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1 Introduction

One of the most fascinating and unsolved problems of the theoretical physics
of our century is the cosmological constant. Einstein introduced his cosmological
constant Λc in an attempt to generalize his original field equations. The modified
field equations are

Rµν − 1
2 gµνR + Λcgµν = 8πGTµν , (1)

where Λc is the cosmological constant, G is the gravitational constant and Tµν is
the energy–momentum tensor. By redefining

T tot
µν ≡ Tµν − Λc

8πG
gµν ,

one can regain the original form of the field equations

Rµν − 1
2 gµνR = 8πGT tot

µν = 8πG
(

Tµν + TΛ
µν

)

, (2)

at the prize of introducing a vacuum energy density and vacuum stress–energy
tensor

ρΛ =
Λc

8πG
, TΛ

µν = −ρΛgµν .

Alternatively, Eq. (1) can be cast into the form,

Rµν − 1
2 gµνR + Λeffgµν = 0 ,
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where we have included the contribution of the vacuum energy density in the form
Tµν = −〈ρ〉gµν . In this case Λc can be considered as the bare cosmological constant

Λeff = 8πGρeff = Λc + 8πG〈ρ〉 .

Experimentally, we know that the effective energy density of the universe ρeff is of
the order 10−47 GeV4. A crude estimate of the Zero Point Energy (ZPE) of some
field of mass m with a cutoff at the Planck scale gives

EZPE =
1

2

∫ Λp

0

d3k

(2π)3

√

k2 + m2 ' Λ4
p

16π2
≈ 1071 GeV4 . (3)

This gives a difference of about 118 orders [1]. The approach to quantization of
general relativity based on the following set of equations

[

2κGijklπ
ijπkl −

√
g

2κ
(R − 2Λc)

]

Ψ [gij ] = 0 (4)

and
−2∇iπ

ijΨ [gij ] = 0 , (5)

where R is the three-scalar curvature, Λc is the bare cosmological constant and κ =
8πG, is known as Wheeler–De Witt equation (WDW) [2]. Eqs. (4) and (5) describe
the wave function of the universe. The WDW equation represents invariance under
time reparametrization in an operatorial form, while Eq. (5) represents invariance
under diffeomorphism. Gijkl is the supermetric defined as

Gijkl =
1

2
√

g
(gikgjl + gilgjk − gijgkl) .

Note that the WDW equation can be cast into the form
[

2κGijklπ
ijπkl −

√
g

2κ
R

]

Ψ [gij ] = −
√

g

κ
ΛcΨ [gij ] ,

which formally looks like an eigenvalue equation. In this paper, we would like
to use the Wheeler–De Witt (WDW) equation to estimate 〈ρ〉. In particular,
we will compute the ZPE due to massive and massless gravitons propagating on
the Schwarzschild background. This choice is dictated by considering that the
Schwarzschild solution represents the only non-trivial static spherical symmetric
solution of the Vacuum Einstein equations. Therefore, in this context the ZPE
can be attributed only to quantum fluctuations. The used method will be a vari-
ational approach applied on gaussian wave functional. The rest of the paper is
structured as follows, in section 2, we show how to apply the variational approach
to the Wheeler–De Witt equation and we give some of the basic rules to solve such
an equation approximated to second order in metric perturbation, in section 3, we
analyze the spin-2 operator or the operator acting on transverse traceless tensors,
in section 4 we use the zeta function to regularize the divergences coming from the
evaluation of the ZPE for TT tensors and we write the renormalization group equa-
tion, in section 5 we use the same procedure of section 4, but for massive gravitons.
We summarize and conclude in section 6.

2



Casimir energy, the cosmological constant and massive gravitons

2 The Wheeler−De Witt equation and the cosmological constant

The WDW equation (4), written as an eigenvalue equation, can be cast into the
form

Λ̂ΣΨ [gij ] = −Λ′(x)Ψ [gij ] , (6)

where














Λ̂Σ = 2κGijklπ
ijπkl −

√
g

2κ
R ,

Λ′ =
Λ

κ

√
g .

We, now multiply Eq. (6) by Ψ∗ [gij ] and we functionally integrate over the three
spatial metric gij , then after an integration over the hypersurface Σ, one can for-
mally re-write the WDW equation as

1

V

∫

D [gij ] Ψ
∗ [gij ]

∫

Σ
d3xΛ̂ΣΨ [gij ]

∫

D [gij ] Ψ∗ [gij ]Ψ [gij ]
=

1

V

〈

Ψ
∣

∣

∣

∫

Σ d3xΛ̂Σ

∣

∣

∣
Ψ
〉

〈Ψ|Ψ〉 = Λ′ . (7)

The formal eigenvalue equation is a simple manipulation of Eq. (4). However, we
gain more information if we consider a separation of the spatial part of the metric
into a background term, ḡij , and a perturbation, hij ,

gij = ḡij + hij .

Thus eq. (7) becomes
〈

Ψ
∣

∣

∣

∫

Σ
d3x

[

Λ̂
(0)
Σ + Λ̂

(1)
Σ + Λ̂

(2)
Σ + . . .

]∣

∣

∣
Ψ
〉

〈Ψ|Ψ〉 = Λ′Ψ [gij ] , (8)

where Λ̂
(i)
Σ represents the ith order of perturbation in hij . By observing that the

kinetic part of Λ̂Σ is quadratic in the momenta, we only need to expand the three-
scalar curvature

∫

d3x
√

gR(3) up to quadratic order and we get
∫

Σ

d3x
√

ḡ
[

− 1
4 h4h + 1

4 hli4hli − 1
2 hij∇l∇ih

l
j+

+ 1
2 h∇l∇ih

li − 1
2 hijRiaha

j + 1
2 hRijh

ij + 1
4 h
(

R(0)
)

h
]

,
(9)

where h is the trace of hij and R(0) is the three dimensional scalar curvature. To
explicitly make calculations, we need an orthogonal decomposition for both πij and
hij to disentangle gauge modes from physical deformations. We define the inner
product

〈h, k〉 :=

∫

Σ

√
gGijklhij(x)kkl(x) d3x ,

by means of the inverse WDW metric Gijkl , to have a metric on the space of
deformations, i.e. a quadratic form on the tangent space at hij , with

Gijkl = (gikgjl + gilgjk − 2gijgkl) .
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The inverse metric is defined on cotangent space and it assumes the form

〈p, q〉 :=

∫

Σ

√
gGijklp

ij(x)qkl(x) d3x ,

so that
GijnmGnmkl = 1

2

(

δi
kδj

l + δi
lδ

j
k

)

.

Note that in this scheme the “inverse metric” is actually the WDW metric de-
fined on phase space. The desired decomposition on the tangent space of 3-metric
deformations [3–6] is:

hij = 1
3 hgij + (Lξ)ij + h⊥

ij , (10)

where the operator L maps ξi into symmetric tracefree tensors

(Lξ)ij = ∇iξj + ∇jξi − 2
3 gij (∇ · ξ) . (11)

Thus the inner product between three-geometries becomes

〈h, h〉 :=

∫

Σ

√
gGijklhij(x)hkl(x)d3x =

∫

Σ

√
g
[

− 2
3 h2 + (Lξ)ij(Lξ)ij + hij⊥h⊥

ij

]

.

(12)
With the orthogonal decomposition in hand we can define the trial wave functional
as

Ψ [hij (−→x )] = NΨ
[

h⊥
ij (−→x )

]

Ψ
[

h
‖
ij (−→x )

]

Ψ
[

htrace
ij (−→x )

]

, (13)

where

Ψ
[

h⊥
ij (−→x )

]

= exp
{

− 1
4

〈

hK−1h
〉⊥

x,y

}

,

Ψ
[

h
‖
ij (−→x )

]

= exp
{

− 1
4

〈

(Lξ) K−1 (Lξ)
〉‖

x,y

}

,

Ψ
[

htrace
ij (−→x )

]

= exp
{

− 1
4

〈

hK−1h
〉trace

x,y

}

.

The symbol “⊥” denotes the transverse-traceless tensor (TT) (spin 2) of the pertur-
bation, while the symbol “‖” denotes the longitudinal part (spin 1) of the pertur-
bation. Finally, the symbol “trace” denotes the scalar part of the perturbation. N
is a normalization factor, 〈·, ·〉x,y denotes space integration and K−1 is the inverse
“propagator”. We will fix our attention to the TT tensor sector of the perturbation
representing the graviton. Therefore, representation (13) reduces to

Ψ [hij (−→x )] = N exp

{

−1

4

〈

hK−1h
〉⊥

x,y

}

. (14)

Actually there is no reason to neglect longitudinal perturbations. However, follow-
ing the analysis of Mazur and Mottola of Ref. [5] on the perturbation decomposition,
we can discover that the relevant components can be restricted to the TT modes
and to the trace modes. Moreover, for certain backgrounds TT tensors can be a
source of instability as shown in Refs. [7]. Even the trace part can be regarded as
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a source of instability. Indeed this is usually termed conformal instability. The ap-
pearance of an instability on the TT modes is known as non conformal instability.
This means that does not exist a gauge choice that can eliminate negative modes.
To proceed with Eq. (8), we need to know the action of some basic operators on
Ψ [hij ]. The action of the operator hij on |Ψ〉 = Ψ [hij ] is realized by [8]

hij(x)|Ψ〉 = hij (−→x ) Ψ [hij ] .

The action of the operator πij on |Ψ〉, in general, is

πij(x)|Ψ〉 = −i
δ

δhij (−→x )
Ψ [hij ] ,

while the inner product is defined by the functional integration:

〈Ψ1 | Ψ2〉 =

∫

[Dhij ]Ψ
∗
1 [hij ] Ψ2 [hkl] .

We demand that

1

V

〈

Ψ
∣

∣

∣

∫

Σ
d3xΛ̂Σ

∣

∣

∣
Ψ
〉

〈Ψ|Ψ〉 =
1

V

∫

D [gij ] Ψ
∗ [hij ]

∫

Σ d3xΛ̂ΣΨ [hij ]
∫

D [gij ] Ψ∗ [hij ] Ψ [hij ]
(15)

be stationary against arbitrary variations of Ψ [hij ]. Note that Eq. (15) can be
considered as the variational analog of a Sturm–Liouville problem with the cosmo-
logical constant regarded as the associated eigenvalue. Therefore the solution of

Eq. (7) corresponds to the minimum of Eq. (15). The form of
〈

Ψ
∣

∣

∣
Λ̂Σ

∣

∣

∣
Ψ
〉

can be

computed with the help of the wave functional (14) and with the help of















〈Ψ |hij (−→x )|Ψ〉
〈Ψ|Ψ〉 = 0 ,

〈Ψ |hij (−→x ) hkl (−→y )|Ψ〉
〈Ψ|Ψ〉 = Kijkl (−→x ,−→y ) .

Extracting the TT tensor contribution, we get

Λ̂⊥
Σ =

1

4V

∫

Σ

d3x
√

ḡGijkl

[

2κK−1⊥(x, x)ijkl +
1

2κ
(42)

a
j K⊥(x, x)iakl

]

. (16)

The propagator K⊥(x, x)iakl can be represented as

K⊥ (−→x ,−→y )iakl :=
∑

τ

h
(τ)⊥
ia (−→x ) h

(τ)⊥
kl (−→y )

2λ(τ)
, (17)

where h
(τ)⊥
ia (−→x ) are the eigenfunctions of 42. τ denotes a complete set of indices

and λ(τ) are a set of variational parameters to be determined by the minimization
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of Eq. (16). The expectation value of Λ̂⊥
Σ is easily obtained by inserting the form

of the propagator into Eq. (16)

Λ′ (λi) =
1

4

∑

τ

2
∑

i=1

[

2κλi(τ) +
ω2

i (τ)

2κλi(τ)

]

.

By minimizing with respect to the variational function λi(τ), we obtain the total
one loop energy density for TT tensors

Λ (λi) = −κ

4

∑

τ

[

√

ω2
1(τ) +

√

ω2
2(τ)

]

. (18)

The above expression makes sense only for ω2
i (τ) > 0.

3 The transverse traceless (TT) spin 2 operator for the Schwarzschild
metric and the W.K.B. approximation

The spin-two operator for the Schwarzschild metric is defined by

(

42h
TT
)j

i
:= −

(

4T hTT
)j

i
+ 2

(

RhTT
)j

i
, (19)

where the transverse-traceless (TT) tensor for the quantum fluctuation is obtained
by the following decomposition

hj
i = hj

i − 1
3 δj

i h + 1
3 δj

i h =
(

hT
)j

i
+ 1

3 δj
i h .

This implies that
(

hT
)j

i
δi
j = 0. The transversality condition is applied on

(

hT
)j

i

and becomes ∇j

(

hT
)j

i
= 0. Thus

−
(

4T hTT
)j

i
= −4S

(

hTT
)j

i
+

6

r2

(

1 − 2MG

r

)

, (20)

where 4S is the scalar curved Laplacian, whose form is

4S =

(

1 − 2MG

r

)

d2

dr2
+

(

2r − 3MG

r2

)

d

dr
− L2

r2
(21)

and Ra
j is the mixed Ricci tensor whose components are:

Ra
i =

{

−2MG

r3
,
MG

r3
,
MG

r3

}

,

This implies that the scalar curvature is traceless. We are therefore led to study
the following eigenvalue equation

(

42h
TT
)j

i
= ω2hi

j , (22)
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where ω2 is the eigenvalue of the corresponding equation. In doing so, we follow
Regge and Wheeler in analyzing the equation as modes of definite frequency, an-
gular momentum and parity [9]. In particular, our choice for the three-dimensional
gravitational perturbation is represented by its even-parity form

(heven)
i
j (r, ϑ, φ) = diag [H(r), K(r), L(r)] Ylm(ϑ, φ) , (23)

with










H(r) = h1
1(r) − 1

3 h(r) ,

K(r) = h2
2(r) − 1

3 h(r) ,

L(r) = h3
3(r) − 1

3 h(r) .

From the transversality condition we obtain h2
2(r) = h3

3(r). Then K(r) = L(r). For
a generic value of the angular momentum L, representation (23) joined to Eq. (20)
lead to the following system of PDE’s















(

−4S +
6

r2

(

1 − 2MG

r

)

− 4MG

r3

)

H(r) = ω2
1,lH(r)

(

−4S +
6

r2

(

1 − 2MG

r

)

+
2MG

r3

)

K(r) = ω2
2,lK(r) .

(24)

Defining reduced fields

H(r) =
f1(r)

r
K(r) =

f2(r)

r

and passing to the proper geodesic distance from the throat of the bridge

dx = ± dr
√

1 − 2MG
r

, (25)

the system (24) becomes














[

− d2

dx2
+ V1(r)

]

f1(x) = ω2
1,lf1(x) ,

[

− d2

dx2
+ V2(r)

]

f2(x) = ω2
2,lf2(x)

(26)

with














V1(r) =
l(l + 1)

r2
+ U1(r) ,

V2(r) =
l(l + 1)

r2
+ U2(r) ,

where we have defined r ≡ r(x) and














U1(r) =

[

6

r2

(

1 − 2MG

r

)

− 3MG

r3

]

,

U2(r) =

[

6

r2

(

1 − 2MG

r

)

+
3MG

r3

]

.
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Note that










U1(r) ≥ 0 , when r ≥ 5
2 MG ,

U1(r) < 0 when 2MG ≤ r < 5
2 MG ,

U2(r) > 0 ∀ r ∈ [2MG, +∞) .

(27)

The functions U1(r) and U2(r) play the rôle of two r-dependent effective masses
m2

1(r) and m2
2(r), respectively. In order to use the WKB approximation, we define

two r-dependent radial wave numbers k1 (r, l, ω1,nl) and k2 (r, l, ω2,nl)















k2
1 (r, l, ω1,nl) = ω2

1,nl −
l(l + 1)

r2
− m2

1(r) ,

k2
2 (r, l, ω2,nl) = ω2

2,nl −
l(l + 1)

r2
− m2

2(r)

(28)

for r ≥ 5
2 MG. When 2MG ≤ r < 5

2 MG, k2
1 (r, l, ω1,nl) becomes

k2
1 (r, l, ω1,nl) = ω2

1,nl −
l(l + 1)

r2
+ m2

1(r) . (29)

4 One loop energy regularization and renormalization

In this section, we proceed to evaluate Eq. (18). The method is equivalent to
the scattering phase shift method and to the same method used to compute the
entropy in the brick wall model. We begin by counting the number of modes with
frequency less than ωi, i = 1, 2. This is given approximately by

g̃ (ωi) =
∑

l

νi (l, ωi) (2l + 1) , (30)

where νi (l, ωi), i = 1, 2 is the number of nodes in the mode with (l, ωi), such that
(

r ≡ r(x)
)

νi (l, ωi) =
1

2π

∫ +∞

−∞

dx
√

k2
i (r, l, ωi) . (31)

Here it is understood that the integration with respect to x and l is taken over
those values which satisfy k2

i (r, l, ωi) ≥ 0, i = 1, 2. With the help of Eqs. (30, 31),
we obtain the one loop total energy for TT tensors

1

8π

2
∑

i=1

∫ +∞

−∞

dx

[
∫ +∞

0

ωi
dg̃(ωi)

dωi
dωi

]

.

By extracting the energy density contributing to the cosmological constant, we get

Λ = Λ1 + Λ2 = ρ1 + ρ2 =

= − κ

16π2

∫ +∞

0

ω2
1

√

ω2
1 − m2

1(r) dω1 −
κ

16π2

∫ +∞

0

ω2
2

√

ω2
2 − m2

2(r) dω2 ,
(32)

8



Casimir energy, the cosmological constant and massive gravitons

where we have included an additional 4π coming from the angular integration. We
use the zeta function regularization method to compute the energy densities ρ1 and
ρ2. Note that this procedure is completely equivalent to the subtraction procedure
of the Casimir energy computation where the zero point energy (ZPE) in different
backgrounds with the same asymptotic properties is involved. To this purpose, we
introduce the additional mass parameter µ in order to restore the correct dimension
for the regularized quantities. Such an arbitrary mass scale emerges unavoidably
in any regularization scheme. Then we have

ρi(ε) =
1

16π2
µ2ε

∫ +∞

0

dωi
ω2

i

(ω2
i − m2

i (r))
ε−1/2

. (33)

The integration has to be meant in the range where ω2
i − m2

i (r) ≥ 01). One gets

ρi(ε) = κ
m2

i (r)

256π2

[

1

ε
+ ln

(

µ2

m2
i (r)

)

+ 2 ln 2 − 1

2

]

, (34)

i = 1, 2. In order to renormalize the divergent ZPE, we write

Λ = 8πG
(

ρ1(ε) + ρ2(ε) + ρ1(µ) + ρ2(µ)
)

,

where we have separated the divergent part from the finite part. To handle with
the divergent energy density we extract the divergent part of Λ, in the limit ε → 0
and we set

Λdiv =
G

32πε

(

m4
1(r) + m4

2(r)
)

.

Thus, the renormalization is performed via the absorption of the divergent part
into the re-definition of the bare classical constant Λ

Λ → Λ0 + Λdiv .

The remaining finite value for the cosmological constant reads

Λ0

8πG
=

1

256π2

{

m4
1(r)

[

ln

(

µ2

|m2
1(r)|

)

+ 2 ln 2 − 1

2

]

+

+m4
2(r)

[

ln

(

µ2

m2
2(r)

)

+ 2 ln 2 − 1

2

]}

=
(

ρ1(µ) + ρ2(µ)
)

= ρTT
eff (µ, r) .

(35)

The quantity in Eq. (35) depends on the arbitrary mass scale µ. It is appropriate
to use the renormalization group equation to eliminate such a dependence. To this
aim, we impose that [10]

1

8πG
µ

∂ΛTT
0 (µ)

∂µ
= µ

d

dµ
ρTT
eff (µ, r) . (36)

1) Details of the calculation can be found in the Appendix.
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Solving it we find that the renormalized constant Λ0 should be treated as a running
one in the sense that it varies provided that the scale µ is changing

Λ0(µ, r) = Λ0(µ0, r) +
G

16π

(

m4
1(r) + m4

2(r)
)

ln
µ

µ0
. (37)

Substituting Eq. (37) into Eq. (35) we find

Λ0(µ0, r)

8πG
= − 1

256π2

{

m4
1(r)

[

ln

(

∣

∣m2
1(r)

∣

∣

µ2
0

)

− 2 ln 2 +
1

2

]

+

+m4
2(r)

[

ln

(

m2
2(r)

µ2
0

)

− 2 ln 2 +
1

2

]}

.

(38)

In order to fix the dependence of Λ on r and M , we find the minimum of Λ0(µ0, r).
To this aim, last equation can be cast into the form2)

Λ0(µ0, r)

8πG
= − µ4

0

256π2

{

x2(r)

[

ln

( |x(r)|
4

)

+
1

2

]

+ y2(r)

[

ln

(

y(r)

4

)

+
1

2

]}

, (39)

where x(r) = ±m2
1(r)/µ2

0 and y(r) = m2
2(r)/µ2

0. Now we find the extrema of
Λ0 (µ0; x(r), y(r)) in the range 5

2 MG ≤ r and we get

{

x(r) = 0 ,
y(r) = 0 ,

(40)

which is never satisfied and
{

x(r) = 4/e ,

y(r) = 4/e ,
=⇒

{

m2
1(r) = 4µ2

0/e ,

m2
2(r) = 4µ2

0/e ,
(41)

which implies M = 0 and r̄ =
√

3e/2µ0. On the other hand, in the range 2MG ≤
r < 5

2 MG, we get again
{

x(r) = 0 ,
y(r) = 0 ,

which has no solution and
{

−m2
1(r) = 4µ2

0/e ,

m2
2(r) = 4µ2

0/e ,
(42)

which implies
{

M̄ = 4µ2
0r̄

3/3eG, ,

r̄ =
√

6e/4µ0 .
(43)

2) Recall Eqs. (28,29), showing a change of sign in m
2

1
(r). Even if this is not the most appropriate

notation to indicate a change of sign in a quantity looking like a “square effective mass”, this
reveals useful in the zeta function regularization and in the search for extrema.

10
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Eq. (39) evaluated on the minimum, now becomes

Λ0

(

M̄, r̄
)

=
µ4

0G

2e2π
, . (44)

It is interesting to note that thanks to the renormalization group equation (36),
we can directly compute Λ0 at the scale µ0 and only with the help of Eq. (37), we
have access at the scale µ.

5 One loop energy regularization and renormalization for massive
gravitons

The question of massive gravitons is quite delicate. A tentative to introduce a
mass in the general framework has been done by Boulware and Deser [11], with
the conclusion that the theory is unstable and produces ghosts. However, at the
linearized level the Pauli–Fierz term [12]

SP.F. =
m2

g

8κ

∫

d4x
√−g

[

hµνhµν − h2
]

, (45)

does not introduce ghosts. mg is the graviton mass. Following Rubakov [13], the
Pauli–Fierz term can be rewritten in such a way to explicitly violate Lorentz sym-
metry, but to preserve the three-dimensional Euclidean symmetry. In Minkowski
space it takes the form

Sm = − 1

8κ

∫

M

d4x
√−g

[

m2
0h

00h00 + 2m2
1h

0ih0i − m2
2h

ijhij+

+m2
3h

iihjj − 2m2
4h

00hii

]

.

(46)

A comparison between the massive action (46) and the Pauli–Fierz term shows that
they can be set equal if we make the following choice3)

m2
0 = 0 , m2

1 = m2
2 = m2

3 = m2
4 = m2 > 0 .

If we fix the attention on the case

m2
0 = m2

1 = m2
3 = m2

4 = 0 , m2
2 = m2 > 0 , (47)

we can see that the trace part disappears and we get

Sm =
m2

g

8κ

∫

d4x
√

−ĝ
[

hijhij

]

.

The corresponding term in the linearized hamiltonian will be simply

Hm = −
m2

g

8κ

∫

d3xN
√

ĝ
[

hijhij

]

.

3) See also Dubovski [14] for a detailed discussion about the different choices of m1, m2, m3

and m4

11
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This means that Eq. (19), will be modified into

(

42h
TT
)j

i
:= −

(

4T hTT
)j

i
+ 2

(

RhTT
)j

i
+
(

m2
gh

TT
)j

i
, (48)

Therefore, the square effective mass will be modified by adding the term m2
g . Note

that, while m2
2(r) is constant in sign, m2

1(r) is not. Indeed, for the critical value
r̄ = 5MG/2, m2

1(r̄) = m2
g and in the range (2MG, 5MG/2) for some values of

m2
g , m2

1(r̄) can be negative. It is interesting therefore concentrate in this range.
To further proceed, we observe that m2

1(r) and m2
2(r) can be recast into a more

suggestive and useful form, namely

{

m2
1(r) = m2

g + U1(r) = m2
g + m2

1(r, M) − m2
2(r, M) ,

m2
2(r) = m2

g + U2(r) = m2
g + m2

1(r, M) + m2
2(r, M) ,

where m2
1(r, M) → 0 when r → ∞ or r → 2MG and m2

2(r, M) = 3MG/r3.
Nevertheless, in the above mentioned range m2

1(r, M) is negligible when compared
with m2

2(r, M). So, in a first approximation we can write

{

m2
1(r) ' m2

g − m2
2(r0, M) = m2

g − m2
0(M) ,

m2
2(r) ' m2

g + m2
2(r0, M) = m2

g + m2
0(M) ,

where we have defined a parameter r0 > 2MG and m2
0(M) = 3MG/r3

0. The main
reason for introducing a new parameter resides in the fluctuation of the horizon
that forbids any kind of approach. Of course the quantum fluctuation must obey
the uncertainty relations. Thus, the analogue of Eq. (38) for massive gravitons
becomes

Λ0(µ0, r)

8πG
= − 1

256π2

{

(

m2
g − m2

0(M)
)2

[

ln

(
∣

∣m2
g − m2

0(M)
∣

∣

µ2
0

)

− 2 ln 2 +
1

2

]

+

+
(

m2
g + m2

0(M)
)2

[

ln

(

m2
g + m2

0(M)

µ2
0

)

− 2 ln 2 +
1

2

]}

. (49)

We can now discuss three cases:

1. m2
g � m2

0(M),

2. m2
g = m2

0(M),

3. m2
g � m2

0(M).

12
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In case 1), we can rearrange Eq. (49) to obtain

Λ0(µ0, r)

8πG
= − 1

256π2

{

2
(

m4
g + m4

0(M)
)

[

ln

(

m2
g

4µ2
0

)

+
1

2

]

+

+ +
(

m4
g + m4

0(M)
)

[

ln

(

1 − m2
0(M)

m2
g

)

+ ln

(

1 +
m2

0(M

m2
g

)]

+

+2m2
gm

2
0(M)

[

ln

(

1 +
m2

0(M)

m2
g

)

− ln

(

1 − m2
0(M)

m2
g

)]}

'

' − m4
g

256π2

[

2 ln

(

m2
g

4µ2
0

)

+ 1 + 3

(

m2
0(M)

m2
g

)2
]

.

The last term can be rearranged to give

− m4
g

128π2

[

ln

(

m2
g

4µ2
M

)

+
1

2

]

,

where we have introduced an intermediate scale defined by

µ2
M = µ2

0 exp

(

−3m4
0(M)

2m4
g

)

. (50)

With the help of Eq. (50), the computation of the minimum of ΛTT
0 is more simple.

Indeed, if

x =
m2

g

4µ2
M

,

Λ0 becomes

Λ0,M (µ0, x) = −Gµ4
M

π
x2

[

ln x +
1

2

]

. (51)

As a function of x, Λ0,M (µ0, x) vanishes for x = 0 and x = e−1/2 and when
x ∈

[

0, exp
(

− 1
2

)]

, ΛTT
0,M (µ0, x) ≥ 0. It has a maximum for

x̄ =
1

e
⇐⇒ m2

g =
4µ2

M

e
=

4µ2
0

e
exp

(

−3m4
0(M)

2m4
g

)

and its value is

Λ0,M (µ0, x̄) =
Gµ4

M

2πe2
=

Gµ4
0

2πe2
exp

(

−3m4
0(M)

m4
g

)

or

Λ0,M (µ0, x̄) =
G

32π
m4

g exp

(

3m4
0(M)

m4
g

)

.

13



Remo Garattini

In case 2), Eq. (49) becomes

Λ0(µ0, r)

8πG
' Λ0(µ0)

8πG
= − m4

g

128π2

[

ln

(

m2
g

4µ2
0

)

+
1

2

]

or
Λ0(µ0)

8πG
= −m4

0(M)

128π2

[

ln

(

m2
0(M)

4µ2
0

)

+
1

2

]

.

Again we define a dimensionless variable

x =
m2

g

4µ2
0

and we get
Λ0,0(µ0, x)

8πG
= −Gµ4

0

π
x2

[

ln x +
1

2

]

. (52)

The formal expression of Eq. (52) is very close to Eq. (51) and indeed the extrema
are in the same position of the scale variable x, even if the meaning of the scale
is here different. Λ0,0(µ0, x) vanishes for x = 0 and x = 4e−1/2. In this range,
ΛTT

0,0 (µ0, x) ≥ 0 and it has a minimum located in

x̄ =
1

e
=⇒ m2

g =
4µ2

0

e
(53)

and

Λ0,0(µ0, x̄) =
Gµ4

0

2πe2

or

Λ0,0(µ0, x̄) =
G

32π
m4

g =
G

32π
m4

0(M) .

Finally the case 3 ) leads to

Λ0(µ0, r)

8πG
' −m4

0(M)

256π2



2 ln

(

m2
0(M)

4µ2
0

)

+ 1 + 3

(

m2
g

m2
0(M)

)2


 .

The last term can be rearranged to give

−m4
0(M)

128π2

[

ln

(

m2
0(M)

4µ2
m

)

+
1

2

]

,

where we have introduced another intermediate scale

µ2
m = µ2

0 exp

(

− 3m4
g

2m4
0(M)

)

.
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By repeating the same procedure of previous cases, we define

x =
m2

0(M)

4µ2
m

and we get

Λ0,m(µ0, x) = −Gµ4
m

π
x2

[

ln x +
1

2

]

. (54)

Also this case has a maximum for

x̄ =
1

e
=⇒ m2

0(M) =
4µ2

m

e
=

4µ2
0

e
exp

(

− 3m4
g

2m4
0(M)

)

.

and

Λ0,m(µ0, x̄) =
Gµ4

m

2πe2
=

Gµ4
0

2πe2
exp

(

− 3m4
g

m4
0(M)

)

or

Λ0,M (µ0, x̄) =
G

32π
m4

0(M) exp

(

3m4
g

m4
0(M)

)

.

Remark. Note that in any case, the maximum of Λ corresponds to the minimum
of the energy density.

6 Summary and conclusions

In this paper, we have considered how to extract information on the cosmolog-
ical constant using the Wheeler–De Witt equation when the graviton is massless
and massive. In particular, by means of a variational approach and a orthogonal
decomposition of the modes, we have studied the contribution of the transverse-
traceless tensors in a Schwarzschild background. The use of the zeta function and
a renormalization group equation have led to three different cases:











m2
g � m2

0(M)

m2
g = m2

0(M)

m2
g � m2

0(M)

=⇒















Λ0,M (µ0, x̄) = Gµ4
0/
(

2πe2
)

exp
(

−3m4
0(M)/m4

g

)

Λ0,0(µ0, x̄) = Gµ4
0/
(

2πe2
)

Λ0,m(µ0, x̄) = Gµ4
0/
(

2πe2
)

exp
(

−3m4
g/m4

0(M)
)

As we can see, the case “extreme”, where the graviton mass is completely screened
by the curvature “mass” seems to have the biggest value. We recall that the high-
est is the value of Λ0 , the lowest is the value of the energy density. However,
the expression of the extreme case coincides with the mass-less graviton discussed
in section 4. In that paper, it is the curvature “mass” which plays the rôle of
the mass of the graviton and contributes to the cosmological constant. So it ap-
pears that the gravitational field in the background of the Schwarzschild metric
generates a “mass” term, because of the curvature and this term disappears when
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the Schwarzschild mass goes to zero. This leads to the conclusion that fluctuations
around Minkowski space do not create a cosmological constant in absence of matter
fields. Nevertheless, this behavior works if we accept that near the throat, vacuum
fluctuations come into play forbidding to reach the throat itself. If this is not the
case and the throat can be reached, then the curvature “mass” becomes completely
non-perturbative when the Schwarzschild mass M → 0. If we choose to fix the
renormalization point µ0 = mp, we obtain approximately Λ⊥

0 (M̄, r̄) ' 1037 GeV2

which, in terms of energy density is in agreement with the estimate of Eq. (3). Once
fixed the scale µ0, we can see what happens at the cosmological constant at the scale
µ, by means of Eq. (37). What we see is that the cosmological constant is vanishing
at the sub-planckian scale µ = mpe

−1/4, but unfortunately is a scale which is very
far from the nowadays observations. Note that, because of the condition (53), the
graviton mass becomes proportional to the “Planck mass”, which is of the order
1016 GeV, while the upper bound in eV is of the order 10−24 – 10−29 eV [15]. A
quite curious thing comes on the estimate on the “square graviton mass”, which in
this context is closely related to the cosmological constant. Indeed, from Eq. (53)
applied on the square mass, we get

m2
g ∝ µ2

0 ' 1032 GeV2 = 1050 eV2 ,

while the experimental upper bound is of the order

(

m2
g

)

exp
∝ 10−48 − 10−58 eV2 ,

which gives a difference of about 1098 – 10108 orders. This discrepancy strongly re-
call the difference of the cosmological constant estimated at the Planck scale with
that measured in the space where we live. However, the analysis is not complete.
Indeed, we have studied the spectrum in a W.K.B. approximation with the follow-
ing condition k2

i (r, l, ωi) ≥ 0, i = 1, 2. Thus to complete the analysis, we need
to consider the possible existence of nonconformal unstable modes, like the ones
discovered in Refs. [7]. If such an instability appears, this does not mean that we
have to reject the solution. In fact in Ref. [16], we have shown how to cure such
a problem. In that context, a model of “space-time foam” has been introduced in
a large N wormhole approach reproducing a correct decreasing of the cosmological
constant and simultaneously a stabilization of the system under examination. Un-
fortunately in that approach a renormalization scheme was missing and a W.K.B.
approximation on the wave function has been used to recover a Schrödinger-like
equation. The possible next step is to repeat the scheme we have adopted here in
a large N context, to recover the correct vanishing behavior of the cosmological
constant.
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A The zeta function regularization

In this appendix, we report details on computation leading to expression (33).
We begin with the following integral

ρ(ε) =



















I+ = µ2ε

∫ +∞

0

dω
ω2

(ω2 + m2(r))
ε−1/2

,

I− = µ2ε

∫ +∞

0

dω
ω2

(ω2 − m2(r))

ε−1/2

,

(55)

with m2(r) > 0.

A.1 I+ computation

If we define t = ω/
√

m2(r), the integral I+ in Eq. (55) becomes

ρ(ε) = µ2εm4−2ε(r)

∫ +∞

0

dt
t2

(t2 + 1)ε−1/2
=

1

2
µ2εm4−2ε(r)B

(

3

2
, ε − 2

)

,

1

2
µ2εm4−2ε(r)

Γ
(

3
2

)

Γ(ε − 2)

Γ
(

ε − 1
2

) =

√
π

4
m4(r)

(

µ2

m2(r)

)ε
Γ(ε − 2)

Γ
(

ε − 1
2

) ,

where we have used the following identities involving the beta function

B(x, y) = 2

∫ +∞

0

dt
t2x−1

(t2 + 1)
x+y , Re x > 0 , Re y > 0

related to the gamma function by means of

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
.

Taking into account the following relations for the Γ-function

Γ(ε − 2) =
Γ(1 + ε)

ε(ε − 1)(ε − 2)
,

Γ(ε − 1
2 ) =

Γ(ε + 1
2 )

ε − 1
2

(56)

and the expansion for small ε

Γ(1 + ε) = 1 − γε + O
(

ε2
)

,

Γ(ε + 1
2 ) = Γ( 1

2 ) − εΓ( 1
2 )(γ + 2 ln 2) + O

(

ε2
)

,

xε = 1 + ε lnx + O
(

ε2
)

,

where γ is the Euler’s constant, we find

ρ(ε) = −m4(r)

16

[

1

ε
+ ln

(

µ2

m2(r)

)

+ 2 ln 2 − 1

2

]

.
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A.2 I
−

computation

If we define t = ω/
√

m2(r), the integral I− in Eq. (55) becomes

ρ(ε) = µ2εm4−2ε(r)

∫ +∞

0

dt
t2

(t2 − 1)
ε−1/2

=
1

2
µ2εm4−2ε(r)B

(

ε − 2,
3

2
− ε

)

,

1

2
µ2εm4−2ε(r)

Γ( 3
2 − ε)Γ(ε − 2)

Γ(− 1
2 )

= − 1

4
√

π
m4(r)

(

µ2

m2(r)

)ε

Γ

(

3

2
− ε

)

Γ(ε − 2),

where we have used the following identity involving the beta function

1

p
B

(

1 − ν − µ

p
, ν

)

=

∫ +∞

1

dt tµ−1 (tp − 1)
ν−1

p > 0 , Re ν > 0 , Reµ < p − p Re ν

and the reflection formula

Γ(z)Γ(1 − z) = −zΓ(−z)Γ(z) .

From the first of Eqs. (56) and from the expansion for small ε

Γ( 3
2 − ε) = Γ( 3

2 )
(

1 − ε(−γ − 2 ln 2 + 2)
)

+ O
(

ε2
)

xε = 1 + ε lnx + O
(

ε2
)

,

we find

ρ(ε) = −m4(r)

16

[

1

ε
+ ln

(

µ2

m2(r)

)

+ 2 ln 2 − 1

2

]

.
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