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Recently N. Kumano-go succeeded in proving that piecewise linear time slicing appro-
ximation to Feynman path integral with integrand F (γ) actually converges to the limit
as the mesh of division of time goes to 0 if the functional F (γ) of paths γ belongs to a
certain class of functionals with polynomial growth at the infinity. Moreover, he rigorously
showed that the limit, which we call the Feynman path integral, has rich properties.

The aim of this note is to explain that the use of piecewise classical paths naturally
leads us to an analytic formula for the second term of the semi-classical asymptotic ex-
pansion of the Feynman path integrals under a little stronger assumptions than that in
Kumano-go’s. If F (γ) ≡ 1, this second term coincides with the one given by G.D. Birkhoff.
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1 Introduction

A path γ is a continuous or sufficiently smooth map from the time interval [s, s′]
to the configuration space Rd. The action S(γ) of a path γ is the integral

S(γ) =

∫ s′

s

L

(

t,
d

dt
γ(t), γ(t)

)

dt (1.1)

along γ of the Lagrangian

L(t, ẋ, x) = 1
2 |ẋ|

2 − V (t, x) ,

with the potential V (t, x). We assume V (t, x) is a function continuous with respect
to the variables (t, x) ∈ R×Rd and infinitely differentiable with respect to x ∈ Rd.

In this note we discuss Feynman path integral
∫

Ω

eiνS(γ)F (γ)D[γ] , (1.2)
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where ν = 2π/h with Planck constant h.
We assume in this note that the potential satisfies the following assumption:

For any non-negative integer m there exists a non-negative constant vm such that

max
|α|=m

(

sup
(t,x)∈[0,T ]×Rd

|∂α
x V (t, x)|

)

≤ vm(1 + |x|)max {2−m,0} . (1.3)

This assumption is close to that of Pauli in [3]. Let [s, s′] be an interval of time. A
path γ is classical if it is a solution to the Euler equation

d2

dt2
γ(t) + (∇V )

(

t, γ(t)
)

= 0 for s < t < s′ . (1.4)

Here and hereafter ∇ stands for the nabla operator in the configuration space Rd.
For arbitrary pair of points x, y ∈ Rd there exists one and only one classical path
γ that satisfies the boundary condition

γ(s) = y , γ(s′) = x , (1.5)

if |s′ − s| ≤ µ with sufficiently small µ, say for instance

µ2dv2 < 1 . (1.6)

In this case the action S(γ) of γ is a function of (s′, s, x, y) and is denoted by
S(s′, s, x, y), i.e.,

S(s′, s, x, y) =

∫ s′

s

L

(

t,
d

dt
γ(t), γ(t)

)

dt . (1.7)

Since it was shown by [2] (see also [14]) that Feynman’s path integral is not
a measure theoretic integral, we must give meaning to the integral (1.2). Among
several ways to give meaning to the Feynman path integrals (1.2) we adopt here
the time slicing approximation method, which Feynman himself used in [4]. We
recall this method. Let

∆ : 0 = T0 < T1 < · · · < TJ < TJ+1 = T (1.8)

be a division of the interval [0, T ]. Then we set tj = Tj −Tj−1 and define the mesh
|∆| of the division ∆ by |∆| = maxj{tj}. We always assume that

|∆| ≤ µ . (1.9)

Let
xj ∈ Rd , j = 0, 1, . . . , J, J + 1 , (1.10)

be arbitrary J+2 points of the configuration space Rd. The piecewise classical path
γ∆ with vertices (xJ+1, xJ , . . . , x1, x0) ∈ Rd(J+2) is the broken path that satisfies
the Euler equation

d2

dt2
γ∆(t) + (∇V )

(

t, γ∆(t)
)

= 0 , (1.11)
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for Tj−1 < t < Tj , j = 1, 2, . . . , J, J + 1, and boundary conditions

γ∆(Tj) = xj , j = 0, 1, . . . , J, J + 1 , (1.12)

where x = xJ+1 and y = x0. When we wish to emphasize the fact that this path
γ∆ depends on (xJ+1, xJ , . . . , x1, x0), we denote it by γ∆(xJ+1, xJ , . . . , x1, x0) or
γ∆(t; xJ+1, xJ , . . . , x1, x0), where t is the time variable.

Let F (γ) be a functional defined for paths γ. Its value F (γ∆) at γ∆ can be
written as a function F∆(xJ+1, xJ , . . . , x1, x0) of (xJ+1, xJ , . . . , x1, x0). For exam-
ple the action functional S(γ∆) of γ∆ is given by

S∆(xJ+1, xJ , . . . , x1, x0) = S(γ∆) =

∫ T

0

L

(

t,
d

dt
γ∆(t), γ∆(t)

)

dt =

=

J+1
∑

j=1

Sj(xj , xj−1) ,

(1.13)

where we used the abbreviation

Sj(xj , xj−1) = S(Tj , Tj−1, xj , xj−1) =

∫ Tj

Tj−1

L

(

t,
d

dt
γ∆(t), γ∆(t)

)

dt . (1.14)

A piecewise classical time slicing approximation to Feynman path integral (1.2)
with the integrand F (γ) is an oscillatory integral

I [F∆](∆; x, y) =

J+1
∏

j=1

(

ν

2πitj

)d/2 ∫

RdJ

eiνS(γ∆)F (γ∆)

J
∏

j=1

dxj = (1.15)

=

J+1
∏

j=1

(

ν

2πitj

)d/2 ∫

RdJ

eiνS∆(xJ+1,xJ ,...,x1,x0)F∆(xJ+1, xJ , . . . , x1, x0)

J
∏

j=1

dxj ,

where xJ+1 = x and x0 = y. See Feynman [4].
Feynman’s definition of path integral (1.2) is

∫

Ω

eiνS(γ)F (γ)D[γ] = lim
|∆|→0

I [F∆](∆; x, y) , (1.16)

if the limit on the right hand side exists.
We remark that Feynman [4] used also piecewise linear paths in place of piece-

wise classical paths. In that case we say piecewise linear time slicing approximation
method.

Existence of the limit in (1.16) was proved in the case F ≡ 1 by [5–7, 17].
Recently N.Kumano-go [16] proved the limit in (1.16) exists in the case of more
general class of functional F using piecewise linear paths in place of piecewise
classical paths.
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2 Results

We assume that the potential satisfies the assumption (1.3) and µ satisfies (1.6).
Let ∆ be as (1.8) and (1.9). Then the set Γ(∆) of all piecewise classical paths
associated with the division ∆ forms a differentiable manifold of dimension d(J+2).
The correspondence γ∆ → (xJ+1, . . . , x0) is a global coordinate system. We will
describe a basis of the tangent space Tγ∆

Γ(∆) to Γ(∆) at γ∆. Let {ek}
d
k=1 be an

orthonormal frame of the configuration space Rd, i.e., xj =
∑d

k=1 xj,kek in our
notation (1.10). Let ηj;k(t) = ∂xj,k

γ∆(t). Then the functions {ηj;k}0≤j≤J+1 1≤k≤d

form a basis of the tangent space Tγ∆
Γ(∆). If j = 1, . . . , J , then for t ≤ Tj−1 or

Tj+1 ≤ t,

ηj;k(t) = 0 , (2.1)

and for Tj−1 < t < Tj or Tj < t < Tj+1 it satisfies Jacobi equation at γ∆

d2

dt2
ηj;k(t) + ∇∇V

(

t, γ∆(t)
)

ηj;k(t) = 0 , (2.2)

and at t = Tj it satisfies the boundary condition:

ηj;k(Tj) = ek . (2.3)

If j = 0, η0;k(t) = 0 for T1 ≤ t, (2.2) is satisfied for 0 < t < T1 and (2.3) is satisfied
at t = T0. If j = J +1, ηJ+1;k(t) = 0 for t ≤ TJ , (2.2) is satisfied for TJ < t < TJ+1

and (2.3) is satisfied at t = TJ+1.

For a pair of divisions ∆′ and ∆ we use symbol ∆ ≺ ∆′ if ∆′ is a refinement
of ∆. If ∆ ≺ ∆′, then there is a natural inclusion Γ(∆) ⊂ Γ(∆′). This inclusion
induces inclusion relation of the tangent spaces at γ∆, i.e., Tγ∆

Γ(∆) ⊂ Tγ∆
Γ(∆′).

The set Γ of all piecewise classical paths is the inductive limit of {Γ(∆),≺}, i.e.,
Γ = lim

→
Γ(∆). Γ is a dense subset of the Sobolev space H1([0, T ];Rd) of order

1 with values in Rd and hence it is also dense in the space C([0, T ];Rd) of all
continuous paths. Let γ∆ ∈ Γ(∆). Then the tangent space Tγ∆

Γ to Γ at γ∆ is the
inductive limit lim

→
Tγ∆

Γ(∆), which is a dense linear subspace of the Sobolev space

H1([0, T ];Rd).

Let F (γ) be a functional defined on Γ. We denote its differential at γ ∈ Γ
by DFγ if it exists. And DFγ [ζ] stands for its value at the tangent vector ζ ∈
TγΓ. For any integer n > 0 and for ζj ∈ TγΓ, j = 1, 2, . . . , n, we denote by
DnFγ [ζ1 ⊗ ζ2 ⊗ . . .⊗ ζn], the symmetric n-linear form on the tangent space arising
from the n-th jet modulo (n − 1)-th jet of F at γ.

We assume always in this paper that the functional F (γ) satisfies both of the
following conditions.

Assumption 1 Let m ≥ 0. For any non-negative integer K there exist positive
constants AK and XK such that for any division ∆ of the form (1.8) and any
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integer nj , 0 ≤ j ≤ J + 1, with 0 ≤ nj ≤ K

∣

∣

∣
DΣJ+1

j=0
nj Fγ∆

[

⊗J+1
j=0 ⊗

nj

k=1 ζj,k

]

∣

∣

∣
≤

≤ AKXJ+2
K

(

1 + ‖γ∆‖ + ‖|γ∆‖|
)m

J+1
∏

j=0

nj
∏

k=1

‖ζj,k‖ ,
(2.4)

as far as ζj,k ∈ Tγ∆
Γ satisfies

supp ζj,k ⊂











[0, T1] , if j = 0 ,

[Tj−1, Tj+1] , if 1 ≤ j ≤ J ,

[TJ , TJ+1] , if j = J + 1 ,

(2.5)

where ‖ζ‖ = max
0≤t≤T

|ζ(t)| and ‖|γ∆‖| = total variation of γ∆.

Assumption 2 [10,16]. There exists a positive bounded Borel measure ρ on [0, T ]
such that with the same AK , XK as above

∣

∣

∣
D1+ΣJ+1

j=0
nj Fγ∆

[

η ⊗⊗J+1
j=0 ⊗

nj

k=0 ζj,k

]

∣

∣

∣
≤

≤ AKXJ+2
K

(

1 + ‖γ∆‖ + ‖|γ∆‖|
)m

∫

[0,T ]

|η(t)|ρ(dt)

J+1
∏

j=0

nj
∏

k=0

‖ζj,k‖
(2.6)

for any division ∆, integer nj ≤ K and ζj,k which are the same as in Assumption
1. And η is also an arbitrary element of Tγ∆

Γ.

We can prove the following

Theorem 1 Assume that the integrand F (γ) satisfies Assumption 1 and Assump-
tion 2 above and T is so small that |T | ≤ µ. Then the limit of the right hand side
of (1.16) converges compact-uniformly with respect to (x, y) ∈ R2d.

We shall make more precise statement. We fix (x, y). We assume that |T | ≤ µ.
Then the action S(γ) has the unique critical point γ∗, which is the unique classical
path starting y at time 0 and reaching x at time T . The critical point is non-
degenerate. Similarly, if T ≤ µ the function S∆(xJ+1, xJ , . . . , x1, x0) of (xJ , . . . , x1)
has only one critical point, which is non-degenerate. So we can apply stationary
phase method to (1.15) and obtain the following expression:

I [F∆](∆; x, y) =
( ν

2πiT

)d/2

D(∆; x, y)−1/2eiνS(γ∗)
(

F (γ∗) + ν−1R∆[F∆](ν, x, y)
)

.

(2.7)
Here we used the following symbol

D(∆; x, y) =

(

tJ+1tJ . . . t1
T

)d

det HessS(γ∆) , (2.8)
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where Hess S(γ∆) denotes the Hessian of S(γ∆) with respect to (xJ , xJ−1, . . . , x1).
It is shown in [8] and [16] that for any non-negative integer K there exist a positive
constant CK and a positive integer M(K) independent of ν and of ∆ such that

∣

∣∂α
x ∂β

y R∆[F∆](ν, x, y)
∣

∣ ≤ CKAM(K)T
(

T + ρ([0, T ])
)

bigl(1 + |x| + |y|
)m

, (2.9)

as far as |α|, |β| ≤ K. The function D(∆; x, y) is of the form (cf. [7])

D(∆; x, y) = 1 + T 2d(∆; x, y) . (2.10)

For any multi-indices α, β there exists a positive constant Cα,β such that

∣

∣∂α
x ∂β

y d(∆; x, y)
∣

∣ ≤ Cα,β . (2.11)

We also know (cf. [7]) that D(T, x, y) = lim|∆|→0 D(∆; x, y) exists. Moreover, for
any multi-indices α, β there exits a non-negative constant Cα,β such that

∣

∣ ∂α
x ∂β

y (D(T, x, y) − D(∆; x, y))
∣

∣ ≤ Cα,β |∆|T . (2.12)

D(T, x, y) is of the form

D(T, x, y) = 1 + T 2d(T, x, y) , (2.13)

where d(T, x, y) satisfies the same estimate as (2.11).
The estimate (2.12) was proved earlier in [7]. The function T−nD(T, x, y) is the

Morette–VanVleck determinant (cf. [7]).

Theorem 2 Under the Assumptions 1 and 2 we can write the limit lim
|∆|→0

I [F∆](∆; x, y)

in the following way:

∫

Ω

eiνS(γ)F (γ)D[γ] = lim
|∆|→0

I [F∆](∆; x, y) =

=
( ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)
(

F (γ∗) + ν−1R[F ](ν, x, y)
)

.

(2.14)

Moreover, for any non-negative integer K there exist positive constant CK and a
non-negative integer M(K) independent of ν and of ∆ such that

∣

∣ ∂α
x ∂β

y (R[F ](ν, x, y) − R∆[F∆](ν, x, y))
∣

∣ ≤ (2.15)

≤ CKAM(K)|∆|
(

ρ([0, T ]) + T 2 + T 3 + T 2ρ([0, T ]) + Tν−1
) (

1 + |x| + |y|
)m

.

as far as |α| ≤ K and |β| ≤ K.

Corollary 1 For any non-negative integer K there exist a positive constant CK

and a non-negative integer M(K) independent of ν such that

∣

∣ ∂α
x ∂β

y R[F ](ν, x, y)
∣

∣ ≤ CKAM(K)T
(

T + ρ([0, T ])
)(

1 + |x| + |y|
)m

. (2.16)
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It is expected that the following semi-classical asymptotic expansion holds;
∫

Ω

eiνS(γ)F (γ)D[γ] = (2.17)

=
( ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)
(

A0 + ν−1A1 + O(ν−2)
)

,

as ν → ∞.
Theorem 2 implies A0 = F (γ∗). What is the next term A1?
In the case F (γ) ≡ 1 assuming the existence of expansion, Birkhoff gave answer

[1]. In fact, he gave even higher order terms of asymptotic expansion. However, if
F (γ) 6= constant, then his method is not available.

We write down the second term A1 of (2.17) for general F (γ) and prove that
the asymptotic expression is actually holds. For this purpose we shall make a
preparation of notations. Let ε be an arbitrary small positive number. And ∆(t, ε)
be the division

∆(t, ε) : 0 = T0 < t < t + ε < T . (2.18)

Let z be an arbitrary point in Rd. We abbreviate the piecewise classical path
γ∆(t,ε)

(

s, x, γ∗(t + ε), z, y
)

associated with the division ∆(t, ε) by γ{t,ε}(s, z), i.e.,
γ{t,ε}(s, z) is the piecewise classical path which satisfies conditions:

γ{t,ε}(0, z) = y , γ{t,ε}(t, z) = z , γ{t,ε}(t + ε, z) = γ∗(t + ε) , γ{t,ε}(T, z) = x .
(2.19)

It is clear that γ{t,ε}(s, z) coincides with γ∗(s) for t + ε ≤ s ≤ T independent of z.
Therefore, ∂zγ{t,ε}(s, z) = 0 for t + ε ≤ s ≤ T .

Lemma 1 Under the Assumptions 1 and 2 there exists the limit

q(t) = lim
ε→+0

[

∆z

(

D(t, z, y)−1/2F
(

γ{t,ε}(∗, z)
)

) ∣

∣

∣

z=γ∗(t)

]

, (2.20)

where ∆z stands for the Laplacian with respect to z.

Theorem 3 In addition to our Assumptions 1 and 2 we further assume that the
function q(t) of Lemma 1 is Riemannian integrable over [0, T ]. Set

A1 =
i

2

∫ T

0

D
(

t, γ∗(t), y
)1/2

q(t) dt . (2.21)

Then, there holds the asymptotic formula, as ν → ∞,
∫

Ω

eiνS(γ)F (γ)D[γ] = (2.22)

=
( ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)
(

A0 + ν−1A1 + ν−2r(ν, x, y)
)

,

where for any α, β the remainder term r(ν, x, y) satisfies estimate
∣

∣ ∂α∂βr(ν, x, y)
∣

∣ ≤ Cα,βT 2
(

1 + |x| + |y|
)m

. (2.23)
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Although our method is completely different from Birkhoff’s method, our for-
mula coincides with Birkhoff’s result in the case of F (γ) ≡ 1.

More detailed discussions are given in our paper [12], which heavily uses the
result of [11].

Remark 1 In this note the Lagrangian has no vector potential. Kitada–Kumano-
go [15], Yajima [18] and Tshuchida–Fujiwara [13] discussed the case of Lagrangian
with non zero vector potential. They proved that the limit (1.16) exists and the limit
is the fundamental solution of Schrödinger equation if F (γ) ≡ 1. However we do
not know whether the limit (1.16) exists or not if F (γ) 6= constant and Lagrangian
has non-zero vector potential.
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