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Deterministic dynamical models are discussed which can be described in quantum
mechanical terms. In particular, a local quantum field theory is presented which is a su-
persymmetric classical model – the Hilbert space approach of Koopman and von Neumann
is used to study the evolution of an ensemble of such classical systems. With the help
of the supersymmetry algebra, the corresponding Liouville operator can be decomposed
into two contributions with positive and negative spectrum, respectively. The unstable
negative part is eliminated by a constraint on physical states, which is invariant under
the Hamiltonian flow. In this way, choosing suitable phase space coordinates, the classical
Liouville equation becomes a functional Schrödinger equation of a genuine quantum field
theory. Quantization here is intimately related to the constraint, which selects the part of
Hilbert space where the Hamilton operator is positive. This is interpreted as dynamical
symmetry breaking in an extended model, introducing a mass scale which discriminates
classical dynamics beneath from emergent quantum mechanical behaviour.
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1 Introduction

The (dis)similarity between the classical Liouville equation and the Schrödinger
equation has recently been discussed anew, considering this an appropriate starting
point for attempts to “derive quantum from classical dynamics”, or for emergent

quantum theory 1) in short [1].
In suitable coordinates both equations appear quite similar, apart from the

characteristic doubling of the classical phase space degrees of freedom as compared
to the usual quantum mechanical case. The Liouville operator is Hermitian in the
operator approach to classical statistical mechanics developed by Koopman and
vonNeumann [3]. However, unlike the case of the quantum mechanical Hamilto-
nian, its spectrum is generally not bounded from below. Therefore, attempts to
find a deterministic foundation of quantum theory – based on a relation between
the Koopman–vonNeumann and quantum mechanical Hilbert spaces and equipped
with the corresponding dynamics – must pay attention especially to the problem
of constructing a stable ground state.

Research in this direction is suggested by earlier work of ’t Hooft, who has
demonstrated several examples of systems which can be faithfully described as
quantum mechanical and yet present deterministic dynamical models.

∗) E-mail: thomas@if.ufrj.br
1) For the meanings, connotations, or semantic field of the adjective “emergent” and noun

“emergence” the reader is referred to Ref. [2], where this is discussed in the context of emergence
of time in quantum gravity.
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It has been argued in favour of such model building that it may lead to a new
approach in trying to understand and possibly resolve the persistent clash between
general relativity and quantum theory, by questioning the fundamental character
of the latter [4]. It is important to contrast this with the currently major activities
seeking a quantum theory of gravity, or space-time quantum mechanics, as exposed
in general terms in (the recently updated version of) a paper by Hartle [5].

Besides, since its very beginnings, there have been speculations about the possi-
bility of deriving quantum theory from more fundamental and deterministic dynam-
ical structures. The discourse running from Einstein, Podolsky and Rosen [6] to Bell
[7], and involving numerous successors, is well known, debating the (im)possibility
of (local) hidden variables theories.

Much of this debate has come under experimental scrutiny in recent years. No
disagreement with quantum theory has been observed in the laboratory experi-
ments on scales very large compared to the Planck scale. However, the feasible
experiments cannot rule out the possibility that quantum mechanics emerges as an
effective theory only on sufficiently large scales and can indeed be based on more
fundamental models.

Indeed, in various examples, the emergence of a Hilbert space structure and
unitary evolution in deterministic classical models has been demonstrated in an
appropriate large-scale limit. However, in all cases, it is not trivial to assure that a
resulting model qualifies as “quantum” by being built on a well-defined groundstate,
i.e., with an energy spectrum that is bounded from below.

A class of particularly simple emergent quantum models comprises systems
which classically evolve in discrete time steps [4, 8] – foremost here is a cellular
automaton consisting of a “particle”, say, which makes one move per unit time
step, always in the same direction, on a periodic one dimensional lattice [4]. As
’t Hooft has shown, using the algebra of SU(2) generators, this deterministic system
can be mapped identically onto a nonlinearly modified quantum oscillator. In the
continuum limit the standard harmonic oscillator is recovered – pointing towards
a more general feature is the finding here that the coordinate eigenstates of the
emergent quantum system are related to superpositions of underlying “primordial”
states, which refer to the position of the classical particle.

Employing the path integral formulation of classical mechanics introduced by
Gozzi and collaborators [9], it has been shown that classical models of Hamiltonian
dynamics similarly turn into unitary quantum mechanical ones, if the corresponding
Liouville operator governing the evolution of phase space densities is discretized
[10]. However, there remains a large arbitrariness in such discretizations, which
one would hope to reduce with the help of consistency or symmetry requirements
of a more physical theory. Models of an intrinsically discrete nature, such as based
on causal sets [11], have not been studied in this respect, yet could be especially
interesting here.

Furthermore, it has been observed that classical systems with Hamiltonians
which are linear in the momenta, can generally be represented in quantum me-
chanical terms. However, a new kind of gauge fixing or constraints implementing
“information loss” at a fundamental level have to be invoked, in order to provide
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a groundstate for such systems [4, 12, 13]. Again, a unifying dynamical principle
leading to the necessary truncation of the Hilbert space is still missing.

Various other arguments for deterministically induced quantum features have
been proposed recently – see works collected in Part III of Ref. [14], for example, or
Refs. [15, 16], concerning statistical and/or dissipative systems, quantum gravity,
and matrix models.

Many of these attempts to base quantum theory on a classical footing, however,
must be seen as variants of earlier stochastic quantization procedures of Nelson [17]
and of Parisi and Wu [18]. Often they are accompanied by the problematic analytic
continuation from imaginary (Euclidean) to real time, in order to describe evolving
systems instead of statistical mechanical ones.

In distinction, one may aim at a truly dynamical understanding of the origin
of quantum phenomena. Here, I present a deterministic field theory, from which
a corresponding quantum theory emerges by constraining the classical dynamics.
This extends an earlier globally supersymmetric (“pseudoclassical”) one dimen-
sional model to field theory [1]. Thus, a functional Schrödinger equation is obtained
with a positive Hamilton operator, which involves the standard scalar boson part
in the noninteracting case.

Key ingredient is a splitting of the phase space evolution operator, i.e. of
the classical Liouville operator, into positive and negative energy contributions.
The latter, which would render the to-be-quantum field theory unstable, are elim-
inated by imposing a “positivity constraint” on the physical states, employing the
Koopman–vonNeumann approach [3]. The splitting of the evolution operator and
subsequent imposition of the constraint makes use of the supersymmetry of the
classical system, which furnishes Noether charge densities which are essential here.
While, technically, this is analogous to the imposition of the “loss of information”
condition in ’t Hooft’s and subsequent work [4, 12, 13], it is hoped that the extension
towards interacting fields opens a way to better understand the dynamical origin
of such a constraint. While a dissipative information loss mechanism is plausible,
a dynamical symmetry breaking may alternatively be considered.

Before reporting more technical aspects of this work, it seems worth while to
once more point out a different perspective concerning the emergence of quantum
mechanics from more fundamental and possibly classical physics.

It is the subject matter of textbooks on quantum theory to explain how to

quantize a given classical system. Thus, for example, assuming the action describing
the dynamics of the classical fields incorporated in the standard model of particle
physics, we know, following the rules of imposing commutators or of setting up a
Feynman path integral, etc., how to arrive at its counterpart in terms of quantum
fields. The latter reflects the status of the experimentally acquired knowledge.
However, where do the quantization rules come from? Is this a reasonable question
to ask, or, if not, why so?

Not only do such questions surface time and again since the early days of quan-
tum theory. It should also be not forgotten that quantum theory, as it stands,
is beset with serious problems, other than the lack of compatibility with general
relativity – the infinities of quantum field theory have been accommodated by renor-
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malization. One tends to become accustomed with the procedure to the extent of
not perceiving it as problematic anymore, even if it appears to rule out that its
basic parameters, such as particle masses and charges, can ever be theoretically
determined – the emergence of the classical world of our experience, including ex-
perimentation on quantum systems with classical apparatus, from the quantum
mechanical picture was a problem that has been solved. This is nowadays under-
stood through environment induced decoherence, i.e., as being due to effects caused
by the interaction of quantum mechanical systems with the “rest of the universe”
[19, 20, 21]. However, related is the famous measurement problem which states that
a measurement on a quantum system which leads to a classical apparatus reading
is a process which cannot be described entirely and consistently within quantum
theory itself [16, 22, 23]. Despite numerous attempts, philosophical extensions like
the “Copenhagen interpretation” notwithstanding, this fierce problem has not been
solved. Instead it has given rise to a number of dynamical wave function collapse
or reduction models, however, with no generally accepted completion of quantum
physics in this respect [24, 25] – such considerations clearly provide further moti-
vation to better understand or change the foundations of quantum theory.

The present paper is organized as follows. In Section 2, the (pseudo)classical
field theory is introduced and its equations of motion and global supersymmetry
derived. Section 3 is devoted to the statistical mechanics of an ensemble of such
systems, its Hilbert space description and Liouville equation, in particular. The
Liouville equation is then cast into the form of a functional Schrödinger equation in
Section 4. Also the necessary positivity constraint on physical states is discussed,
constructed, and incorporated there which turns the emergent Hamiltonian into
a positive operator with a proper quantum mechanical groundstate. The locality
– in the sense of microcausality – of the emergent quantum field theory is shown
there. In the concluding Section 5, some interesting topics are mentioned for fur-
ther exploration, or presently under study, especially the relation of the positivity
constraint to symmetry breaking.

2 A supersymmetric classical field theory

The following derivation will make use of “pseudoclassical mechanics” or, rather,
pseudoclassical field theory [1]. These notions have been introduced through the
work of Casalbuoni and of Berezin and Marinov, who considered a Grassmann

variant of classical mechanics, studying the dynamics of spin degrees of freedom
classically and after quantization in the usual way [26].

Classical mechanics based on Grassmann algebras has recently found new atten-
tion in trying to understand the zero dimensional limit of classical and quantized
supersymmetric field theories, see Refs. [27, 28] and further references therein.

Let us introduce a “fermionic” field ψ, together with a real scalar field φ. The
former is represented by the nilpotent generators of an infinite dimensional Grass-
mann algebra. They obey:

{ψ(x), ψ(x′)}+ ≡ ψ(x)ψ(x′) + ψ(x′)ψ(x) = 0 , (1)
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where x, x′ are coordinate labels in Minkowski space. All elements are real.
Then, the classical model to be studied is defined by the action:

S ≡
∫

d4x
(

φ̇ψ̇ − φ
(

− ∆ +m2 + v(φ)
)

ψ
)

≡
∫

dt L , (2)

where dots denote time derivatives, and v(φ) may be a polynomial in φ, for example.
This particular system apparently has not been studied before, which might be

related to the fact that the action is Grassmann odd. However, in line with the
attempt to find a classical foundation of a quantum field theory, no path integral
quantization (or other) of the model is intended, which could be obstructed by a
fermionic action. Nevertheless, it should be remarked that such type of models
have been studied by the Kharkov group [29].

Introducing canonical momenta,

Pφ ≡ δL

δφ̇
= ψ̇ , Pψ ≡ δL

δψ̇
= φ̇ , (3)

as usual, one calculates the Hamiltonian,

H =

∫

d3x
(

Pφφ̇+ Pψψ̇
)

− L =

∫

d3x
(

PφPψ + φKψ
)

, (4)

which turns out to be Grassmann odd as well. Here the first of two useful abbre-

viations has been introduced: K ≡ −∆ +m2 + v(φ), K ′ ≡ K + φ
dv(φ)

dφ
.

Hamilton’s equations of motion for our model follow:

φ̇ =
δH

δPφ
= Pψ , (5)

ψ̇ =
δH

δPψ
= Pφ , (6)

Ṗφ = −δH
δφ

= −K ′ψ , (7)

Ṗψ = −δH
δψ

= −Kφ . (8)

Combining the equations, one obtains:

φ̈ = −Kφ , ψ̈ = −K ′ψ , (9)

i.e. the generally nonlinear field equations with a parametric coupling between the
fields φ and ψ, namely of the former to the latter.

These equations are invariant under the global symmetry transformation,

φ −→ φ+ εψ , (10)
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where ε is an infinitesimal real parameter. Associated is the Noether charge:

C1 ≡
∫

d3xPφψ , (11)

which is a constant of motion. Similarly, a second global symmetry transformation
leaves the system invariant:

ψ −→ ψ + εφ̇ (12)

with associated conserved Noether charge:

C2 ≡
∫

d3x
(

1
2 P

2
ψ + V (φ)

)

, (13)

which is the total energy of the classical scalar field, with
dV (φ)

dφ
≡ Kφ, appropri-

ately taking care of gradient terms by partial integration.
In the following, it will be useful to introduce the Poisson bracket operation

acting on two observables A and B, which generally can be function(al)s of the
phase space variables φ, Pφ, ψ, Pψ:

{A,B} ≡ A

∫

d3x

(
↼

δ

δPφ

⇀

δ

δφ
+

↼

δ

δPψ

⇀

δ

δψ
−

↼

δ

δφ

⇀

δ

δPφ
−

↼

δ

δψ

⇀

δ

δPψ

)

B , (14)

where all functional derivatives refer to the same space-time argument and act
in the indicated direction; for the fermionic variables this direction is meant to
coincide with their left/right-derivative character [27, 29].

Note that {A,B} = −{B,A}, if the derivatives of A and B commute, i.e., if in
each contributing term at least one of the two is Grassmann even. Furthermore,
for any observable A, the usual relation among time derivatives holds:

d

dt
A = {H,A} + ∂tA , (15)

which embodies Hamilton’s equations of motion.
Naturally, the time independent Hamiltonian of Eq. (4) is conserved by the

evolution according to the classical equations of motion.
For the Hamiltonian and Noether charge densities, identified by H ≡

∫

d3xH(x)

and Cj ≡
∫

d3xCj(x)
∣

∣

∣

j=1,2
, respectively, one finds a local (equal-time) supersym-

metry algebra, see the second of Refs. [1]. Of course, for any one of the constants
of motion, A ∈ {H,C1, C2}, one obtains: {H,A} = Ȧ = 0. A Hilbert space version
of the symmetry algebra will be obtained in the following section.

Moreover, there, the present analysis is applied to the corresponding phase space
representation of an ensemble of such systems and developed into an equivalent
Hilbert space picture.
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3 From the field theory in phase space to the Hilbert space picture

A particular example of Eq. (15) is the Liouville equation for a conservative
system, such as the model considered in Section 2. Considering an ensemble of
systems, especially with some distribution over different initial conditions, this
equation governs the evolution of its phase space density ρ:

0 = i
d

dt
ρ = i∂tρ− L̂ρ , (16)

where a convenient factor i has been introduced, and the Liouville operator L̂ is
defined by:

−L̂ρ ≡ i{H, ρ} . (17)

These equations summarize the classical statistical mechanics of a conservative
system, given the Hamiltonian H in terms of the phase space variables.

Next, let us briefly recall the equivalent Hilbert space formulation developed by
Koopman and vonNeumann [3]. It will be modified here in a way appropriate for
the supersymmetric classical field theory in question.

Two postulates are put forth:

(A) the phase space density functional can be factorized in the form ρ ≡ Ψ∗Ψ;

(B) the Grassmann valued and, in general, complex state functional Ψ itself obeys
the Liouville Eq. (16).

Furthermore, the complex valued inner product of such state functionals is defined
by:

〈Ψ|Φ〉 ≡
∫

DφDPψDψDPφ Ψ∗Φ = 〈Φ|Ψ〉∗ , (18)

i.e. by functional integration over all phase space variables (fields). However, due
to the presence of Grassmann valued variables, the ∗-operation which defines the
dual of a state functional needs special attention and will be discussed shortly.

The above definitions make sense for functionals which suitably generalize the
notion of square-integrable functions. In particular, the functional integrals can be
treated rigorously by discretizing the system, properly pairing degrees of freedom.

Given the Hilbert space structure, the Liouville operator of a conservative sys-
tem has to be Hermitian and the overlap 〈Ψ|Ψ〉 is a conserved quantity. Then,
the Liouville equation also applies to ρ = |Ψ|2, due to its linearity, and ρ may
be interpreted as a probability density, as before [3]. Naturally, this is needed for
meaningful phase space expectation values of observables.

Certainly, one is reminded here of the usual quantum mechanical formalism. In
order to expose the striking similarity as well as the remaining crucial difference,
further transformations of the functional Liouville equation are useful [1].

A Fourier transformation replaces the momentum Pψ by a second scalar field
φ̄. Furthermore, define ψ̄ ≡ Pφ. Thus, the Eqs. (16)–(17) yield:

i∂tΨ = ĤΨ , (19)

7



Hans-Thomas Elze

where Ψ is considered as a functional of φ, φ̄, ψ, ψ̄, and with the emergent “Hamil-
ton operator”:

ĤΨ ≡ −i

∫

DPψ exp
(

iPψ · φ̄
)

{H,Ψ} = (20)

=

∫

d3x
(

− δφ̄δφ + φ̄Kφ− i(ψ̄δψ − ψK ′δψ̄)
)

Ψ ≡
∫

d3x Ĥ(x) Ψ , (21)

using the abbreviation f · g ≡
∫

d3x f(x)g(x). Note that the density Ĥ(x) is
Grassmann even.

While the Eq. (19) strongly resembles a functional Schrödinger equation, several
comments must be made here which point out its different character.

First of all, following a linear transformation of the scalar field variables, φ ≡
(σ + κ)/

√
2 and φ̄ ≡ (σ − κ)/

√
2, one finds a “bosonic” kinetic energy term:

−1

2

∫

d3x
(

δ2σ − δ2κ
)

,

which is not bounded from below. Therefore, neglecting the Grassmann variables
momentarily, the remaining Hermitian part of the Hamiltonian lacks a lowest en-
ergy state, which otherwise could qualify as the emergent quantum mechanical
groundstate of the bosonic sector.

Secondly, as could be expected, the fermionic sector reveals a similar problem.
The ∗-operation mentioned before amounts to complex conjugation for a bosonic

state functional, (Ψ[φ̄, φ])∗ ≡ Ψ∗[φ̄, φ], analogously to an ordinary wave function in
quantum mechanics. However, based on complex conjugation alone, the fermionic
part of the Hamiltonian (20) would not be Hermitian.

Instead, a detailed construction of the inner product for functionals of Grass-
mann valued fields has been presented in Ref. [30]; see also further examples in
Refs. [31]. Considering only the noninteracting case with K ′ = K, i.e. with
v(φ) = 0 in Eq. (2), the construction of Floreanini and Jackiw can be directly
applied here. Then, the Hermitian conjugate of ψ is ψ† = δψ and of ψ̄ it is

ψ̄† = δψ̄. Furthermore, rescaling ψ̄ −→ ψ̄
√
K, the fields ψ̄ and ψ obtain the same

dimensionality. Together, this suffices to render Hermitian the fermionic part of
the Hamiltonian (20), which becomes:

Ĥψ̄ψ ≡ i
(

ψ
√
Kδψ̄ − ψ̄

√
Kδψ

)

. (22)

In the presence of interactions, withK ′ 6= K, additional modifications are necessary.
It turns out that the Hilbert space has to be further restricted in the presence of
interactions, which will not be considered here. In any case, although Ĥψ̄ψ must
be (made) Hermitian, its eigenvalues generally will not have a lower bound either.

To summarize, the emergent Hamiltonian Ĥ tends to be unbounded from below,
thus lacking a groundstate. This generic difficulty has been encountered in various
attempts to build deterministic quantum models, i.e. classical models which can

8



A quantum field theory as an emergent description of . . .

simultaneously be seen as quantum mechanical ones [4, 8, 10, 12, 13]. For the
present case, this will be discussed and resolved in Section 4.

To conclude this section, equal-time operator relations for the interacting case
are derived here, which are related to the supersymmetry algebra mentioned in
the previous section [1]. This is achieved by Fourier transformation of appropriate
Poisson brackets, similarly as with the emergent Hamiltonian in Eq. (20) above.

To begin with, the operators corresponding to the Noether densities will be
useful. Using Eq. (11) and ψ̄ ≡ Pφ, as before, one obtains:

Ĉ1(x)Ψ ≡
∫

DPψ exp
(

iPψ · φ̄
)

{C1(x),Ψ} =
(

−ψδφ + iψ̄φ̄
)

(x)
Ψ . (23)

Similarly, one obtains:

Ĉ2(x)Ψ ≡
(

−iδφ̄δψ − φKδψ̄
)

(x)
Ψ , (24)

which is related to Eq. (13).
Both operators are Grassmann odd and obey:

{

Ĉj(x), Ĉj(x′)
}

+
= 0 , (25)

for j = 1, 2. Therefore, they are nilpotent, Ĉ2
j (x) = 0. Furthermore, one finds the

vanishing commutator:
[

Ĥ(x), Ĥ(x′)
]

= 0 , (26)

where [Â, B̂] ≡ ÂB̂−B̂Â. Thus, the emergent theory is local, as expected. However,
this point will be further discussed below, after addressing the groundstate problem.

It should be remarked that in all calculations of (anti)commutation relations
eventually necessary partial integrations, i.e. shifting of gradients, are justified by
smearing with suitable test functions and integrating.

Further relations that correspond to Jacobi identities on the level of the Poisson
brackets are interesting. Generally, one has to be careful about extra signs that
arise due to the Grassmann valued quantities, as compared to more familiar ones
related to real or complex variables [27]. Straightforward calculation gives:

[

Ĥ(x), Ĉj(x′)
]

= 0 for j = 1, 2 , (27)
{

iĈ1(x), Ĉ2(x
′)

}

+
= Ĥ(x)δ3(x− x′) , (28)

where an extra factor i enters, due to the Fourier transformation between phase
space functions before and operators here.

Finally, it is noteworthy that a copy of the above operator algebra arises, if one
performs the replacements ψ ↔ −δψ̄ and ψ̄ ↔ δψ on the operators Ĉj . This yields

the nilpotent operators D̂j , instead of the Ĉj :

iD̂1(x) ≡
(

iδψ̄δφ − δψφ̄
)

(x)
, (29)

D̂2(x) ≡
(

iδφ̄ψ̄ − φKψ
)

(x)
, (30)
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with a convenient overall sign introduced in the latter definition. They fullfill the
same (anti)commutation relations as in Eqs. (25)–(27).

Finally, also the following local operators commute with the Hamiltonian den-
sity:

(

iD̂1Ĉ2 ± iĈ1D̂2

)

= −i
(

δψ̄δψ ∓ ψ̄ψ
) (

−δφ̄δφ + φ̄Kφ
)

, (31)

with [Ĉ1, D̂2] = [D̂1, Ĉ2] = 0. These operators are not nilpotent. Instead, their
square is highly singular.

One may complete these considerations with the full set of operators generating
the ordinary space-time symmetries of our model. However, they do not play a
special role for the considerations of the following section.

4 Groundstate construction for the emergent quantum model

Following Eq. (20), it has been pointed out that the emergent Hamiltonian lacks
a proper groundstate, i.e. its spectrum is not bounded from below. This prohibits
to interpret the model, as it stands, as a quantum mechanical one already, despite
close formal similarities.

In order to overcome this difficulty, the general strategy is to find a positive defi-
nite local operator P̂ that commutes with the Hamiltonian density, [Ĥ(x), P̂ (x′)] =
0. Then, the Hamiltonian can be split into contributions with positive and negative
spectrum:

Ĥ = Ĥ+ − Ĥ− , (32)

where:

Ĥ± ≡
∫

d3xF
(

Ĥ(x) ± P̂ (x)
)

. (33)

Here F can be any even function with the property:

F (a+ b) − F (a− b) = abG(a2, b2) , G > 0 , (34)

for a, b ∈ R.
The simplest example is F (a) ≡ a2, G ≡ 4. With this, the splitting of Ĥ is

explicitly given by:

Ĥ =

∫

d3x

(

(Ĥ + P̂ )2 − (Ĥ − P̂ )2

4P̂

)

, (35)

i.e. Ĥ±(x) = (Ĥ(x)±P̂ (x))2/
(

4P̂ (x)
)

. A quartic polynomial could be used instead,
etc. In the absence of further symmetry requirements, or other, from the model
under consideration, the simplest splitting will do. It will allow us to obtain a
free quantum field theory, in particular, as leading part of the relevant Hamilton
operator.

Here, as in the following, a regularization is necessary, in order to give a meaning
particularly to some of the squared operators that will keep appearing.
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Finally, the spectrum of the Hamiltonian Ĥ is made bounded from below by
imposing the “positivity constraint”:

Ĥ−Ψ = 0 . (36)

This constraint can be enforced as an initial condition, for example, and is preserved
by the evolution, since [Ĥ+(x), Ĥ−(x)] = 0, by construction. In this way, the
physical states of the system are selected which are based on the existence of a
quantum mechanical groundstate.

Such a constraint selecting the physical part of the emergent Hilbert space has
been earlier discussed in the models of Refs. [4, 12, 13]. It has been interpreted by
’t Hooft as “information loss” at the fundamental level where quantum mechanics
may arise from a deterministic theory. However, it seems also quite possible to
relate this to a dynamical symmetry breaking phenomenon instead, cf. Section 5.

4.1 The noninteracting case

For our field theory, the noninteracting and interacting cases have been studied
separately in the second of Refs. [1]. In the following only the noninteracting case
is represented, since one obtains explicit results here.

As mentioned before, with v(φ) = 0 in Eq. (2), and therefore K ′ = K = −∆ +
m2, the rescaling ψ̄ −→ ψ̄

√
K is useful, and one may consider the set of operators:

Ĥ(x) =
(

− δφ̄δφ + φ̄Kφ
)

(x)
+ Ĥψ̄ψ(x) , (37)

iĈ1(x) =
(

−iψδφ − ψ̄
√
Kφ̄

)

(x)
, (38)

Ĉ2(x) =
(

−iδφ̄δψ − φ
√
Kδψ̄

)

(x)
, (39)

with Ĥψ̄ψ from Eq. (22). These operators fulfill the same operator algebra as dis-
cussed in the previous section.

Furthermore, let us consider the Hermitian conjugate operators, in this case
based on ψ† = δψ and ψ̄† = δψ̄ [30]:

(

iĈ1(x)
)†

=
(

−iδψδφ − δψ̄
√
Kφ̄

)

(x)
, (40)

(

Ĉ2(x)
)†

=
(

−iδφ̄ψ − φ
√
Kψ̄

)

(x)
. (41)

They commute with the Hermitian density Ĥ(x), and one finds that

{iĈ1(x), (Ĉ2(x))
†}+ = 0 ,

together with the corresponding adjoint relation.
Then, also the following Hermitian operators commute with the Hamiltonian

density:

Ĉ1+(x) ≡ 1√
2

(

iĈ1(x) +
(

iĈ1(x)
)†

)

=
1√
2

(

−i(δψ + ψ)δφ − (δψ̄ + ψ̄)
√
Kφ̄

)

(x)
, (42)

Ĉ2+(x) ≡ 1√
2

(

Ĉ2(x) +
(

Ĉ2(x)
)†

)

=
1√
2

(

−i(δψ + ψ)δφ̄ − (δψ̄ + ψ̄)
√
Kφ

)

(x)
. (43)
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These operators are interesting, since they present, in some sense, the “square-root

of the harmonic oscillator”:

Ĉ2
1+(x) =

δ3(0)

2

(

−δ 2
φ + φ̄Kφ̄

)

(x)
, (44)

Ĉ 2
2+(x) =

δ3(0)

2

(

−δ 2
φ̄

+ φKφ
)

(x)
, (45)

or, rather, since the sum of the squared operators amounts to the Hamiltonian
density of two free bosonic quantum fields.

It seems natural now to choose the positive definite local operator P̂ of Eq. (35)
as:

P̂ (x) ≡ ξ

δ3(0)

(

Ĉ2
1+(x) + Ĉ2

2+(x)
)

, (46)

where ξ is a dimensionless parameter. This results in the operators of definite sign:

Ĥ±(x) =

(

Ĥ(x) ± P̂ (x)
)2

4P̂ (x)
=

=
ξ

8

(

−δ2φ + φKφ− δ2
φ̄

+ φ̄Kφ̄
)

± 1

2
Ĥ(x) +

Ĥ2(x)

4P̂ (x)
, (47)

cf. Eqs. (32)–(35).
Setting ξ = 2 and performing again the linear transformation φ ≡ (σ + κ)/

√
2

and φ̄ ≡ (σ−κ)/
√

2, previously mentioned after Eqs. (20)–(21), here instead yields
the Hamiltonian density:

Ĥ+(x) =
1

2

(

−δ2σ + σKσ + Ĥψ̄ψ +
Ĥ2

2P̂

)

(x)

, (48)

with Ĥψ̄ψ from Eq. (22), and where, of course, the linear transformation has also

been performed in Ĥ2/P̂ . One observes that the only trace of the previous insta-
bility is now relegated to this last term, which still involves the scalar field κ. The
local interactions present in this term certainly have a nonstandard form. Addi-
tional parameters playing the role of coupling constants could be introduced by a
more complicated splitting of the emergent Hamiltonian, see Eqs. (32)–(35), or a
different choice for the operator P̂ .

However, the Hamilton operator Ĥ+ has a positive spectrum, by construction,
and the leading terms are those of a free bosonic quantum field together with a
fermion doublet in the Schrödinger representation. They dominate at low energy.

Similarly, the constraint operator density becomes:

Ĥ−(x) =
1

2

(

−δ2κ + κKκ− Ĥψ̄ψ +
Ĥ2

2P̂

)

(x)

. (49)

A certain symmetry with Eq. (48) is obvious; note that −Ĥψ̄ψ = Ĥψψ̄ . It suggests
to think of the elimination of part of the Hilbert space, Eq. (36), as a dynamical
symmetry breaking effect, which will be briefly discussed in the concluding section.

12
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4.2 Remarks on locality

Locality related to microcausality is considered an essential property of physical
quantum field theories which respect Lorentz invariance.

By Eq. (26), and with similarly vanishing commutators of other spacelike sepa-
rated observables, the present field theory is local with respect to the larger Hilbert
space of the Koopman and vonNeumann construction (Section 3). However, the
Hilbert space of physical states – i.e. the emergent quantum model based on a
stable groundstate – is obtained only after the projection performed in Section 4.
Therefore, it is pertinent to check that the projection does not interfere with the
locality property. In particular, the inverse of the operator P̂ , which is introduced
in Eq. (35) and also appears in Eqs. (46)–(49), might raise concern.

However, for spacelike separated operators Â(x), B̂(x′) with, for example,
Â, B̂ ∈ {Ĥ, P̂}, one finds:

[

Â(x), B̂(x′)
]

= 0 , (50)

as before. Then, for a positive definite operator P̂ , P̂ (x) > 0, it follows:

P̂ (x)
(

P̂−1(x)Ĥ(x′) − Ĥ(x′)P̂−1(x)
)

P̂ (x) = 0 . (51)

In the absence of a zero-mode of P̂ , this implies:
[

P̂−1(x), Ĥ(x′)
]

= 0 . (52)

This is sufficient to show:
[

Ĥ±(x), Ĥ±(x′)
]

= 0 , (53)

cf. Eqs. (46)–(49), and thus the locality property, considering the example of the
emergent Hamilton operator density Ĥ+. Similarly, one may proceed with other
densities.

A last remark is in order here. The emergent “Hamilton operator”, as first
defined in Eqs. (20)–(21) as well as the Noether densities of Eqs.(23)–(24) all involve
a functional Fourier transform. Therefore, the emergent quantum field theory,
which has just been seen to be local in the usual sense, however, is nonlocal with
respect to the space of fields of the underlying classical system. This is completely
analogous to what has been observed in the case of the cellular automaton models
mentioned in the Introduction [4, 8].

5 Conclusions

Deterministic models which simultaneously and consistently can be described
as quantum mechanical ones challenge the common wisdom about the meaning,
foundations, and limitations of quantum theory. Main aspects of the present work
on such a model taken from field theory can be summarized as follows.

The description of dynamics in phase space and its conversion to an operators-in-
Hilbert-space formalism à la Koopman and vonNeumann [3] yield a wave functional
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equation which is surprisingly similar to the functional Schrödinger equation of
quantum field theory. Thus, the emergent quantum mechanics here is related to
a classical ensemble theory. However, the emergent “Hamilton operator” of this
picture, generically, lacks a groundstate, which corresponds to the spectrum not
being bounded from below. In order to arrive at a proper quantum theory with a
stable groundstate, parts of the Hilbert space have to be removed by a positivity

constraint which is preserved by the Hamiltonian flow.
In the present example, this has been discussed based on simple supersymmetry

properties of the underlying classical model. The important role of “square-root of

the harmonic oscillator” operators in constructing the constraint operator has been
pointed out, and they have been constructed in the limit of classically noninteract-
ing scalar and fermionic fields, the latter being represented by nilpotent Grassmann
valued variables. Several comments on the interacting case have been made before
[1]. These operators seem to be important in emergent quantum models with lead-
ing quadratic kinetic energy terms.

Here I should like to represent a more speculative remark concerning the dynam-
ical origin of the positivity constraint, which has been introduced and interpreted as
a “loss of information” at the fundamental dynamical level earlier [4, 12, 13]. The
latter anticipates a still unknown, possibly dissipative information loss mechanism
in the classical theory beneath, such as due to unavoidable coarse-graining in the
description of some deterministic chaotic dynamics. This would turn the system
under study into an open system.

However, the discussion in Section 4 indicates a complementary point of view.
There is a symmetry between the operators Ĥ+ and Ĥ− which are responsible for
the evolution of the system as well as for the selection of the physical states. In
fact, since the emergent functional wave equation is linear in the time derivative,
positive and negative parts of the spectrum of the emergent Hamiltonian Ĥ, see
Eqs. (20)–(21), can be turned into each other by reversing the direction of time.
Correspondingly, the roles of Ĥ+ and Ĥ− can be exchanged.

This suggests that giving preference to one over the other in determining the
physical states may be a contingent property of the system. It typically occurs in
situations where a symmetry is dynamically broken.

An extension of the present model which schematically incorporates such an
effect might work as follows. Introducing a local “order parameter” Ô, take the
new Hamilton operator density:

Ĥ∗(x) ≡ Ĥ+(x) − Ĥ−(x) tanh Ô(x) , (54)

with [Ĥ±(x), Ô(x′)] = 0 and, for example, Ô ≡ P̂ −M
M or Ô ≡ Ĥ2 −M2

M2
. The

positive operators Ĥ± are as defined in Eqs. (32)–(35), P̂ is positive definite, cf.
Section 4, and M denotes an energy density parameter. All operators involved
here commute and are Hermitian, which presumably would be different for a “loss
of information” mechanism.

Therefore, the eigenstates of Ĥ∗ can be separated into two complementary sets,
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{Ψ+} and {Ψ−}, with Ĥ−Ψ+ = 0 and Ĥ+Ψ− = 0, respectively. Furthermore, they
can be ordered according to the eigenvalues of Ĥ = Ĥ+ − Ĥ− or P̂ .

For large values of the order parameter, at high energy, loosely speaking, the
symmetry is restored and asymptotically Ĥ∗ ≈ Ĥ+ − Ĥ−. In this regime, the
system behaves classically, corresponding to an emergent Hamilton operator with
unbounded spectrum. Here, the role of Ĥ+ and Ĥ− could approximately be inter-
changed by changing the direction of time.

Conversely, for small values of the order parameter, one qualitatively finds Ĥ∗ ≈
Ĥ+ + Ĥ− tanh 1 ≥ 0. This result should be compared with Eqs. (46)–(49), for
example, and particularly with Eq. (48). Here the spectrum of Ĥ∗ is bounded from
below and the system behaves quantum mechanically. The backbending of the
negative branch of the spectrum to positive values has replaced the imposition of
the positivity constraint, Eq. (36).

The precise nature of the transition between classical and quantum regimes,
which is regulated by the parameter M, depends on how and which order parameter
comes into play. Due to its nonlinearity, which introduces higher order functional
derivatives, it modifies the underlying phase space dynamics, see Eqs. (16)–(20).
It will be interesting to further study such corrections, which must contribute as
additional force terms, depending on higher powers of field momentum, for example
to the classical Liouville operator. The resulting equations will be akin to the
Kramers equation and generalizations thereof. It is remarkable that they have
recently found special interest because of a hidden supersymmetry; for example see
Ref. [32] and further references therein.

The symmetry breaking mechanism might be responsible for the emergent quan-
tization more generally and especially in other cases than the (pseudo)classical field
theory presented here. Models that incorporate interacting fermions and gauge
fields are an important topic; an emergent U(1) gauge theory has recently been
studied and will be reported elsewhere. Furthermore, time reparametrization or
general diffeomorphism invariance should naturally be most interesting to study in
a deterministic quantum model.

This work has touched a number of conceptual issues of quantum theory. It is
left for future studies to improve the first attempts at a deterministic framework
and explore its novel consequences. The interpretation of the measurement process
and of the “collapse of the wave function” must figure prominently in this, together
with the “quantum indeterminism” and the wider philosophical implications of the
algorithmic rules comprising quantum theory as a whole [22, 23].
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