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H. Kleinert

Institut für Theoretische Physik, Freie Universität Berlin,

Arnimallee 14 D-14195 Berlin, Germany

In this paper we review recent results obtained in [quant-ph/0504200] on the path
integral formulation of ’t Hooft’s derivation of quantum from classical physics. In partic-
ular, we employ the Faddeev–Jackiw treatment of classical constrained systems to show
how ’t Hooft’s loss of information condition may yield a genuine quantum mechanical
system. With two simple examples we discuss some of the consequences that follow from
our approach.

PACS : 03.65.-w, 31.15.Kb, 45.20.Jj
Key words: path integral, constrained systems, Faddeev–Jackiw approach

1 Introduction

Gerard ’t Hooft, in a speculative 1988 paper [1], suggested that a suitably
defined deterministic, local reversible cellular automata might provide a viable for-
malism for constructing quantum mechanics. In the paper he introduced several
“toy models” that hinted that typically non-local, non-deterministic quantum me-
chanical behavior can be achieved using local deterministic laws, in a sense that a
basis can be found in terms of which the wave function does not spread. Similar
conclusions were also reported by other authors [2]. In his subsequent works [3]
’t Hooft’s substantially enlarged the class of emergent quantum dynamics by im-
plementing an appropriate constraining procedure — loss of information condition,
that accounted also for irreversible cellular automata.

Recently [4, 5], some progress has been made in formulating an alternative of
the above proposal for continuous degrees of freedom. The key idea is that quan-
tum mechanics represents merely the low-energy limit of some more fundamental
continuous deterministic dynamics. In particular, by resorting to simple dynamical
systems, it has been shown that a suitable constraining procedure applied to an
appropriate continuous deterministic system, can reduce the physical degrees of
freedom so that quantum mechanics emerges. Such a reduction of the degrees of
freedom may be physically implemented by a mechanism of information loss or dis-
sipation directly on the level of particle trajectories. This scheme has been further
developed by several authors [4–10].
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In the present paper we review the main results of our previous work [11], in
which ’t Hooft’s quantization proposal was formulated in the language of path inte-
grals. To deal with the singular nature of a dynamics inherent in such a proposal we
use the Faddeev–Jackiw treatment [12] of constrained systems. A parallel approach
based on the Dirac–Bergmann technique [13] can be found in Ref. [6]. The con-
strained dynamics enters into ’t Hooft’s scheme in two places: first, in the classical
starting Hamiltonian which is of first order in the momenta and thus singular in the
Dirac–Bergmann sense. Secondly, in the information loss condition that one has to
enforce in order to achieve quantization [11]. Once the constraining condition and
dynamics are specified, the Faddeev–Jackiw machinery can be introduced in order
to identify the physical degrees of freedom. The path-integral formalism is then
formulated on the reduced configuration space.

The rest of the paper goes as follows. In Section 2 we review some essentials of
’t Hooft’s quantization proposal for continuous degrees of freedom. To show these
ideas more concrete we utilize in Section 3 a Lagrangian formulation of ’t Hooft’s
Hamiltonian systems. With the help of the Faddeev–Jackiw procedure we quantize
the latter through configuration-space path integrals. We show that the Faddeev–
Jackiw mechanism is also useful in implementing the information-loss condition
which is responsible for the emergent quantum behavior. In Section 4 we present
two simple toy model examples elucidating our formalism. We conclude in Sec-
tion 5.

2 ’t Hooft’s proposal for continuous degrees of freedom

Let us start with a brief review of the main aspects of ’t Hooft’s proposal [4,5].
The basic idea is that there exists a simple class of deterministic systems that can be
described by means of Hilbert space techniques without loosing their deterministic
character. Only after enforcing certain constraints expressing information loss, one
obtains bona fide quantum systems. In such cases the quantum states of actually
observed degrees of freedom (observables) can be identified with equivalence classes
of states that span the original (primordial) Hilbert space of truly existing degrees
of freedom (be-ables). It is important to understand that be-ables are not referring
to conventional macroscopic variables, such as pointer on a detection device, but
rather to a set of what ’t Hooft calls “primordial” variables. Conventional variables,
like mass, energy, position, etc., are viewed as emergent (non-primordial) degrees
of freedom that mix different primordial states.

The above scenario has been successfully applied in discrete-time systems. For
instance, in cellular automata with embedded information loss [1] the equivalence
classes were invoked to obtain a unitary evolution operator which defines a genuine
quantum mechanical Hamiltonian. Further examples of applications that involve
’t Hooft proposal in discrete-time systems can be found, e.g. in Refs. [7, 10].

In the following we will consider only the case with continuous time. To this
end we observe that classical systems of the form

H(p, q) = fa(q)pa (1)
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with repeated indices summed, evolve deterministically even after quantization [5].
This happens since in the Hamiltonian equations of motion

q̇a = {qa, H} = fa(q) , (2)

ṗa = {pa, H} = −pb

∂f b(q)

∂qa
, (3)

the equation for the qa does not contain pa, making the qa be-ables. Because of
the autonomous character of the dynamical equations (2) we can always decide to
define a formal Hilbert space spanned by the states {|q〉}, and define the associated
momenta p̂a = −i∂/∂qa. The quantum mechanical “Hamiltonian” generating (2)
is then Ĥ = fa(q̂)p̂a. Indeed, due to linearity of Ĥ in p̂a we have that q̂a(t+∆t) =
F a[q̂(t),∆t] (F a is some function) and hence [q̂a(t), q̂b(t′)] = 0 for any t and t′.
This in turn implies that the Heisenberg equation of the motion for q̂a(t) in the
q-representation is identical with the c-number dynamical equation (2).

The basic physical problem with systems described by the Hamiltonian (1) is
that they are not bounded from below. This defect can be repaired in the following
way [5]: Let ρ(q̂) be some positive function of q̂a with [ρ̂, Ĥ] = 0. Then we perform
splitting

Ĥ = Ĥ+ − Ĥ− ,

Ĥ+ = 1
4 ρ̂

−1
(

ρ̂+ Ĥ
)2

, Ĥ− = 1
4 ρ̂

−1
(

ρ̂− Ĥ
)2

,
(4)

where Ĥ+ and Ĥ− are positive definite operators satisfying

[Ĥ+, Ĥ−] = [ρ̂, Ĥ ] = 0 . (5)

We may now employ the Dirac canonical quantization of constrained systems and
enforce a lower bound upon the Hamiltonian by imposing the restriction

Ĥ−|ψ〉 = 0 (6)

on the Hilbert space of be-ables. The resulting physical state space, i.e. the space
of observables has the energy eigenvalues that are trivially positive owing to

Ĥ |ψ〉 = Ĥ+|ψ〉 = ρ̂|ψ〉 .

Concomitantly, in the Schrödinger picture the equation of motion

d

dt
|ψt〉 = −iĤ+|ψt〉 ,

has only positive frequencies on physical states. Note that due to condition (5)
’t Hooft’s constraint (6) is a first-class constraint. From the theory of constrained
systems [14] it is known that first-class conditions generate a gauge transformation
and thus not only restrict the full Hilbert space but also produce equivalence classes
of states. It should be noticed that above equivalence classes are generally non-local,
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in the sense that two states belong to the same class if they can be transformed
into each other by the gauge transformation with the generator Ĥ−. If, in addition,
the ensuing fiber-bundle structure is non-trivial one may encounter signatures of
this through the emergence of geometric phases.

’t Hooft proposed in Ref. [5] that in cases when the dynamical equations (2)
describe the configuration-space chaotic dynamical system, the equivalent classes
could be related to its stable orbits (e.g., limit cycles). The mechanism responsible
for clustering of trajectories to equivalence classes was identified by ’t Hooft as
information loss — after while one cannot retrace back the initial conditions of a
given trajectory, one can only say at what attractive trajectory it will end up. As
the mechanism of equivalent classes is embodied in Eq.(6) we shall henceforth refer
to it as information loss condition. Some applications of the the outlined scenario
were given, e.g. in Refs. [10].

3 Path-integral formulation of ’t Hooft’s proposal

Because Feynman’s path integrals [15] represent a legitimate alternative to
canonical quantization, it is of some value to formulate ’t Hooft’s proposal in the
language of path integrals. This will make available the powerful tools of the path-
integral formalism and it will allow to incorporate the loss of information condition
in a straightforward manner.

3.1 ’t Hooft’s systems and path-integral quantization

We consider systems described by Hamiltonians of the type (1). Because of the
absence of a leading kinetic term quadratic in the momenta pa, the system clas-
sify as singular and the ensuing quantization can be done through some standard
technique for quantization of constrained systems.

Particularly convenient is the technique proposed by Faddeev and Jackiw [12].
There one starts by observing that a Lagrangian for ’t Hooft’s equations of motion
(2), (3) can be simply taken as

L(q, q̇,p, ṗ) = p · q̇ −H(p, q) (7)

with q and p being Lagrangian variables (in contrast to phase-space variables).
Note that L does not depend on ṗ. It is easily seen that the Euler–Lagrange equa-
tions for the Lagrangian (7) coincide with the Hamiltonian equations (2), (3). Thus
given ’t Hooft’s Hamiltonian (1) one can always construct a first-order Lagrangian
(7) whose configuration space coincides with the Hamiltonian phase space. By
defining 2N configuration-space coordinates as

ξa = pa , a = 1, . . . , N ,

ξa = qa , a = N + 1, . . . , 2N ,

the Lagrangian (7) can be cast into the more expedient form, namely (summation
convention is understood)

L(ξ, ξ̇) = 1
2 ξ

aωabξ̇
b −H(ξ) . (8)
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Here ω is the 2N × 2N symplectic matrix

ωab =

(

0 I

−I 0

)

ab

,

which has an inverse ω−1
ab ≡ ωab. The equations of the motion read

ξ̇a = ωab ∂H(ξ)

∂ξb
, (9)

indicating that there are no constraints on ξ. Consequentlty the Faddeev–Jackiw
procedure makes the system unconstrained, so that the path integral quantization
may proceed in the standard way. The time evolution amplitude is simply [15]

〈ξ2, t2|ξ1, t1〉 = N
∫ ξ(t2)=ξ

2

ξ(t1)=ξ
1

Dξ exp

[

i

~

∫ t2

t1

dt L(ξ, ξ̇)

]

, (10)

where N is the usual normalization factor, and the measure stands for

N
∫ ξ(t2)=ξ

2

ξ(t1)=ξ
1

Dξ = N
∫ q(t2)=q

2

q(t1)=q
1

DqDp . (11)

Since the Lagrangian (7) is linear in p, we may integrate these variables out and
obtain

〈q2, t2|q1, t1〉 = N
∫ q(t2)=q

2

q(t1)=q
1

Dq
∏

a

δ [q̇a − fa(q)] , (12)

where δ [f ] ≡ ∏

t δ(f (t)) is the functional version of Dirac’s δ-function. Hence
the system described by the Hamiltonian (1) retains its deterministic character
even after quantization. The paths are squeezed onto the classical trajectories
determined by the differential equations q̇ = f(q). The time evolution amplitude
(12) contains a sum over only the classical trajectories — there are no quantum
fluctuations driving the system away from the classical paths, which is precisely
what should be expected from a deterministic dynamics.

The amplitude (12) can be brought into another form by utilizing the identity

δ [f(q) − q̇] = δ [q − qcl] (detM)−1 ,

where M is a functional matrix formed by the second functional derivatives of the
action A[ξ] ≡

∫

dt L(ξ, ξ̇) :

Mab(t, t
′) =

δ2A
δξa(t) δξb(t′)

∣

∣

∣

∣

q=q
cl

. (13)

The Morse index theorem ensures that for sufficiently short time intervals t2 − t1
(before the system reaches its first focal point), the classical solution with the initial
condition q(t1) = q1 is unique. In such a case Eq. (12) can be brought to the form

〈q2, t2|q1, t1〉 = Ñ
∫ q(t2)=q

2

q(t1)=q
1

Dq δ [q − qcl] (14)
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with Ñ ≡ N/(detM). Remarkably, the Faddeev–Jackiw treatment bypasses com-
pletely the discussion of constraints, in contrast with the conventional Dirac–
Bergmann method [13, 14] where 2N (spurious) second-class primary constraints
must be introduced to deal with ’t Hooft’s system, as done in [6].

Finally we mention an interesting implication of the result (14). If we had
started in Eq.(12) with an external current

L̃(ξ, ξ̇) = L(ξ, ξ̇) + i~J · q ,

integrated again over p, and took the trace over q, we would end up with a gener-
ating functional

ZCM[J ] = Ñ
∫

Dq δ [q − qcl] exp

[
∫ t2

t1

dtJ · q
]

. (15)

This coincides with the path-integral formulation of classical mechanics (CM) pos-
tulated by Gozzi et al. in Refs. [16].

3.2 Inclusion of information loss

In the preceding section we have observed that the Hamiltonian (1) is not bounded
from below. This is true for any function fa(q). Hence, no deterministic system
with dynamical equations q̇a = fa(q) can describe a stable quantum world. To deal
with this situation we now employ ’t Hooft’s procedure of Section 2. We assume
that the system (1) has n conserved irreducible charges C i, i.e.

{Ci, H} = 0 , i = 1, . . . , n . (16)

A lower bound is enforced upon H , by imposing the condition that H− = 0 on the
physically accessible part of a phase space.

The splitting ofH intoH− andH+ is conserved in time provided that {H−, H} =
{H+, H} = 0, which is ensured if {H+, H−} = 0. Since the charges Ci in (16) form
an irreducible set, the Hamiltonians H+ and H− must be functions of the charges
and H itself. There is a certain amount of flexibility in finding H− and H+. For
definiteness we take the following choice

H+ =
(H + aiC

i)2

4aiCi
, H− =

(H − aiC
i)2

4aiCi
, (17)

where ai(t) are q and p independent. The lower bound is reached by choosing
ai(t)C

i to be non-negative. Following ’t Hooft we should select a combination of
Ci which is p-independent [this condition may not necessarily be achievable for
general fa(q)].

In the Dirac–Bergmann quantization approach used in our previous paper [6],
the information loss condition (6) was a first-class primary constraint. The corre-
sponding gauge freedom then needed to be removed by a gauge condition. In the
Faddeev–Jackiw approach, Dirac’s elaborate classification of constraints to first
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or second class, primary or secondary is avoided. It is therefore worthwhile to
rephrase the entire development in Ref. [6] in this new framework. The informa-
tion loss condition may now be introduced by simply adding to the Lagrangian (8)
a term enforcing

H−(ξ) = 0 (18)

by means of a Lagrange multiplier. More in general we can take instead of H− any
function φ(ξ), such that φ(ξ) = 0 implies H−(ξ) = 0. In this way we obtain

L(ξ, ξ̇) = 1
2xi

aωabξ̇
b −H(ξ) − η φ(ξ) , (19)

In Faddeev–Jackiw method one directly applies the constraint and thus eliminates
one of ξa, say ξ1, in terms of the remaining coordinates. This reduces the dynamical
variables to 2N − 1. Modulo an irrelevant total derivative, the canonical term
ξaωabξ̇

b changes to ξif ij(ξ̂)ξ̇j with

f ij(ξ̂) = ωij −
[

ω1i

∂ξ1

∂ξj
− (i↔ j)

]

. (20)

Here i, j = 2, . . . , 2N , and ξ̂ = {ξ2, . . . , ξ2N}. Eliminating ξ1 also in the Hamil-

tonian H we obtain the reduced Hamiltonian HR(ξ̂), so that we are left with the
reduced Lagrangian

LR(ξ̂,
˙̂
ξ) = 1

2 ξ
if ij(ξ̂)ξ̇j −HR(ξ̂) . (21)

At this point one must worry about the notorious operator-ordering problem, not

knowing in which temporal order ξ̂ and
˙̂
ξ must be taken in the kinetic term. A path

integral in which the kinetic term is coordinate-dependent can in general only be
defined perturbatively, and all anharmonic terms are then treated as interactions.
ZCM is expanded in powers of expectation values of products of these interactions
which, in turn, are expanded into integrals over all Wick contractions, the Feynman
integrals. Each contraction represents a Green function. For the Lagrangian of the
form (21), the contractions of two ξi’s contain a Heaviside step function, those

of one ξi and one ξ̇i contain a Dirac δ-function, and those of two ξ̇i’s contain a
function δ̇(t− t′). Thus, the position-space Feynman integrals run over products of
distributions and are mathematically undefined. Fortunately, a unique definition
has recently been put forward. It is enforced by the necessary physical requirement
that path integrals must be invariant under coordinate transformations [17]. For
the model systems discussed below (see Section 4) the ordering issue was extensively
discussed in Ref. [11].

The Lagrangian is processed further with the help of Darboux’s theorem [18].
This ensures an existence of a non-canonical (local) transformation ξi 7→ {ζs, zr}
which brings LR to the canonical form

LR(ζ, ζ̇, z) = 1
2 ζ

sωstζ̇
t −H ′

R(ζ, z) , (22)

where ωst is the canonical symplectic matrix in the reduced s-dimensional space.
The variables zr are related to zero modes of the matrix f ij(ξ̂) which makes it non-
invertible. Each zero mode corresponds to a constraint of the system. In Dirac’s
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language these would correspond to the secondary constraints. Since there is no
żr in the Lagrangian, the variables zr do not play any dynamical rôle and can be
eliminated using the equations of motion

∂H ′

R(ζ, z)

∂zr
= 0 . (23)

In general, H ′

R(ζ, z) is a nonlinear function of zr1 . One now solves as many zr1 as
possible in terms of remaining z’s, which we label by zr2 , i.e.

zr1 = ϕr1(ζ, zr2) . (24)

If H ′

R(ζ, z) happens to be linear in zr2 , we obtain the constraints

ϕr2
(ζ) = 0 . (25)

Substituting (24) into (22) we arrive at

LR(ζ, ζ̇, z) = 1
2 ζ

sωstζ̇
t −H ′′

R(ζ) − zr2ϕr2
(ζ)

with zr2 playing the rôle of Lagrange multipliers. We now repeat the elimination
procedure until there are no more z-variables. The surviving variables represent the
true physical degrees of freedom. In the Dirac–Bergmann approach, these would
span the reduced phase space Γ∗.

Let us follow the procedure in more detail if there is just one variable z in (23)
and only equation (24) holds. As in Ref. [6], we can pass to the new set of canonical
variables ξ 7→ {ζ, z, pz} with pz = φ. Let us define the function

χ(ζ, z) ≡ ∂H ′

R(ζ, z)

∂z
=
∂H+(ξ1(ξ̂), ξ̂)

∂z
= {H+, φ}

∣

∣

∣

pz=0
= 0 . (26)

Its derivative is given by the Poisson bracket

∂χ(ζ, z)

∂z
= {χ(ζ, z), pz} = {χ, φ} 6= 0 . (27)

Because (27) is different from zero on account of (24) we can identify the function
χ(ζ, z) with the implicit gauge fixing condition of the Faddeev–Jackiw analysis.

Let us now see how we can include the constraints (18) and (26) into the path
integral (15) for ZCM[J ]. This cannot simply be done by inserting δ-functionals
δ[φ] and δ[χ] into the integrand, since φ and χ may not be independent. Allowing
for this, the path integral reads (see Ref. [6])

ZCM[J ] =

∫

Dξ δ[φ]δ[χ]
∣

∣

∣
det ‖{φ, χ}‖

∣

∣

∣
exp

[

i

∫ tf

ti

dt L(ξ, ξ̇) +

∫ tf

ti

dtJξ

]

. (28)

Assuming that ξ1 can be eliminated globally from (19), we obtain

ZCM[J ] =

∫

Dξ̂ δ[χ]
∣

∣

∣
det ‖{φ, χ}‖

∣

∣

∣

∣

∣

∣

∣

det

∥

∥

∥

∥

δφ

δξ1

∥

∥

∥

∥

∣

∣

∣

∣

−1

ξ1=ξ1(ξ̂)

×

× exp

[

i

∫ tf

ti

dt LR(ξ̂,
˙̂
ξ) +

∫ tf

ti

dtJg(ξ̂)

]

.
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After the Darboux transformation, this becomes

ZCM[J ] =

∫

Dζ Dz δ [z − ϕ(ζ)] exp

[

i

∫ tf

ti

dt LR(ζ, ζ̇, z) +

∫ tf

ti

dtJg(ζ, z)

]

.

Here the functional relation

δ[χ]
∣

∣det ‖{φ, χ}‖
∣

∣ = δ[z − ϕ(ζ)]

together with Jacobi–Liouville equality

∂(ξ2, . . . , ξ2N )

∂(ζ1, . . . , ζ2N−2, z)
=

∂(ξ2, . . . , ξ2N , pz)

∂(ζ1, . . . , ζ2N−2, z, pz)

∂(ζ1, . . . , ζ2N−2, z, pz)

∂(ξ2, . . . , ξ2N , ξ1)
=

=

(

∂pz

∂ξ1

)

ξ̂

=

(

∂φ

∂ξ1

)

ξ1=ξ1(ξ̂)

were used. With the notation H∗

+(ζ) = H+(ζ, z = ϕ(ζ), pz = 0), this can be
rewritten as

ZCM[J ] =

∫

Dζ exp

[

i

∫ tf

ti

dt ζtωtsζ̇
s

]

exp

[

−i

∫ tf

ti

dtH∗

+(ζ) +

∫ tf

ti

dtJg∗(ζ)

]

.

(29)
At this point we note that the result (29) is equivalent to the result derived in
Ref. [6]. In fact, when χ in [6] coincides with the the form (26) and we set ζ =
(Q̄, P̄ ), z = Q1, and pz = P1, then ZCM[J ] from Ref. [6] reduces exactly to the
form (29).

Important simplification happens when H ′

R is independent of z (e.g. when
φ = H−). In Dirac–Bergmann’s language this imply that there is no secondary
constraint. In such a case the gauge fixing can be enforced by taking χ = z (see
Ref. [19]), and the procedure outlined in steps (28)–(29) is streamlined by the fact
that

∣

∣ det ‖{φ, χ}‖
∣

∣ = 1. The corresponding coordinate basis {ζ, χ, φ} is known as
the Shouten–Eisenhart basis [14].

4 Examples of emergent quantum systems

4.1 Free particle

We conclude our presentation by exhibiting how our mathematical scheme works
for a simple system described by ’t Hooft’s Hamiltonian

H(q,p) = xpy − ypx . (30)

Hamiltonian (30) formally represents the z component of the angular momentum,
whose spectrum is clearly unbounded from below. One can also regard (30) as de-
scribing the mathematical pendulum. This is because the corresponding dynamical
equation (2) for the q-variable is a plane pendulum equation with the pendulum
constant l/g = 1. The Lagrangian (7) then reads

L(q, q̇,p, ṗ) = pxẋ+ pyẏ − xpy + ypx .

9
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It is well-known [6] that the system (30) has two independent constants of motion:

C1 = x2 + y2 , C2 = xpx + ypy .

However, only C1 is p-independent, so that the constraint ρ(q) acquires the form:
ρ(q) = a1C1(q), with an arbitrary constant a1. The reduced Lagrangian (22) reads

LR(ξ̂,
˙̂
ξ) = ẏpy +

ẋ

y

(

pyx− a1(x
2 + y2)

)

− a1(x
2 + y2) = (31)

=
√

x2 + y2
d

dt

[

−2a1

√

x2 + y2 arctg

(

x

y

)

− xpx + ypy
√

x2 + y2

]

− a1(x
2 + y2) .

We can diagonalize the symplectic structure via the Darboux transformation

pζ =
√

x2 + y2 ,

ζ = −2a1

√

x2 + y2 arctg

(

x

y

)

− xpx + ypy
√

x2 + y2
.

(32)

Hence, up to a total derivative, the reduced Lagrangian (31) goes over into

LR(ζ, ζ̇, z) = 1
2 ζ

sωstζ̇
t − a1(pζ)

2 (33)

with the symplectic notation ζ ≡ ζ1 and pζ ≡ ζ2. The reduced Hamiltonian is
z-independent and thus χ = z. Note that (32) together with

z = − arctg

(

x

y

)

and p2
z = φ2 = 4a1p

2
ζ H− , (34)

constitute the canonical transformation ξ 7→ {ζ, z, pz}.
Due to a non-linear nature of the canonical transformation (32) and (34) one

must check the path integral measure for a potential anomaly. In Ref. [11] it was
shown that although the anomaly is indeed generated, it gets cancelled due to the
presence of the constraining δ-functionals in the measure.

Let us now set a1 = 1
2 m~. After rescaling in the path integral the variable ζ(t)

to ζ(t)/~ we obtain the correct path-integral measure of quantum systems:

Dζ ≈
∏

i

[

dζ(ti) dpζ(ti)

2π~

]

.

In addition, the prefactor 1/~ in the exponent emerges correctly. Thus, the classical
partition function of Gozzi et al. morphs into the quantum partition function for
a free particle of mass m. As the constant a1 represents the choice of units for C1

we see that the quantum scale ~ is implemented into the partition function via the
information loss condition.

A free particle can emerge also from another class of ’t Hooft’s systems. Such
systems can be obtained by modifying slightly the previous discussion and consid-
ering instead the Hamiltonian

H = xpy − ypx + λ(x2 + y2) ,
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where λ is a constant. ’t Hooft’s information loss condition and ρ(q) remain clearly
the same as in the previous case. The reduced Lagrangian now reads

LR(ξ̂,
˙̂
ξ) =

√

x2 + y2
d

dt

[

−2a1

√

x2 + y2 arctg

(

x

y

)

− xpx + ypy
√

x2 + y2

]

− a∗1(x
2 + y2)

with a∗1 = a1 + λ. Identical reasonings as in the preceding situation lead again to
a proper quantum-mechanical partition function for a free particle.

4.2 Harmonic oscillator

In Ref. [6] it was shown that the system (30) can be also used to obtain the quantized
linear harmonic oscillator. This is because there is a certain ambiguity in imposing
’t Hooft’s condition. This will be illustrated with φ = xpy − ypx −a1(x

2 + y2) used
in Eq. (34). The constraint φ = 0 can be equivalently written as

φ = x ∧ A = 0

with x = (x, y) and A = (px + a1y, py − a1x). The solution of φ = 0 is formally
given by

x = α (px + a1y) , y = α (py − a1x) ,

where α is an arbitrary real number. Note that α = 0 and α = ∞ also cover
the singular cases |x| = 0 and |A| = 0, respectively. So, instead of one first-class
condition φ = 0 we can consider two second-class constraints

φ1 =
(

px − x

α
+ a1y

)

= 0 ,

φ2 =
(

py − y

α
− a1x

)

= 0

({φ1, φ2} = 2a1 6= 0). Equivalently one may view φ1 as a primary first-class con-
straint and φ2 as the gauge fixing condition. To make contact with the Faddeev–
Jackiw procedure we chose the second scenario. The corresponding reduced La-
grangian is then

LR(ξ̂,
˙̂
ξ) = ẏpy + ẋ

(x

α
− a1y

)

− xpy + y
(x

α
− a1y

)

=

= − 1

2a1

(

py + a1x− y

α

) d

dt

(

px + a1y −
x

α

)

− xpy + y
(x

α
− a1y

)

.
(35)

At this point we can perform Darboux’s transformation

pζ =
1√
2

(

py + a1x− y

α

)

,

ζ = − 1√
2a1

(

px − x

α
− a1y

)

, (36)

z =
φ2

2a1
=

1

2a2

(

py − y

α
− a1x

)

.
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The reduced Lagrangian (35) then becomes

LR(ζ, ζ̇, z) = 1
2 ζ

sωstζ̇
t − 1

2a1
p2

ζ − a1

2

(

ζ2 − 2z2
)

(37)

(ζ ≡ ζ1, pζ ≡ ζ2). The stabilization condition χ(ζ, z) = 0 yields then the gauge
fixing

χ(ζ, z) =
∂H ′

R(ζ, z)

∂z
= −2a1z = 0 .

By by enforcing a gauge constraint z = 0 in Eq.(37) we eliminate the variable z
and obtain a non-degenerate reduced Lagrangian

LR(ζ, ζ̇) =
1

2
ζsωstζ̇

t − 1

2a1
p2

ζ −
a1

2
ζ2 .

The canonical transformation ξ 7→ (ζ, z, pz) is completed by identifying

pz = −φ1 = −px − a1y +
x

α
. (38)

Similarly as in the previous case, {pζ , ζ, z, pz} can be identified with the Shouten–
Eisenhart basis.

By choosing a1 = 1/m~ and rescaling ζ(t) 7→ ζ(t)/~ in the path integral (29) we
obtain the quantum partition function for the linear harmonic oscillator with a unit
frequency. One can again observe that the fundamental scale (suggestively denoted
as ~) enters the partition function in a correct quantum mechanical manner. This
is precisely the result which ’t Hooft conjectured for the system (30) in Ref. [5].
Because the canonical transformation ξ 7→ (ζ, z, pz) is linear it does not induce
anomaly in the path integral measure nor in the action (for discussion see Ref. [11]).

In the framework of the Dirac–Bergmann treatment both results discussed above
were already derived in Ref. [6]. It is clear that other emergent quantum systems
can be generated in an analogous manner. For instance, in Ref. [6] free particle
weakly coupled to Duffing’s oscillator was obtained from the Rössler system.

5 Conclusions

We have reviewed the main aspects of the path-integral formulation of ’t Hooft’s
quantization proposal. We pointed out that the Faddeev–Jackiw treatment of con-
strained systems as discussed in Ref. [11] offers a series of advantages with respect to
the usual Dirac–Bergmann scheme. Although both approaches require in ’t Hooft’s
scheme a doubling of configuration-space degrees of freedom, it is the Faddeev–
Jackiw scheme that does not explicitly invokes the classification of constraints into
first and second class, primary and secondary [6], and that markedly simplifies the
formal construction of path integrals for ’t Hooft’s constrained dynamics.

Our treatment of ’t Hooft’s quantization procedure is kept as simple as pos-
sible. For this purpose we advocate the Faddeev–Jackiw method as a convenient

12
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tool for imposing ’t Hooft’s information loss condition. The Faddeev–Jackiw treat-
ment is a typical constrain-before-quantization method, and as such it is, at least
formally, simpler than the Dirac–Bergmann method when path integrals are in-
volved. This is because the Darboux transformation — the key element in the
Faddeev–Jackiw method — formalizes structure of canonical transformations. On
a practical level, however, the actual calculations seem to be more complicated than
in Dirac–Bergmann way, as we could see in our simple examples. In particular, the
change of coordinates (Darboux coordinates) from the pre-symplectic to a sym-
plectic form plus non-dynamical z-variables are often involved, or even impossible.
Clearly, many alternatives to the Faddeev–Jackiw approach can be considered. One
of them would be the field-antifield formalism of Batalin and Vilkovisky, which is
presently under investigation.

The equivalence between both constraining approaches was discussed in Ref. [11].
There we have shown that under rather general conditions ’t Hooft’s quantization
program performed with the Dirac–Bergmann and the Faddeev–Jackiw prescrip-
tions leads to equivalent path integral representations of emergent quantum sys-
tems. Care is, however, needed when non-linear canonical transformations are
performed in path integrals. Then the ordering issue and Gribov ambiguities start
to be important and the above procedure necessarily involves non-trivial subtleties
connected with the path-integral measure [11].

The present work is only a first step in describing more complicate primordial
systems and ensuing emergent quantum dynamics. The logically next step would be
a study of chaotic dynamical systems with non-trivial limit cycles. One can expect
that dynamical systems satisfying the Poincaré-Bendixson theorem [20] could be
good candidates for this task.
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