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The Bead–Fourier path integral molecular dynamics technique, introduced earlier [S.D.
Ivanov, A.P. Lyubartsev, and A. Laaksonen, Phys. Rev. E 67 (2003) 066710] for the case
of distinguishable particles is reformulated in order to achieve more efficient sampling.
The reformulation is carried out on the basis of the “staging” transformation of beads’
coordinates, yielding all dynamical variables to move on similar time scales. The formal-
ism for identical particles is presented. It is shown, that the straightforward approach
leads to impossibility of the sign changes. A recipe to overcome this problem is sug-
gested. It is demonstrated, that the developed formalism for identical particles can also
be reformulated, providing efficient molecular dynamics.
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1 Introduction

Path Integral (PI) simulation techniques, based on the Feynman path integral
formalism [1, 2] proved to be efficient and powerful for investigations of quantum
many-body systems. The simulation methods based on PI exploit the, so-called,
quantum-classical isomorphism [3], namely, the isomorphism between the quantum
partition function, presented as an imaginary time path integral [1, 2] and the
classical configurational integral over closed trajectories. Properties of the quantum
objects can thus be obtained by simulation of classical “ring polymers”. Sampling
of trajectories in PI simulations can be done either by the Monte Carlo (MC) or
molecular dynamics (MD) algorithms.

The PI formalism is exact and straight-forward to use for systems of interacting
quantum particles, but it requires, in principle, an infinite number of parameters
to define the trajectory. Therefore finite-number approximations have to be used
to treat the path integrals in numerical computer simulations.

In the mostly widespread simulation scheme the PI trajectories are approxi-
mated by a finite number of points (beads) connected by a harmonic potential [4].
The other, so-called, Fourier approximation [5] method describes the trajectory by
a finite set of Fourier series terms. Enormous effort has been spent to determine
which approach is superior and, in fact, this discussion continues up to nowadays
(see e.g. [6] and references therein) with no definite winner emerged. Coalson [7]
suggested that “Perhaps this is because the two prescriptions are essentially the

same”. Strictly speaking, both schemes come into perfect agreement only at very
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high orders of implementation.
Vorontsov–Velyaminov et al. [8] invented a combined Bead–Fourier (BF) Monte

Carlo (MC) method in which the parts of the trajectory between the beads are
presented as a Fourier series. It was shown in this article and in the subsequent
works [9, 10] that by combining the bead and Fourier contributions in an optimal
way, a substantial performance improvement can be obtained in path integral Monte
Carlo (PIMC) simulations.

Recently, we developed and tested Bead–Fourier path integral molecular dy-
namics (BFPIMD) method [11, 12]. It was demonstrated as well, that molecular
dynamics in combination with the Bead–Fourier scheme allows one to overcome
serious computational difficulties present in the pure bead or pure Fourier schemes,
namely, in cases requiring very large number of beads or Fourier components. The
advantages of the BFPIMD scheme were especially noticeable for Coulomb systems.
In [12] we pointed out, that softening of the Coulomb potential in the vicinity of
the nucleus causes artificial trends in the electronic density, and suggested a recipe
to overcome it.

However, the formalism presented in [11,12] describes the distinguishable quan-
tum particles only, neglecting the permutational symmetry. So, the first goal of
this paper is to develop the formalism, that includes quantum statistics into con-
sideration.

As it was pointed out in [13] it is important to have all molecular dynamical
variables to move on the same time scales in order to achieve efficacy. So, the
second aim of this paper is to reformulate the formalism developed into a more
efficient one.

The paper is organized as follows. The staging ideas applied for BFPIMD, as
well as the general formalism for identical particles and its reformulation into a
more efficient one, are described in Sec. 2, followed by details of the molecular
dynamics organisation in Sec. 3. Results and discussions are presented in Sec. 4
and concluding remarks in Sec. 5.

2 Theory

2.1 Bead−Fourier staging molecular dynamics

Bead–Fourier path integral (BFPI) scheme was suggested and developed within
Monte Carlo (MC) approach by Vorontsov–Velyaminov et al. [8]. In our previ-
ous works [11, 12] we developed and tested Bead–Fourier path integral molecular
dynamics (BFPIMD) approach for the case of distinguishable particles. Let us
briefly present the BF formalism. Consider N distinguishable quantum particles in
a three-dimensional system. The partition function Z reads:

Z =

∫ N
∏

i=1

n
∏

j=1

(

drij

kmax
∏

k=1

daijk

)

exp [−βH (rij , aijk)] , (1)

where β ≡ 1/KT is the inversed temperature, rij = {xij ; yij ; zij} are coordinates
of bead number j that belongs to the trajectory describing particle i. aijk =
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{axijk; ayijk ; azijk} are the corresponding k-th Fourier harmonics amplitudes, n is
the number of beads, N is the number of particles (trajectories), kmax is the number
of the last term of the truncated Fourier sine series taken into consideration. The
Hamiltonian H is defined by:

H =
N

∑

i=1

n
∑

j=1

{

mω2
n

2

[

(rij+1 − rij)
2 +

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

+
1

n

∫ 1

0

dξV [rij(ξ)]

}

, (2)

where V [rij(ξ)] is the interaction potential, which depends on the system studied,
the “chain frequency” ωn being:

ωn ≡
√

n

β~
(3)

and rij(ξ) describes “i”-trajectory between beads “j” and “j + 1”:

rij(ξ) = rij + (rij+1 − rij)ξ +

kmax
∑

k=1

aijk sin(kπξ) . (4)

Note that in expressions (2, 4) the trajectories are closed, i.e. ri,n+1 = ri,1.
Eqs. (1) and (2) are suitable for MC, not for MD. Following [11,12] we treat the

Hamiltonian (2) as a potential energy and introduce corresponding kinetic terms.
Then, the total BF Hamiltonian reads:

HBF =
N

∑

i=1

n
∑

j=1

(

p2
ij

2m̃ij

+

kmax
∑

k=1

p2
ijk

2m̃ijk

)

+ UBF
eff ({rij , aijk}) , (5)

where UBF
eff ({rij , aijk}) coincides with the Hamiltonian from Eq. (2), while pij and

pijk are the momenta, conjugated to rij and aijk , respectively. The Hamiltonian
HBF can be used for derivation of Hamiltonian equations of motion with both
beads’ coordinates and Fourier amplitudes treated as generalized coordinates, with
their momenta treated as generalized momenta. For details, see [11, 12].

Direct application of the scheme described above makes both beads and Fourier
amplitudes oscillate on very different time scales. Indeed, the harmonic coupling
of beads (rij+1 − rij)

2 induces characteristic frequencies (normal modes) to cover
many time scales. The prefactor 1

2 (kπ)2 at the quadratic Fourier term a2
ijk explic-

itly presents the wide spectrum of frequencies for Fourier amplitudes. Although
it is possible to use BFPIMD as is, i.e., ignoring this problem, as we have done
in [11,12], it may be not very efficient and can lead to convergence problems in cer-
tain cases. Hence, we suggest a recipe to avoid it and reformulate the BF scheme
in order to force all degrees of freedom oscillate on the same time scale.

The harmonic coupling can be resolved exactly in the same manner, as in the
pure bead case. Historically, there appeared two variants of a variable transform,
that uncouple the beads. One is called staging and was initially developed for
MC [14, 15]. Tuckerman et al. [13] developed staging MD scheme. The other is
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called normal mode transformation (see e.g. [16, 17]). Staging seems preferable for
us, since the corresponding formulas have simple recursive form as presented below.
Consider a change of variables of the form:

ui1 = ri1 , uij = rij −
(j − 1)rij+1 + ri1

j
. (6)

This transformation is known as the staging transformation.
Note that beads and Fourier amplitudes are coupled only by the potential energy

term (2). Hence, we can consider Fourier amplitudes as parameters and perform
exactly the same staging transformation (6) as was done by Tuckerman et al. in
the pure bead case, resulting in:

U stage
eff ({uij , aijk}) =

=

N
∑

i=1

n
∑

j=1

ω2
n

2

[

miju
2
ij + m

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

+
1

n
lφ ({uij({rij}), aijk}) ,

(7)

where ωn was defined in (3), masses mij are the staging masses defined as: mi1 = 0;

mij =
mij

j − 1
∀j > 1, with index i pointing the particles. The potential energy term

φ ({uij({rij}), aijk}) is a denotation for:

φ ({uij({rij}), aijk}) ≡
N

∑

i=1

n
∑

j=1

∫ 1

0

dξV [rij(ξ)] . (8)

Now the quadratic term in Eq. (7) is completely uncoupled in the terms of the stag-
ing coordinates uij . Note, that the variables ui1 do not appear in the transformed
harmonic term, since mi1 = 0. This illustrates the well known fact, that n coupled
oscillators can be presented as n − 1 uncoupled ones.

The resulting Hamiltonian Hstage is similar to the one defined in (5), with the
only substitution: UBF

eff → U stage
eff . We would like to stress, that H stage generates a

different dynamics, that samples the configuration space more effectively, although
yields the same result.

As we already mentioned, the forces, ∂φ/∂uij can also be retrieved in a recurrent
manner:

∂φ

∂ui1
=

n
∑

j=1

∂φ

∂xij

,

∂φ

∂uij

=
∂φ

∂xij

+
j − 2

j − 1

∂φ

∂uij−1
.

(9)

This form is especially convenient, since the bead forces ∂φ/∂xij can be computed
directly, given the form of the potential, without any additional effort.

The next target is the prefactor of the Fourier quadratic term. Consider a
variable transform:

ãijk ≡ kπ√
2

aijk . (10)
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Then, the BF trajectory representation (4) changes as:

rij (ξ) = rij + (rij+1 − rij) ξ +

kmax
∑

k=1

√
2

kπ
ãijk sin(kπξ) . (11)

In the matter of fact, nothing except re-denotation has been done. Gathering all
together, for the partition function we get:

Z(β) ≈
∫

exp
[

−βHBF ({uij , ãijk})
]

N
∏

i=1

n
∏

j=1

(

duij

kmax
∏

k=1

dãijk

)

. (12)

We used proportionality sign instead of equality, since the normalizing term was
omitted. The Hamiltonian HBF is defined in (5), with UBF

eff :

UBF
eff ({uij , ãijk}) =

N
∑

i=1

n
∑

j=1

ω2
n

2

(

miju
2
ij + m

kmax
∑

k=1

ã2
ijk

)

+
1

n
φ ({uij({rij}), ãijk}) .

(13)
The system moves in the phase space, according to the Hamiltonian equations

of motion, with the generalized coordinates1) uij , aijk and conjugated momenta
pij , pijk . Again, the BFPIMD derived from Eqs. (12) and (13) is not the same
as the one derived from Eqs. (1) and (2), though it yields the same result. Beads’
coordinates and Fourier amplitudes should now oscillate on the similar time scales.

2.2 General formalism for system of N identical particles

Now, let us proceed with BFPIMD for identical particles. Previously, PIMD ap-
proach for identical particles was considered by Miura and Okazaki [18] for the pure
bead case. We shall develop the BF scheme following their ideas. PIMD [18] is
based on the (anti)symmetric propagator approach of Takahashi and Imada [19].
The difference with the “permutational sampling” used by Vorontsov–Velyaminov
et al. [8] is in the order of operations, namely, the Trotter expansion and sum-
ming over permutations. Although, the result doesn’t depend on their order, the
microscopic picture is clearly different.

The partition function for fermionic systems reads:

Z ≈ 1

(N !)n

∫

dτ

n
∏

j=1

det Aj × exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

. (14)

We used proportionality sign, since we omitted the normalizing term in Eq. (14).
The denotation dτ is introduced for compactness of formulas, being:

dτ ≡
N
∏

i=1

n
∏

j=1

(

dr
(i)
j

kmax
∏

k=1

daijk

)

. (15)

1) From here and further tildes upon Fourier amplitudes are omitted
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Note, that in the case of bosons determinant should be substituted by permanent.
The Fourier amplitudes’ quadratic terms are collected outside the determinant,
since each column contains the same set of them. Matrix Aj is N × N matrix,
whose matrix elements are defined as:

A
(il)
j ≡ exp

[

−βmω2
n

2

(

r
(i)
j − r

(l)
j+1

)2

− β

n

∫ 1

0

dξV
[

r
(il)
j (ξ)

]

]

, (16)

where r
(il)
j (ξ) is the part of the trajectory, linking bead j of trajectory i with bead

j + 1 of trajectory l:

r
(il)
j (ξ) = r

(i)
j +

(

r
(l)
j+1 − r

(i)
j

)

ξ +

kmax
∑

k=1

aijk sin(kπξ). (17)

Note, that in contrary to the pure bead case, the potential energy term enters
the determinant. Since the determinant can be negative, the following trick [19] is
used. Consider an observable, represented by the operator Ô with the corresponding

estimator εO

(

{r(i)
j (ξ)}

)

. Then the canonical average of the observable Ô:

〈Ô〉 =

∫

dτ
n
∏

j=1

det Aj × εO

(

{r(i)
j (ξ)}

)

exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

∫

dτ
n
∏

j=1

det Aj exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

=

∫

dτ
n
∏

j=1

∣

∣det Aj

∣

∣ sgn(det Aj) × εO

(

{r(i)
j (ξ)}

)

exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

∫

dτ
n
∏

j=1

∣

∣det Aj

∣

∣ sgn(det Aj) exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

=

〈

εO

(

{r(i)
j (ξ)}

)

sgn(det Aj)
〉

||

〈sgn(det Aj)〉||
,

(18)
where 〈. . . 〉|| means averaging with respect to artificial probability distribution:

n
∏

j=1

∣

∣det Aj

∣

∣ × exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

, (19)

sgn being the sign function. In other words, we perform a simulation according
to always positive artificial probability distribution (19) (which is the modulus
of the original distribution) and recover true thermodynamic averages from this
“unphysical” MD trajectory. Note, that the origin of the sign problem is clearly
pointed out in Eq. (18). When the exchange effect is strong, all permutations have
approximately the same probabilities, tending the average sign to zero. Thus, we
have a very small number in the denominator, resulting in a dramatic uncertainty
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growth. In an attempt to write down the partition function in a more convenient
form, the effective potential Weff is introduced, defined as:

Weff ≡ mω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk − 1

β

n
∑

j=1

ln
∣

∣det Aj

∣

∣ (20)

resulting in the following expression for the partition function:

Z ≈
∫

dτ exp
[

−βWeff

(

{r(i)
j }

)]

. (21)

Thus, Weff is the effective potential indeed. Note a very important property of the
effective potential (20):

∣

∣det Aj

∣

∣ → 0 ⇒ Weff → +∞ . (22)

It means, that there exists an infinite energy barrier, at “nodal surfaces” defined
as det Aj = 0. Since molecular dynamics is continuous, it would not be able to
cross the barrier under any circumstances. Note, that this feature does not depend
on the scheme used, i.e., it exists in both BF scheme and the one of Miura and
Okazaki [18]. Thus, the approach described above is, in fact, similar to restricted
path integral approach of Ceperley [20], which applicability is doubtful, since it
gives an incorrect result, e.g., for the ideal Fermi gas [21]. Miura and Okazaki
have tested their approach for the fermionic case, only on a system, consisting
of three particles in a one-dimensional harmonic well. The remarkable feature of
antisymmetric propagator approach, applied to one-dimensional systems is, that
sign is always positive. Hence, they were not able to notice the failure of the
approach.

Below we suggest a recipe to overcome the problem of the infinite energy barrier.
Let us start from Eq. (14). Again, consider an observable, represented by the

operator Ô with the corresponding estimator εO

(

{r(i)
j }

)

. But, instead of splitting

of the determinant into a product of its modulus and sign we perform another trick:
we multiply and divide it on

√

(det Aj)2 + δ, where δ is a positive number. Then,

the canonical average of the observable Ô becomes:

〈Ô〉 =

∫

dτ
n
∏

j=1

det Aj

√

(det Aj)2 + δ
√

(det Aj)2 + δ
exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

εO

(

{r(i)
j }

)

∫

dτ
n
∏

j=1

det Aj

√

(det Aj)2 + δ
√

(det Aj)2 + δ
exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

=

〈

εO

(

{r(i)
j }

) det Aj
√

(det Aj)2 + δ

〉

f
〈

det Aj
√

(det Aj)2 + δ

〉

f

, (23)
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where 〈. . . 〉f means averaging with respect to artificial probability distribution f :

f ≡
n

∏

j=1

√

(det Aj)2 + δ × exp

[

−βmω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk

]

. (24)

Again, we introduce the effective potential Weff :

Weff ≡ mω2
n

2

N
∑

i=1

n
∑

j=1

kmax
∑

k=1

(kπ)2

2
a2

ijk − 1

β

n
∑

j=1

ln
√

(det Aj)2 + δ . (25)

When δ > 0 the effective potential2) reaches only a finite maximum at nodal sur-
face. Thus, the problem of infinite potential barrier disappears. The height of the
finite energy barrier at nodal surface is determined by the particular value of the
parameter δ. Again, we perform a simulation according to always positive artificial
probability distribution f (24) and recover true thermodynamic averages according
to (23). The expression for the partition function coincides with Eq. (21).

Note, that
√

(det Aj)2 + δ is not the only function class, that solves the problem.
For instance, (det Aj)

2 + δ would manage, as well. We choose it to be the square
root, because:

det Aj
√

(det Aj)2 + δ
→ sgn(det Aj) , | det Aj | � δ . (26)

Note, that if we set δ = 0 the approach becomes identical to the original one of
Miura and Okazaki [18]. The expression for the partition function coincides with
Eq. (21) with the effective potential Weff determined by (25).

As we discussed in the previous subsection, one desires to have all dynamical
variables to move on the similar time scales. It was found possible to reformulate
the formalism for identical particles achieving this goal. Let us investigate the
structure of the determinant det Aj for the case of free particle:

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp

[

− 1
2 βmω2

n

(

r
(1)
j − r

(1)
j+1

)2
]

. . . exp

[

− 1
2 βmω2

n

(

r
(1)
j − r

(N)
j+1

)2
]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

exp

[

− 1
2 βmω2

n

(

r
(N)
j − r

(1)
j+1

)2
]

. . . exp

[

− 1
2 βmω2

n

(

r
(N)
j − r

(N)
j+1

)2
]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(27)
We suggest to decompose quadratic expressions under exponents. Matrix elements
of Aj :

A
(il)
j = exp

[

−βmω2
n

2

(

(r
(i)
j )2 − 2r

(i)
j · r(l)

j+1 + (r
(l)
j+1)

2
)

]

. (28)

The exponent in the right hand side of Eq. (28) can be split into product of
three exponents. Note now, that all exponents in the first column contain the

2) Strictly speaking, not the effective potential itself, but its second term in (25).
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term: exp
[

− 1
2 βmω2

n(r
(1)
j+1)

2
]

, while all exponents in the first row contain the term:

exp
[

− 1
2 βmω2

n(r
(1)
j )2

]

. The generalization of the latter statement is obvious. Row

or column with number i contains the Gaussian with (r
(i)
j )2 or (r

(i)
j+1)

2, correspond-
ingly. Thus, using the well known property of the determinants, that multiplication
of a determinant by a factor is equivalent to multiplication of any its row/column
by the same factor, one gets:

n
∏

j=1

det Aj = exp

[

−βmω2
n

N
∑

i=1

n
∑

j=1

(

r
(i)
j

)2
]

×
n

∏

j=1

det Bj , (29)

where Bj is N × N matrix, whose matrix elements are:

B
(il)
j = exp

[

−βmω2
nr

(i)
j · r(l)

j+1

]

. (30)

In the general case, the matrix elements would contain the potential energy terms,
as in Eq. (16):

B
(il)
j = exp

[

−βmω2
nr

(i)
j · r(l)

j+1 −
β

n

∫ 1

0

dξV
[

r
(il)
j (ξ)

]

]

. (31)

The effective potential Weff reads:

Weff = mω2
n

N
∑

i=1

n
∑

j=1

[

(

r
(i)
j

)2

+

kmax
∑

k=1

(kπ)2

4
a2

ijk

]

− 1

β

n
∑

j=1

ln
√

(det Bj)2 + 1 . (32)

One sees, that the first term is the sum of uncoupled oscillators with twice bigger
masses3) than the particles’ mass. The last step is to perform the transform of
Fourier amplitudes, analogously to (10):

ãijk ≡ kπ

2
aijk (33)

resulting in the new expression for the trajectory description:

r
(il)
j (ξ) = r

(i)
j +

(

r
(l)
j+1 − r

(i)
j

)

ξ +

kmax
∑

k=1

2

kπ
ãijk sin(kπξ) . (34)

Finally, the expression for the effective potential in new variables:

Weff =
m̃ω2

n

2

N
∑

i=1

n
∑

j=1

[

(

r
(i)
j

)2

+

kmax
∑

k=1

ã2
ijk

]

− 1

β

n
∑

j=1

ln
√

(det Bj)2 + 1 . (35)

The similarity of the obtained formula with the staging one (13) is clear.
Miura and Okazaki also tried to achieve the dynamics of the similar time scales

using the other reformulation of the method (see [18] for details). It seems im-
portant to mention, that in contrary to their approach, we did not choose any
“privileged” permutation.

3) This can be considered as frequencies being greater by the factor
√

2), but we prefer to treat
it as the mass increase.
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3 Organising molecular dynamics

In the previous section, we developed two variants of BFPIMD, namely, the
staging variant of BFPIMD, for distinguishable particles, and the version for iden-
tical particles. Both were designed in order to have all MD variables to move on
the similar time scales.

As it was already mentioned, one of the benefits of staging approach is, that
knowledge of forces in terms of Cartesian coordinates is enough for organising
the staging MD. Moreover, since the staging transform (6) as well as the inverse
transform can be carried out by simple recurrent relations, the estimators can also
be computed in Cartesian coordinates. The derivation of Cartesian forces was
discussed in details in [12].

As it was also pointed out in [12], softening the Coulomb potential in the close
vicinity of the nucleus is a necessary, but tricky task. The correction potential,
invented in [12]:

V corr(r) = − 1

β
ln

[

ρex(r)

ρ(r)

]

, (36)

was used for staging MD. It leads only to appearance of additional force in Cartesian
coordinates, which was used to compute forces, acting on the staging beads in the
standard manner (9).

In the case of identical particles, the formalism, providing the efficient4) MD,
follows naturally from the original formulation of the antisymmetric propagator
approach in the BF case, by some reorganisation of formulas. The expressions for
forces differ only by derivation of the additional potential energy term:

ln
√

(det Bj)2 + δ .

For instance, beads’ forces coming from this term reads:

1

β

n
∑

j=1

det Bj

(det Bj)2 + δ

∂(det Bj)

∂rij

.

Thus, one has to take the derivatives of the determinant, which is definitely, the
bottleneck of the approach. Technically, it can be done using the following expres-
sion [19]:

∂

∂x
det Bj = det Bj · Tr

(

B−1
j

∂

∂x
Bj

)

.

Both inverting matrixes and calculation of the determinants can be done with
the amount of operations required, proportional to N 3. However, the efficacy of
the forces’ calculations is still under consideration. Unfortunately, we don’t know
any fast way to compute permanents, which appear in the case of Bose–Einstein
statistics.

We used time reversible molecular dynamics algorithm [22] with Nosé–Hoover
chains [23] of two thermostats each in all calculations.

4) By “efficient” we mean the MD with all characteristic frequencies of the same order, in other
words, all MD variables moving on the similar time scales.
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Fig. 1. Electron density and pair correlation function for the harmonic helium atom.
Solid lines stay for the analytical solutions, circles – for the simulation results. 1, 2 –
electron density for n = 2, 3; 3, 4 – pair correlation function for n = 2, 3, correspondingly.

4 Results and discussion

Staging BFPIMD algorithm for distinguishable particles was tested for systems
considered in [11,12]. Since, the results of the tests were similar to those, described
in details [11,12] we comment on some of them. In order to test the harmonic type
potentials, we considered “harmonic Helium atom”: two electrons, confined in the
harmonic potential. This system does have analytical solutions for the discrete set
of frequencies (see [12, 24] for details). The results are presented on Fig 1. One
can see, that simulation results demonstrate almost perfect agreement with the
analytical ones.

As for Coulomb systems, it seems instructive to present the results for Helium
ion. In [12] we introduced the function f , which integral was equal to the error
in potential energy, induced by deviations of the electronic density from the exact
one:

f(r) ≡ e2 [ρex(r) − ρ(r)]

4πε0r
, (37)

ρ(r) and ρex(r) are the simulated and exact RDFs, respectively. Functions f(r)
before and after correction are plotted in Fig. 2. Note, that the integral of f(r)
after correction is very small, since positive and negative contributions are nearly
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Fig. 2. Function f(r) for Helium ion defined in (37) before and after correction potential
was applied.

equal. Moreover, even the integral of the absolute value of f(r) is not that big and
is comparable by the order of magnitude with the accuracy of simulations.

The correction force derived from the correction potential (36) according to:

f corr (rij) = −∂V corr (rij)

∂rij

L
∑

l=1

xijl

xijl

(38)

is presented in Fig. 3. Note, that it differs from the one, presented in [12] mainly by
the height of the peak near zero. As it was pointed out in [12] this height strongly
depends on the bins’ size of the electronic density histogram. Here the bins’ size
was bigger than in [12], resulting in a lower peak.

The important feature of staging approach is, that, e.g., for Helium ion and
Hydrogen atom, it allows us to increase the time step at least twice.

The simulations of systems of identical particles are under way and the results
would be presented in the subsequent publication. We are considering BFPIMD
for identical particles as a tool for accurate computation of the electronic structure,
following the ideas of recent work [25], where a way for the simulation of excited
states was demonstrated.

In conclusion, we would like to mention, that the solution of the problem of
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Fig. 3. Correction force defined in (38) for Helium ion.

Coulomb singularity in Monte Carlo methods can be provided by the, so-called,
partial averaging [26, 27], (see, e.g. [28] for details)

5 Conclusion

We developed formalism for two variants of Bead–Fourier path integral molec-
ular dynamics, both providing similar time scales for all dynamical variables. The
first one, based on the staging transformation of beads coordinates, describes dis-
tinguishable particles. The other, derived from the antisymmetric propagator ap-
proach, deals with identical particles.

We have tested the first formalism on the simple systems with analytical so-
lutions known, such as: harmonic Helium atom, Hydrogen atom, Helium ion and
atom, Hydrogen molecule and molecular ion. The approach demonstrated more
stable behaviour of the algorithm, which allowed bigger time steps, than the one,
used before [11, 12].

We have shown, that the approach suggested earlier by Miura and Okazaki [18]
within pure bead molecular dynamics leads to impossibility of the sign changes. A
recipe overcoming the latter problem is suggested. Testing of the BFPIMD variant
for identical particles is a subject for the ongoing research.
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