in this remark, it is useful to appeal to coherent
states [3]. In particular, let |0〉 denote a normalized vector that satisfies (Q +
iP ) |0〉 = 0, namely, |0〉 is the ground state of an harmonic oscillator with unit
angular frequency. Let

|p, q〉 ≡ e−iqP eipQ |0〉 ,
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for all (p, q) ∈ R2, denote the set of coherent states. Then, in view of the Heisenberg
commutation relation, it follows for a general Hamiltonian operator H(P,Q) that

H(p, q) ≡ 〈p, q|H(P,Q) |p, q〉 =

= 〈0|H(P + p,Q+ q) |0〉 =

= H(p, q) + O(~; p, q) ;

the last form of this expression is particularly evident for polynomial Hamiltonians.
In any case, in the chosen coordinates for the Weyl group, apart from explicitly ~

dependent terms, the c-number Hamiltonian, H(p, q), defined above, has the same
functional form as the q-number Hamiltonian, H(p, q). In other group coordinates
that would not be the case, generally speaking. Thus to associate a particular
expression for a classical Hamiltonian to the proper quantum Hamiltonian operator,
one needs to use Cartesian coordinates. How can we call our choice of coordinates
“Cartesian”? This association follows from the Fubini–Study metric induced on
phase space by the coherent states, namely, by the fact that

2[ ||d|p, q〉||2 − |〈p, q|d|p, q〉|2 ] = dp2 + dq2

in the indicated choice of group coordinates.

2 Path integrals for systems without constraints

We now take up the question of path integrals and for pedagogical purposes we
start with the simpler and more familiar situation in which there are no constraints.
The abstract operator solution to Schrödinger’s equation for a time-dependent
Hamiltonian may be written as

Ψ(T ) = Te−i
∫

T

0
H(t)dt Ψ(0) ,

where T denotes time ordering. For sufficiently smooth time dependence, the evo-
lution operator

U(T ) = Te−i
∫

T

0
H(t)dt

may be represented as the limit of a large number of small time steps, namely, as

U(T ) = lim
N→∞

e−iεHN · · · e−iεH2 e−iεH1 ,

where ε ≡ T

N
, T > 0, and Hk ≡ H(kε). This formula may be put to good use in

at least two different ways.

Phase space path integral − case A

First, to form the propagator between (formal) sharp position states |q〉, where
Q |q〉 = q |q〉, for all q ∈ R, let us insert repeated resolutions of unity as customary

3



John R. Klauder

to yield

〈q′′|U(T ) |q′〉 = lim
N→∞

∫

· · ·
∫ N
∏

n=0

〈qn+1|e−iεHn |qn〉
N
∏

n=1

dqn ,

where q′′ = qN+1 and q′ = q0. As a next step we can insert resolutions of unity
over the conjugate momentum states to give

〈q′′|U(T ) |q′〉 = lim
N→∞

∫

· · ·
∫ N
∏

n=0

〈qn+1|pn+1/2〉〈pn+1/2|e−iεHn |qn〉 ×

×
N
∏

n=0

dpn+1/2

N
∏

n=1

dqn .

To emphasize that we are using two different resolutions of unity which requires
diagonalizing both operators Q and P , and which can only be done at different
times, i.e., sequentially, we have used the notation |qn〉 and |pn+1/2〉.

If we introduce the fact that

〈qn+1|pn+1/2〉 =
eipn+1/2 qn+1

√
2π

,

as well as expand each exponential to first order in ε, we are led to the familiar
expression for the sharp q to sharp q propagator for the phase space path integral
given by

M
∫

ei
∫

[pq̇−H(p,q)]dt DpDq =

= lim
N→∞

∫

· · ·
∫ N
∏

n=0

eipn+1/2 (qn+1−qn)

[

1 − iε
〈pn+1/2|Hn |qn〉
〈pn+1/2|qn〉

]

×

×
N
∏

n=0

dpn+1/2

2π

N
∏

n=1

dqn .

It is in this familiar way that meaning can be given to the formal phase space path
integral through a close association with the abstract operator formulation. Of
course, implicit in the expression for the overlap 〈qn+1|pn+1/2〉 is the assumption
of Cartesian coordinates.

While this expression is mathematically correct for a wide class of Hamiltonians,
it is nevertheless important to point out that it is “unnatural” from a physical point
of view since it asserts that the phase space “paths” involved repeatedly oscillate
between sharp q (and thereby absolutely no knowledge of p) and sharp p (and
thereby absolutely no knowledge of q).

Phase space path integral − case B

We can derive another expression for the meaning of the “same” phase space path
integral in the following way. Rather than alternately use sharp p and sharp q
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states, let us repeatedly use just coherent states and their associated resolution of
unity. As a consequence, the same initial expression

U(T ) = lim
N→∞

e−iεHN · · · e−iεH2 e−iεH1

leads to

〈p′′, q′′|U(T ) |p′, q′〉 = lim
N→∞

∫

· · ·
∫ N
∏

n=0

〈pn+1, qn+1|e−iεHn |pn, qn〉
N
∏

n=1

dpn dqn
2π

,

where p′′ = pN+1, q
′′ = qN+1 and p′ = p0, q

′ = q0. If we use the fact that

〈pn+1, qn+1|pn, qn〉 =

= exp
{

i
2 (pn+1 + pn)(qn+1 − qn) − 1

4 [(pn+1 − pn)2 + (qn+1 − qn)2]
}

,

as well as expand the exponential to first order in ε, as before, we are led to an
alternative, coherent state representation, for the formal phase space path integral
given by

M
∫

ei
∫

[pq̇−H(p,q)]dt DpDq =

= lim
N→∞

∫

· · ·
∫ N
∏

n=0

e{ i(pn+1+pn)(qn+1−qn)/2−[(pn+1−pn)2+(qn+1−qn)2]/4}×

×
[

1 − iε
〈pn+1, qn+1|H|pn, qn〉
〈pn+1, qn+1|pn, qn〉

] N
∏

n=1

dpn dqn
2π

.

One again, this expression is based on the implicit use of Cartesian coordinates.
Unlike case A above, this version of the phase space path integral is both math-

ematically correct for a large class of Hamiltonians as well as being physically
“natural”. It is natural because the meaning of the variables p and q is that of
mean values rather than sharp values, and it is perfectly legitimate to specify the
mean values of both p and q at equal times — and do so for all time. The meaning
of these variables as mean values stems from the fact that 〈p, q|P |p, q〉 = p and
〈p, q|Q |p, q〉 = q.

Remark: Although case A and case B led to quite different results starting
from the same formal expression, it is noteworthy that they both made use of a
first-order expansion of the exponential in the parameter ε. In particular, in both
cases we made use of the approximation

e−iεHk ' 1 − iεHk .

When it comes to deal with constraints, it will become clear that this approximation
for the constraints is insufficient.
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3 Classical theory of constraints − a sketch

In order to account for constraints, it is only necessary to augment the usual
classical action functional by the addition of the constraints along with Lagrange
multipliers. The result is an action functional given generically by the expression

I =
∫ [

pj q̇
j −H(p, q) − λαφα(p, q)

]

dt .

Here, 1 ≤ j ≤ J and 1 ≤ α ≤ A, where J and A denote the numbers of canon-
ical degrees of freedom (pj , q

j) and constraints φα(p, q), respectively, while λα(t)
denotes the several Lagrange multipliers. Variation of pj , q

j , and λα lead to the
basic equations, namely,

q̇j =
∂H(p, q)

∂pj
+ λα ∂φα(p, q)

∂pj
,

ṗj = −∂H(p, q)

∂qj
− λa ∂φα(p, q)

∂qj
,

φα(p, q) = 0 .

The subset of phase space on which the constraints holds is called the constraint
hypersurface. The equations of motion may also be written in terms of Poisson
brackets. In particular, since the constraints must hold for all time, it is necessary
that

φ̇α(p, q) = 0 = {φα(p, q), H(p, q)} + λβ {φα(p, q), φβ(p, q)}
holds on the constraint hypersurface. This latter equation divides constraints into
two principal classes.

Suppose first that the Poisson brackets among the constraints vanish on the
constraint hypersurface. In that case the second term is already zero for any choice
of the Lagrange multipliers; the first term therefore also needs to vanish on the
constraint hypersurface (or otherwise it determines a new constraint that must be
included). These conditions may be stated as

{φα(p, q), φβ(p, q)} = c γ
αβ φγ(p, q) ,

{φα(p, q), H(p, q)} = h β
α φβ(p, q) .

Constraints that fulfill such equations are called first class constraints. A further
division is made as follows: If the coefficients c γ

αβ are constants, the constraints

are called closed first class constraints; if instead the coefficients c γ
αβ are general

functions of phase space, then the constraints are called open first class constraints.
Moreover, to solve the equations of motion it is generally necessary that some
specific choice of the Lagrange multipliers be made; this is called a choice of gauge.
Yang-Mills theories have closed first class constraints, while gravity is an open first
class system.

Next, let us suppose that the Poisson brackets of the constraints do not vanish
on the constraint hypersurface. For simplicity, let us even assume the case where the
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Poisson brackets of the constraints {φα(p, q), φβ(p, q)} form an invertible matrix.
In that case, the Lagrange multipliers are fully determined and are given by

λβ ≡ − [ {φα(p, q), φβ(p, q)} ]−1 {φα(p, q), H(p, q)} .

Constraints that have such properties are called second class constraints.
Of course, there also exist mixed situations in which some of the constraints are

first class while the rest are second class.

4 Constraint quantization − reduction before quantization

In this section we outline the well known procedures of Faddeev [4] and Sen-
janović [5] for dealing with first and second class constraint situations, respectively.
We proceed formally as is customary in such cases. Consider the formal phase
space path integral

M
∫

ei
∫

[pj q̇j−H(p,q)−λα φα(p,q)]dt DpDqDλ =

= M
∫

ei
∫

[pj q̇j−H(p,q)]dtδ{φ(p, q)}DpDq

(modulo a redefinition of M), which enforces the classical constraints exactly. The
resultant integral may well diverge (e.g., if φ1 = p1 and H(p, q) is independent
of q1). Gauge fixing is used to overcome possible divergences, and the Faddeev–
Popov determinant is introduced to maintain formal covariance under canonical
coordinate transformations. The path integral expression now reads

M
∫

ei
∫

[pj q̇j−H(p,q)]dtδ{χ(p, q)} det{χα, φβ}δ{φ(p, q)}DpDq ,

where χα(p, q) = 0, for all α, determines the gauge choice. This expression is
expected to be equal to

M∗

∫

ei
∫

[p∗

B q̇∗B−H∗(p∗,q∗)]dt Dp∗ Dq∗ ,

where B is an index that runs over the remaining, “physical” degrees of freedom,
p∗ and q∗. The formulation given above formally applies to the case of first class
constraints.

In a case of purely second class constraints, the final result is taken to be

M
∫

ei
∫

[pj q̇j−H(p,q)]dt [det{φα, φβ} ]1/2 δ{φ(p, q)}DpDq ,

which again is formally equivalent to an expression of the sort

M∗

∫

ei
∫

[p∗

B q̇∗B−H∗(p∗,q∗)]dt Dp∗ Dq∗ .
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The foregoing expressions are plausible, formal phase space path integrals, but
— and, in the author’s opinion, this is an important qualification — these path
integral expressions have lost any direct connection with an underlying abstract
operator approach. While they surely can be used to calculate results, and on
many occasions the results may well be correct, there simply is no firm foundation
tied to an abstract operator approach to ensure that the results will be universally
valid.

To rectify that situation we first need to remind ourselves what is the accepted
abstract operator formulation of quantization when constraints are present.

5 Abstract operator quantization with constraints −

quantization before reduction

The general abstract operator quantization procedure for systems with con-
straints is due to Dirac [6]. In this approach one quantizes first and reduces second.
This is the preferred order since one then has the chance to employ Cartesian
coordinates in the quantization, which, as described earlier, is the proper set of
coordinates to promote to canonical operators. (Reduction first may give rise to a
constraint hypersurface that does not admit Cartesian coordinates.) Thus, we sup-
pose that we have obtained suitable canonical operators Qj and Pj , 1 ≤ j ≤ J , and
also chosen an acceptable factor ordering, if necessary, such that the Hamiltonian
H(P,Q) and the several constraint operators Φα(P,Q) are self adjoint operators.
Reduction consists in seeking a Hilbert space, Hphys, called the physical Hilbert
space, which is a subspace of the original Hilbert space H, i.e., Hphys ⊂ H. The
elements of Hphys are those Hilbert space vectors for which

Φα(P,Q)Ψphys = 0

for all α, 1 ≤ α ≤ A. Clearly, such vectors form a linear space. However, there are
two special issues that must be considered. First, it follows from this criterion that

[Φα(P,Q), Φβ(P,Q)]Ψphys = 0 ,

but this condition may have Ψphys = 0 as its only solution. This situation arises for
second class constraint systems. To deal with that, Dirac restricts his procedure
to suitable first class systems; second class systems are dealt with in a completely
different manner. Second, it may happen that the only nontrivial solutions are
formal eigenvectors in the sense that (Ψphys, Ψphys) = ∞. If this is the case, then
some procedure must be introduced to deal with the fact that no true vectors exist
that belong to Hphys. This procedure is not quite as straightforward as one might
imagine.

In the next section we outline a relatively new procedure [7] to deal with quan-
tum constraints that is able to handle second class constraints as easily and with
the same formalism as first class constraints, as well as having a well defined proce-
dure to deal with those cases that have formal eigenvectors that are not in Hilbert
space.
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6 Projection operator method for quantum constraints

Ideally, if ΦαΨphys = 0 for all α, it should follow that

ΣαΦ2
αΨphys = 0

holds as well. This relation works sometimes but not always. Therefore, let us relax
this latter condition and replace it as follows. Assume that the operator ΣαΦ2

α is
self adjoint and has a spectral representation given by

ΣαΦ2
α =

∫ ∞

0

λ dIE(λ)

expressed in terms of the associated spectral family of projection operators {IE(λ) :
0 ≤ λ <∞}. We introduce the projection operator

IE(ΣαΦ2
α ≤ δ(~)2) ≡

∫ δ(~)2

0

dIE(λ) ,

which projects onto the spectral interval from 0 to δ(~)2. Here, δ(~) denotes a small
parameter to be chosen appropriately; it is not a Dirac delta function! Finally, the
physical Hilbert space is given by

Hphys ≡ IEH .

A few examples will help explain how the projection operator method works.
First, let Φk = Jk, k = 1, 2, 3, be the generators of the rotation group. We

want to project onto those states for which Jk Ψphys = 0 for all k. We do so by
considering

IE = IE(J2
1 + J2

2 + J2
3 ≤ 1

2 ~
2) .

Since ΣkJ
2
k is just the Casimir operator for the rotation group, with eigenvalues

given by j(j + 1)~2, j = 0, 1
2 , 1, . . ., it follows that j = 0 is the only subspace

allowed by the projection operator. (Clearly, a small range of other values for δ(~)2

works just as well, but we shall not dwell on that aspect.)
Second, let Φ1 = P and Φ2 = Q. The equations PΨphys = 0 and QΨphys = 0

imply that [Q,P ]Ψphys = i~Ψphys = 0, i.e., Ψphys = 0. This is the classic example
of a second class system for which the original Dirac procedure does not work.
However, let us choose

IE = IE(P 2 +Q2 ≤ ~) ,

which acts to project onto vectors for which (Q + iP )Ψphys = 0. If Q and P
are irreducible, then the only solution is a projection onto the ground state of
an harmonic oscillator with unit angular frequency. The essential point is the
projection in this case is onto a one dimensional subspace.

It is noteworthy that the first example consists of an operator with a discrete
spectrum that contains zero (first class system), while the second example involves
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an operator with a discrete spectrum that does not include zero (second class sys-
tem).

Third, let Φ1 = P be the only constraint. This operator has its zero in the
continuous spectrum, and thus all nontrivial solutions to the equation PΨphys = 0
obey (Ψphys, Ψphys) = ∞. In the projection operator language, the operator

IE = IE(P 2 ≤ δ2)

vanishes as δ → 0, so care must be taken to extract the “germ” of this limit. (An ~

dependence is not important in this case.) To extract the desired “subspace” where
“P = 0”, it is most convenient to adopt a representation space. For that purpose
let us choose a coherent state basis. In particular, let us consider the quotient

〈p′′, q′′|IE(P 2 ≤ δ2)|p′, q′〉
〈0|IE(P 2 ≤ δ2)|0〉 =

∫ δ

δ

e−(k−p′′)2/2+ik(q′′−q′)−(k−p′)2/2 dk

∫ δ

δ

e−k2

dk

.

As δ → 0, the numerator and the denominator each vanish; however, the quotient
will not vanish. Indeed, as δ → 0, this quotient becomes

e−(p′′2+p′2)/2 ,

which characterizes a one dimensional physical Hilbert space, which is a perfectly
acceptable result in this case. Since this expression no longer depends on q′′ or
q′, it is clear that we have reached the space where “P = 0”. Observe that the
physical Hilbert space in this case is, strictly speaking, not a subspace of the original
Hilbert space H. Nevertheless, from a representation point of view, it is important
to observe that the physical Hilbert space of interest can be obtained by a suitable
limit taken from within the original Hilbert space H.

Dynamics

There are two important cases when dynamics is considered. The first case assumes
that the Hamiltonian is an observable. An observable operator O is one which
commutes with the projection operator; specifically, that

[O, IE] = 0 .

Therefore, if the Hamiltonian is an observable, it follows that

[H, IE] = 0 .

In that case, we clearly have the operator identity that

e−iHT IE = IEe−i(IEHIE)T IE .
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This equation asserts that when H is an observable and commutes with the pro-
jection operator, it is sufficient to impose the projection operator at just one time
— here chosen as the initial time — and then the temporal evolution remains
thereafter within the physical subspace, and, moreover, the temporal evolution is
generated by that component of the Hamiltonian that lies within the physical sub-
space. The Hamiltonian is an observable for first class systems and for those second
class systems for which the Hamiltonian vanishes.

The second and more general situation is when the Hamiltonian is not an ob-
servable, namely, in cases for which

[H, IE] 6= 0 .

We would still like to ensure that the temporal evolution lies wholly within the
physical subspace, and it is clear that one initial application of the projection
operator will not be sufficient. Just as we use the classical Lagrange multipliers to
force the time evolving classical system back to the constraint hypersurface when
we need to, we can use the projection operator to force the time evolving quantum
system back to the physical subspace when we need to. In symbols, this argument
suggests that we consider

lim
N→∞

e−iεH IE · · · e−iεH IEe−iεH IE ,

where, as before, ε =
T

N
, and T > 0 is fixed. As shown by Chernoff [8], this limit

is exactly

IEe−i(IEHIE)T IE ,

as desired. In the second class case, there are special examples where the temporal
evolution is not unitary, e.g., if H = P and IE is a projection onto the positive half
line, Q > 0. However, if the original Hamiltonian is bounded below, which is more
common in physical situations, then there is always a unitary version of the desired
temporal evolution in the physical subspace.

It is clear that a first class system can also be treated with repeated alternate
projections and short time propagations, so the procedure outlined for second class
systems works equally well for all systems.

Integral representation for projection operator

In special cases, such as first class systems that correspond to compact groups, it
is straightforward to find integral representations that yield an appropriate pro-
jection operator. However, it it noteworthy that there exists a universal integral
representation that yields the desired projection operator for any set of constraint
operators [9]. We have in mind the operator identity given by

IE(ΣαΦ2
α ≤ δ(~)2) =

∫

Te−i
∫ τ

0
λα(t)Φα dt DR(λ) ,
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which involves a time ordered functional integral over c-number Lagrange multipli-
ers, where R(λ) is a suitable (weak) measure. This result holds for any τ > 0 (note
that the left side is independent of τ). The measure R(λ) depends on τ , δ(~)2, and
the number of constraints, but it is totally independent of the choice of the set of
constraint operators {Φα}. Indeed, this expression applies even if the constraint
operators all vanish, in which case we learn that

1 =

∫

DR(λ) .

Such an integral representation for the projection operator can be explicitly
used in forming a path integral representation for a system with constraints, and
since the measure is the same for all systems, it may be used to provide a common
formulation for any constrained system. Since we use the explicit measure in the
following section, we will not describe it here.

We now turn our attention to providing a phase space path integral formulation
of temporal evolution in the presence of general constraints that maintains a close
association with the abstract operator formulation that we have presented.

7 Coherent state path integrals with constraints

We wish to find an interpretation of the formal phase space path integral

M
∫

ei
∫

T

0
[pj q̇j−H(p,q)−λaφα(p,q)]dt DpDqDR(λ)

that yields the desired expression

〈p′′, q′′|IEe−i(IEHIE)T IE |p′, q′〉

for temporal propagation in the physical Hilbert space.

In the following equation chain, the weak measure R(λ) is made explicit as we
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choose a formula that achieves our goal, namely:

M
∫

ei
∫ T

0
[pj q̇j−H(p,q)−λaφα(p,q)]dt DpDqDR(λ) ≡ lim

N→∞

∫

· · ·
∫ N
∏

n=0

{

lim
M→∞

∫

· · ·
∫ M
∏

m=1

[(

〈pn+m/M , qn+m/M |pn+(m−1)/M , qn+(m−1)/M 〉+

+δm,M 〈pn+m/M , qn+m/M |(−iεH) |pn+(m−1)/M , qn+(m−1)/M 〉+

+〈pn+m/M , qn+m/M | [−i(ε/M)λα
n,mΦα − (ε2/2M2)λα

n,mλ
β
n,mΦαΦβ ]×

×|pn+(m−1)/M , qn+(m−1)/M 〉
)

(cγn)−A/2 e−iε/(4Mγn)Σα λα2
n,m Πα dλα

n,m

]}

×
N
∏

n=1

[(

M
∏

m=1

dpn+m/M dqn+m/M

)

dσ(γn)

]

=

= lim
N→∞

∫

· · ·
∫ N
∏

n=0

{

〈pn+1, qn+1|(1 − iεH)eiγnεΣα Φ2
α |pn, qn〉×

× sin[γnεδ(~)2]

πγn
dγn

}

N
∏

n=1

dpn dqn
2π

=

= lim
N→∞

∫

· · ·
∫ N
∏

n=0

〈pn+1, qn+1|e−iεH IE |pn, qn〉
N
∏

n=1

dpn dqn
2π

=

= lim
N→∞

〈p′′, q′′|e−iεH IE · · · e−iεH IEe−iεH IE |p′, q′〉 =

= 〈p′′, q′′|IEe−i(IEHIE)T IE |p′, q′〉 .

Here, as usual, p′′, q′′ = pN+1, qN+1 as well as p′, q′ = p0, q0. The constant
c = −4πi M

ε part way through the equation chain is a normalization chosen to
ensure the form of the equation which follows the one in which c appears.

It is important to observe that, unlike the Hamiltonian H, it was necessary to
expand the expression involving the constraints Φα to second order in the small
parameter ε. In addition, it was necessary to introduce an additional refinement
(M) of each small time step (ε) in order to construct a projection operator IE to
go along with each of the large number (N) of small time step evolutions for the
Hamiltonian.

8 Summary

With this final expression we have achieved our goal of providing a path integral
formulation for canonical systems with general constraints that is closely associated
with the abstract operator formulation. It is noteworthy that this formulation offers
a path integral approach to the quantization of systems with first and second class
constraints that does NOT involve: gauge fixing, Faddeev–Popov determinants,
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Gribov ambiguities, moduli space, auxiliary variables, ghosts, indefinite metrics,
Dirac brackets, etc.
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