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Monte Carlo simulations are employed for studying a generalized three-dimensional
complex |ψ|4 field theory with an additional fugacity term controlling the vortex-line
density. It is shown that only with such an extra term, the XY type second-order phase
transitions of the standard model can be tuned in certain regions of the phase diagram to
become first-order. In particular, this settles a recent controversy in the standard model
related to the measure of the functional integral. Also the topological excitations of the
model (vortex networks) are carefully examined.
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1 Introduction

The Ginzburg–Landau or |ψ|4 field theory is the paradigmatic model for study-
ing critical phenomena using field-theoretic techniques [1]. Perturbative calcula-
tions of critical exponents and amplitude ratios of the Ising (n = 1), XY (n = 2),
Heisenberg (n = 3) and other O(n) spin models relied heavily on this field-theoretic
formulation [2]. Even though the spin models contain only directional fluctuations,
while for n-component Ginzburg–Landau fields with n ≥ 2 directional and size
fluctuations seem to be equally important, the two descriptions are completely
equivalent, as is expected through the concept of universality and has been proved
explicitly for superfluids with n = 2, where the spin model reduces to an XY
model [3]. Therefore it appeared as a surprise when, on the basis of an approxi-
mate variational approach to the two-component Ginzburg–Landau model, Curty
and Beck [4] recently predicted for certain parameter ranges the possibility of first-
order phase transitions induced by phase fluctuations which subsequently were
apparently confirmed numerically [5–8].

We therefore performed an independent Monte Carlo study of the standard
three-dimensional Ginzburg–Landau model [9]. Contrary to the previous numeri-
cal findings, our results clearly support the prevailing opinion that the nature of
the transition is of second (or higher) order, and the source for this numerical dis-
agreement could be pinpointed [9]. Here we review a recent generalization of the
standard model by adding a fugacity term which implicitly controls the vortex-line
density of the model [10]. By means of this extra term it is indeed possible to tune
the generalized system into a region with first-order phase transitions.

The layout of the remainder of this paper is organized as follows. In Sec. 2 we
first recall the standard model, and then discuss its generalization and the observ-
ables used to map out its phase diagram. Next we describe in Sec. 3 the simulation
techniques employed in our extensive Monte Carlo study of the generalized model.
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The results of our simulations are presented in Sec. 4, and in Sec. 5 we conclude
with a summary of our main findings.

2 The generalized |ψ|4 model

We start from the standard complex or two-component Ginzburg–Landau field
theory defined by the Hamiltonian

H [ψ] =

∫

ddr

[

α|ψ|2 +
b

2
|ψ|4 +

γ

2
|∇ψ|2

]

, γ > 0 , (1)

where ψ(~r) = ψx(~r) + iψy(~r) = |ψ(~r)|eiφ(~r) is a complex field, and α, b, and γ are
temperature independent coefficients derived from a microscopic model. In order
to carry out Monte Carlo simulations we put the model (1) on a d-dimensional
hypercubic lattice with spacing a. Adopting the notation of Ref. [4], we introduce
rescaled fields ψ̃ = ψ/

√

|α|/b and ~u = ~r/ξ, where ξ =
√

γ/|α| is the mean-field
correlation length at zero temperature. Only two independent parameters remain,

Ṽ0 =
1

kB

|α|

b
γad−2 , σ̃ =

a2

ξ2
,

where Ṽ0 merely sets the temperature scale and can thus be absorbed in the def-
inition of the reduced temperature. After these rescalings the partition function
actually considered is then given by

Z =

∫

DψDψ̄ e−H/T (2)

with

H [ψ] =
N

∑

n=1

[

σ

2

(

|ψn|
2 − 1

)2
+

1

2

d
∑

µ=1

|ψn − ψn+µ|
2

]

, (3)

where
∫

DψDψ̄ ≡
∫

DReψD Imψ stands short for integrating over all possible
complex field configurations, µ denotes the unit vectors along the d coordinate axes,
and N = Ld is the total number of sites.

Using the same parametrization, Curty and Beck [4] approximated this partition
function by integrating only over the phase. In a mean-field type treatment they
dropped the integration over Rn = |ψn| and determined the minimum of the free
energy with respect to R. Assuming that the gradient of the amplitude is zero, this
leads to the equation

σ(R2 +R4) − 1
2 T +R2f(K) = 0 , (4)

where f(K) = 〈fn〉 is the numerically determined expectation value within the

XY spin model of fn =
∑d

µ=1

[

1 − cos(φn − φn+µ)
]

with a dimensionless coupling

constant (inverse temperature) K = R2/T . By looking at the graphical solution
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Fig. 1. Graphical solution of the mean-field type equation (4), indicating metastabilities
for small σ and hence the appearance of first-order phase transitions.

sketched in Fig. 1 it is evident from the double valued shape of R2 that metastabil-
ities develop for small σ, predicting a first-order phase transition in this parameter
region.

In several papers [5–8] this quasi-analytical prediction was tested by Monte
Carlo simulations and, as the main result, apparently confirmed numerically. If
true, these findings would have an enormous impact on the theoretical description
of many related systems such as superfluid helium, superconductors, certain liquid
crystals and possibly even the electroweak standard model of elementary particle
physics [11,12]. We have therefore performed independent Monte Carlo simulations
of the model (2), (3) to test whether the possibility of a phase-fluctuation induced
first-order transition is a real effect or not [9]. Our results, however, clearly support
the prevailing opinion that the nature of the transition is of second (respectively
higher) order for all values of σ.

What is the source for this disagreement? In Ref. [9] we have demonstrated
that it is caused by an incorrect sampling of the Jacobian which emerges from
the complex measure in (2) when transforming the field representation to polar
coordinates, ψn = Rneiφn . When updating in the simulations the modulus Rn =
|ψn| and the angle φn, one has to rewrite the functional measure of the partition
function (2) as

DψDψ̄ = RDRDφ , (5)

where DR ≡
∏N

n=1 dRn and R ≡
∏N

n=1Rn is the Jacobian of this transformation.
The Jacobian factor may be easily missed when coding Metropolis update proposals
for the modulus and angle in a Monte Carlo simulation program. While for the
angles it is correct to use update proposals of the form φn → φn +δφn with −∆φ ≤
δφn ≤ ∆φ (where ∆φ is chosen such as to assure an optimal acceptance ratio), the
similar procedure for the modulus, Rn → Rn+δRn with −∆R ≤ δRn ≤ ∆R, would

3



W. Janke and E. Bittner

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

<
|ψ

|2
>

T

0.25
1.0
1.5
2.0
3.0

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

<
|ψ

|2
>

T

0.25
1.0
1.5
2.0
3.0

Fig. 2. Mean-square amplitude 〈|ψ|2〉 of the three-dimensional complex Ginzburg–Landau
model on a 153 cubic lattice for σ = 0.25, . . . , 3.0 when erroneously omitting the Jacobian
factor R of the functional measure (5) (left), corresponding to κ = 0 in the generalized
model (7), and in the standard formulation with the proper functional measure (right),

corresponding to κ = 1.

be incorrect since this ignores the Rn factor coming from the Jacobian. In fact,
if we purposely ignore the Jacobian and simulate the model (2), (3) (erroneously)
without the R-factor, then we obtain a completely different behavior than in the
correct case, cf. Fig. 2. These results reproduce1) those in Refs. [5] and [8], and
from this data one would indeed conclude evidence for a first-order phase transition
when σ is small. With the correct measure, on the other hand, we find no first-order
signal down to σ = 0.01.

To treat the measure in Eq. (5) properly one can either use the identity RndRn =
1
2 dR2

n and update the squared moduli R2
n = |ψn|

2 according to a uniform measure
(where the update proposal R2

n → R2
n + δn with −∆ ≤ δn ≤ ∆ is correct), or one

can introduce an effective Hamiltonian,

Heff = H − Tκ

N
∑

n=1

lnRn (6)

with κ ≡ 1 and work directly with a uniform measure for Rn. The incorrect
omission of the Jacobian in (5) is equivalent to setting κ = 0. It is well known [11]
that the nodes Rn = 0 correspond to core regions of vortices in the dual formulation
of the model. The Jacobian factor R (or equivalently the term −

∑

lnRn in Heff)
tends to suppress field configurations with many nodes Rn = 0. If the R-factor is
omitted, the number of nodes and hence vortices is relatively enhanced. It is thus
at least qualitatively plausible that in this case a discontinuous, first-order “freezing

1) There is another difference between our update and the update described in the papers [5,8],
namely that we do not restrict the modulus of the field to a finite interval. This can cause further
systematic deviations but we explicitly checked that this is unimportant for the main point here.
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transition” from a vortex dominated phase can occur, as is suggested by a similar
mechanism for the XY model [11, 13, 14] and defect-models of melting [15, 16].

To be precise we always worked with the proper functional measure in Eq. (5)
and replaced the standard Hamiltonian H by [10]

Hgen = H + T (1− κ)

N
∑

n=1

lnRn = H + Tδ

N
∑

n=1

ln |ψn| , (7)

where we have introduced the parameter δ = 1 − κ, such that δ = 0 (κ = 1)
corresponds to the standard model and δ = 1 (κ = 0) to the previously studied
modified model with its first-order phase transition for small enough σ.

In the limit of a large parameter σ, it is easy to read off from Eq. (3) that
the modulus of the field is squeezed onto unity and once hence expects that irre-
spectively of the value of κ the XY model limit is approached with its well-known
continuous phase transition at Tc ≈ 2.2. While for the standard model with κ = 1,
this behavior should qualitatively persist for all values of σ, from the numerical
results discussed above one expects that for κ = 0 the order of the transition turns
first-order below a certain (tricritical) σ-value. The purpose of this paper is to
elucidate this behavior further by studying the phase diagram in the (σ–κ)-plane,
i.e. by considering an interpolating model with κ = 1 − δ varying continuously
between 0 and 1.

In order to map out the phase diagram in the (σ–κ)- respectively (σ–δ)-plane, we
have measured in our Monte Carlo simulations among other quantities the energy
density e = 〈H〉/N , the specific heat per site cv =

(

〈H2〉 − 〈H〉2
)

/N , and in
particular the mean-square amplitude

〈|ψ|2〉 =
1

N

N
∑

n=1

〈|ψn|
2〉 , (8)

which will serve as the most relevant quantity for comparison with previous work
[4–8]. For further comparison and as a suitable quantity for locating the critical
temperature, we recorded the helicity modulus,

Γµ =
1

N

〈 N
∑

n=1

|ψn||ψn+µ| cos(φn − φn+µ)

〉

−

−
1

NT

〈

[ N
∑

n=1

|ψn||ψn+µ| sin(φn − φn+µ)

]2
〉

, (9)

which is a direct measure of the phase correlations in the µ-direction. Because of
cubic symmetry all directions µ are equivalent, and we always quote the average
Γ = (1/d)

∑d
µ=1 Γµ. In the infinite-volume limit, Γ is zero above Tc and different

from zero below Tc. In addition we also measured the density of vortex lines,

v =
1

N

∑

x,i

|∗li,x| . (10)
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Fig. 3. Networks of closed vortex lines for κ = 1.0 and σ = 1.0 in the ordered phase at
T = 0.7 (left) and disordered phase at T = 1.4 (right).

The standard procedure to calculate the vorticity on each plaquette is by consid-
ering the quantity

m =
1

2π

(

[φ1 − φ2]2π + [φ2 − φ3]2π + [φ3 − φ4]2π + [φ4 − φ1]2π

)

,

where φ1, . . . , φ4 are the phases at the corners of a plaquette labeled, say, according
to the right-hand rule, and [α]2π stands for αmodulo 2π: [α]2π = α+2πn, with n an
integer such that α+2πn ∈ (−π, π], hencem = n12+n23+n34+n41. If m 6= 0, there
exists a vortex which is assigned to the object dual to the given plaquette, i.e. a link
in three dimensions. Hence, the topological charges are represented by (oriented)
line elements ∗li (which can take three values: 0, ±1; the values ±2 have a negligible
probability) and combine to form closed networks (“vortex loops”). Example plots
in the ordered and disordered phase, respectively, are shown in Fig. 3, and a detailed
discussion of their behavior with special emphasis on percolation properties is given
in Ref. [17].

We further analyzed the Binder cumulant,

U =
〈(~µ2)2〉

〈~µ2〉2
,

where ~µ = (µx, µy) with

µx =
1

N

N
∑

n=1

Re(ψn) , µy =
1

N

N
∑

n=1

Im(ψn) ,

is the magnetization per lattice site of a given configuration.
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3 Monte Carlo simulations

A safe (but inefficient) method for simulating the complex measure (5) is pro-
vided by the standard Metropolis algorithm [18], where the field ψn is decomposed
into its Cartesian components, ψn = ψx,n + iψy,n. For each lattice site a random
update proposal for the two components is made, e.g. ψx,n → ψx,n + δψx,n with
δψx,n ∈ [−∆,∆], and in the standard fashion accepted or rejected according to
the energy change δHgen. The well-known drawback of this algorithm is its severe
critical slowing down (large autocorrelation times) in the vicinity of a continuous
phase transition [19], leading to large statistical errors for a fixed computer bud-
get. To improve the accuracy of our data we therefore employed the single-cluster
algorithm [20] to update the direction of the field [21], similar to simulations of
the XY spin model [22]. The modulus of ψ is updated again with a Metropo-
lis algorithm. Here some care is necessary to treat the measure (5) properly (see
above comments). Per measurement we performed one sweep with the Metropolis
algorithm and n single-cluster updates. In all simulations the number of cluster
updates was chosen such that n〈|C|〉 ≈ Ld ≡ N , where 〈|C|〉 is the average cluster
size. Since 〈|C|〉 scales with system size as the susceptibility, χ = N〈~µ2〉 ' Lγ/ν

with γ/ν = 2 − η ≈ 2, n was chosen ∝ L. For each simulation point we first ther-
malized with 500 to 1 000 sweeps and then averaged over 10 000 measurements. In
the following we only show the more extensive and accurate data set of the cluster
simulations, but we tested in many representative cases that they coincide with
the Metropolis simulations within error bars, which are always computed with the
Jackknife method [23].

In the cases of strong first-order phase transitions (for the non-generic case κ =
0) also cluster simulations become inefficient. To bypass this problem we employed
here a variant of the multicanonical scheme [24] where the histogram of the mean
modulus is flattened instead that of the energy (“multimodulus” simulations). With
this simulation technique we overcome the difficulty of sampling the extremely rare
events between the two peaks of the canonical distribution [25].

4 Results

To substantiate our claim we first concentrated on the two most characteristic
cases κ = 0 and κ = 1 for a small value of the parameter σ = 0.25. For κ = 0,
we observe already on very small lattices a clear double-peak structure for the
distributions of the energy and mean-square amplitude as well as the mean modulus

|ψ| =
1

N

N
∑

n=1

|ψn|

depicted in Fig. 4. Notice that already for the extremely small lattice size of 43 the
minimum between the two peaks is suppressed by more than 20 orders of magnitude.
This is an unambiguous sign for two coexisting phases and thus clearly implies that
the model undergoes a first-order phase transition in the small σ-regime for κ = 0.
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Fig. 4. Left: Histogram of the mean modulus |ψ| for κ = 0 and σ = 0.25 on a logarithmic
scale for a 43 cubic lattice, reweighted to the temperature T0 ≈ 0.0572 where the two
peaks are of equal height. Right: Histogram for the same quantity and lattice size for

κ = 1 and σ = 0.25 at T = 1.1 close to the second-order phase transition point.
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Fig. 5. Vortex-line density for κ = 0 (left) and κ = 1 (right) at σ = 0.25.

For the standard model with κ = 1, on the other hand, we observe for all σ-values
a smooth behavior, suggesting that the XY model like continuous transition for
σ → ∞ persists also for small σ-values. This is clearly supported by the single-
peak structure of all distributions just mentioned; for the case of the mean modulus
see the right plot of Fig. 4. These findings are also clearly reflected in the topological
excitations of the model. The vortex-line density depicted in Fig. 5 shows for κ = 0
a pronounced jump, typical for a first-order phase transition, while for κ = 1 it
varies smoothly across the transition point. The κ-dependence is illustrated in
Figs. 6 and 7, indicating that for σ = 0.25 the cross-over from first- to second-order
phase transitions takes place between κ = 0.8 and 0.9.
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Fig. 7. The κ dependence of the mean-square amplitude 〈|ψ|2〉 as a function of temper-
ature on a 153 lattice for σ = 0.25.

To exemplify the big differences between the models with κ = 0 and κ = 1,
we choose in the following the case σ = 1.5 and present careful finite-size scaling
(FSS) analyses. We begin with the non-standard case κ = 0, where the first-
order phase transition around T ≈ 0.36 is still pronounced but much less strong
than for σ = 0.25. Still, in order to get sufficiently accurate equilibrium results, the
simulations for lattices of size L = 4, 6, 8, 10, 12, 14, 15 and 16 had to be performed
again with our multimodulus simulation method. In fact, as can be inspected in
the histogram plots for the mean modulus shown in Fig. 8, the frequency of the
rare events between the two peaks in the canonical ensemble for a 163 lattice is
about 50 orders of magnitude smaller than for configurations contributing to the
two peaks.

The strength of the transition can be characterized more quantitatively by es-
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curve), reweighted to temperatures where the two peaks are of equal height. Right: FSS
extrapolation for L ≥ 6 of the interface tension F s

L, yielding the infinite-volume limit
F s = 0.271(5).

timating the interface tension [25],

F s
L =

1

2Ld−1
ln
Pmax

L

Pmin
L

,

where Pmax
L is the value of the two peaks and Pmin

L denotes the minimum in be-
tween. Here we have assumed that for each lattice size the temperature was chosen
such that the two peaks are of equal height which can be achieved by histogram
reweighting. The thus defined temperatures approach the infinite-volume transition
temperature as 1/Ld, and for the final estimate of F s = limL→∞ F s

L, we performed
a FSS fit according to [26]

F s
L = F s +

a

Ld−1
+
b lnL

Ld−1
. (11)

As is shown in Fig. 8, the finite-lattice estimates F s
L are clearly nonzero and the

infinite-volume extrapolation (11) tends to increase with system size, yielding a
comparably large interface tension of F s = 0.271(5).

In the generic case κ = 1, the model with σ = 1.5 definitely exhibits a continuous
phase transition around β ≡ 1/T ≈ 0.8. To confirm the expected critical exponents
of the O(2) or XY model universality class, we simulated here close to criticality
somewhat larger lattices of size L = 4, 8, 12, 16, 20, 24, 32, 40 and 48 and performed
a standard FSS analysis. From short runs we first estimated the location of the
phase transition to be at β0 = 0.7795 ≈ βc. In the long runs at β0 we recorded the
time series of the energy density e = E/N , the magnetization ~µ, the mean modulus
|ψ|, and the mean-square amplitude2) |ψ|2, as well as the helicity modulus Γµ and

2) Recall that |ψ| ≡
PN

n=1
|ψn|/N and |ψ|2 ≡

PN
n=1

|ψn|2/N , such that |ψ|
2

6= |ψ|2.
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Log–log plot of the FSS of the susceptibility at β = 0.780 08 ≈ βc. The line shows the

three-parameter fit a+ bLγ/ν , yielding for L ≥ 16 the estimate γ/ν = 1.962(12).

the vorticity v. After an initial equilibration time, we took here about 1 000 000
measurements for each lattice size. Applying the reweighting technique we first
determined the maxima of the susceptibility, χ′ = N(〈~µ2〉 − 〈|~µ|〉2), of d〈|~µ|〉/dβ,
and of the logarithmic derivatives d ln〈|~µ|〉/dβ and d ln〈~µ2〉/dβ. The locations of
these maxima provide us with four sequences of pseudo-transition points βmax(L)
for which the scaling variable x = (βmax(L) − βc)L

1/ν should be constant. Using
this fact we then have several possibilities to extract the critical exponent ν from
(linear) least-squares fits of the FSS ansatz dU/dβ ∼= L1/νf0(x) or d ln〈|~µ|p〉/dβ ∼=
L1/νfp(x) to the data at the various βmax(L) sequences. The quality of our data
and the fits starting at Lmin = 8, with goodness-of-fit parameters Q = 0.85 – 0.90,
can be inspected in Fig. 9. All resulting exponent estimates, and consequently also
their weighted average

1

ν
= 1.493(7) , ν = 0.670(3) ,

are in perfect agreement with recent high-precision Monte Carlo estimates for the
XY model universality class [21, 27]. Note that hyperscaling implies α = 2 − 3ν =
−0.010(9), which also favorably compares with recent spacelab experiments on the
lambda transition in liquid helium [28].

Assuming thus 1/ν = 1.493 we can improve our estimate for βc from linear
least-squares fits to the scaling behavior of the various βmax sequences. The com-
bined estimate from the four sequences is βc = 0.780 08(4). To extract the criti-
cal exponent ratio γ/ν we can now use the scaling relation for the susceptibility
χ = N〈~µ2〉 ' a+bLγ/ν at βc. For L ≥ 16 we obtain from the FSS fit with Q = 0.70
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shown on the r.h.s. of Fig. 9 the estimate of

γ

ν
= 1.962(12)[9] ,

where we also take into account the uncertainty in our estimate of βc; this error is
estimated by repeating the fit at βc ± ∆βc and indicated by the number in square
brackets. Here we find a slight dependence of this value on the lower bound of
the fit range [Lmin, 48], i.e., one would have to include larger lattices for a high-
precision estimate of the critical exponent ratio γ/ν, but this was not our objective
here. Still, these results are in good agreement with recent high-precision estimates
in the literature [21, 27] and clearly confirm the expected second-order nature of
the phase transition in the standard complex |ψ|4 model, governed by XY model
critical exponents.

A similar set of simulations at σ = 0.25 for lattice sizes L = 4, 8, 12, 14, 16,
20, 24, 28, 32 and 40 gave the exponent estimates 1/ν = 1.498(9), ν = 0.668(4)
and γ/ν = 1.918(71)[8] (at βc = 0.9284(4)), which are less accurate but again
compatible with the XY model universality class. At any rate these results definitely
rule out the possibility of a first-order phase transition in the standard model at
small σ-values. When going to even smaller σ-values, the FSS analysis is more and
more severely hampered by the vicinity of the Gaussian fixed point which induces
strong crossover scaling effects. Since consequently very large system sizes would be
required to see the true, asymptotic (XY model like) critical behavior we have not
further pursued our attempts in this direction. Here we only add the remark that
for σ = 0.01 the energy and magnetization distributions exhibit a clear single-peak
structure for all considered lattice sizes up to L = 20, showing that in the standard
model with κ = 1 a phase-fluctuation induced first-order phase transition is very
unlikely even for very small σ values.

For the non-generic case κ = 0, a look back at Fig. 2 shows that the crossover
from first- to second-order transitions happens around σt ≈ 2.5. The resulting
transition lines in the (σ–T )-plane for κ = 0 and κ = 1 are sketched on the l.h.s.
of Fig. 10, with the thick line for κ = 0 indicating the approximate regime of
first-order phase transitions. We also checked the critical behavior along the line
of second-order transitions for κ = 0. Specifically, at σ = 5, i.e. sufficiently far
away from σt, we obtained from FSS fits to data for lattices of size L = 4, 8, 12,
16, 20, 24, 28, 32 and 40 the exponent estimates 1/ν = 1.489(7), ν = 0.671(3) and
γ/ν = 1.913(82)[13] (at βc = 0.97253(4)). As expected by symmetry arguments,
also these results for the second-order regime of the κ = 0 variant of the model are
in accord with the XY model universality class.

In a second set of simulations we explored the two-dimensional (σ–κ) parameter
space of the generalized Ginzburg–Landau model in the orthogonal direction by
performing simulations at fixed σ values and varying κ from 0 to 1. For most
σ-values we concentrated on the crossover region between first- and second-order
transitions with increasing κ. For two selected values, σ = 0.25 and σ = 1.5, we
studied the κ dependence more systematically by simulating all values from κ = 0
to 1 in steps of 0.1. In addition we performed two further runs in the crossover
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Fig. 10. Left: Transition lines in the (σ–T )-plane for κ = 0 and κ = 1. The thick line
for κ = 0 indicates first-order phase transitions while all other transitions are continuous.
Right: Phase diagram in the (κ–T )-plane for σ = 0.25 and σ = 1.5. The transitions along
the thick line for κ < κt are of first order while the transitions for κ > κt are of second
(or higher) order. The points labeled σt and κt at the intersection of the two regimes are

tricritical points.

regime at κ = 0.85 and 0.95 for σ = 0.25 as well as at κ = 0.15 and κ = 0.25
for σ = 1.5. For example, from Fig. 7 we read off that for σ = 0.25 the crossover
between the two types of phase transitions happens around κt(σ = 0.25) ≈ 0.8,
and the analogous analysis for σ = 1.5 yields κt(σ = 1.5) ≈ 0.2. The resulting
transition lines for these two σ-values are plotted on the r.h.s. of Fig. 10, where the
thick lines indicate again first-order phase transitions.

Finally, by combining all numerical evidences collected so far with additional
data not described here in detail, we find the phase structure in the (σ–κ)-plane
depicted in Fig. 11. All points in the lower left corner for small σ and small κ exhibit
a first-order phase transition when the temperature is varied, while all points in
the upper right corner display a continuous transition of the XY model type. This
means in particular that for the standard model parametrized by κ = 1 this is
always true. Quantitatively the XY model is reached for all κ-values in the limiting
case σ −→ ∞.

5 Summary

Our numerical simulations of the standard three-dimensional Ginzburg–Landau
model do not support the possibility of phase-fluctuation induced first-order phase
transitions as suggested by approximate variational calculations [4]. Rather, down
to very small values of the parameter σ, the transitions are found to be continuous,
as expected on general grounds. Our results suggest, however, that a generalized
Ginzburg–Landau model can be tuned to undergo first-order phase transitions by
a mechanism similar to that discussed in Ref. [13] when varying the parameter
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Fig. 11. Phase structure in the (σ–κ)-plane of the generalized complex Ginzburg–Landau
model in three dimensions, separating regions with first- and second-order phase transi-
tions, respectively, when the temperature is varied. All continuous transitions fall into the
XY model universality class which is approached for all κ-values in the limit σ −→ ∞.

κ of an additional
∑

lnRn term in the generalized Hamiltonian (7). Following
Ref. [13] this can be understood by a duality argument. For 0 ≤ κ < 1 the extra
term reduces the ratio of core energies of vortex lines of vorticity two versus those
of vorticity one, and this leads to the same type of transition observed in defect
models of crystal melting.

The phase transitions of the standard model as well as the continuous transitions
of the generalized model are confirmed to be governed by the critical exponents of
the XY model or O(2) universality class, as expected by general symmetry argu-
ments. For the generalized model it would be interesting to analyze in more detail
the tricritical points separating the regions with first- and second-order phase tran-
sitions. Such a study, however, is quite a challenging project and hence left for
future work.

Exploratory simulations of the two-dimensional case [10], where the standard
model exhibits Kosterlitz–Thouless transitions, indicate that a similar mechanism
can drive the transition of the generalized model to first order also there.
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