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A path integral method was developed according to the usual momentum-wavefunction
relation, it is different from the Feynman’s path integral. In order to investigate its validity
and usefulness, the path integral method was applied to hydrogen atom,the energy levels
were calculated out with the same fine structure as the calculation of the Dirac wave
equation, the electronic spin effect was also calculated out correctly when the hydrogen
atom is put in a magnetic field. The path integral method would be useful for some
physical systems when for which the Dirac equation can not be solved exactly, it was
pointed out that the path integral method is a rapid quantum computation method.
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1 Introduction

Consider a particle of rest mass m and charge q moving in an inertial frame of
reference with the relativistic 4-vector velocity uµ, it satisfies [1]

uµuµ = −c2 , (1)

where there is not distinction between covariant and contravariant components in
the Cartesian coordinate system. Eq. (1) is just the relativistic energy–momentum
relation when multiplying it by squared the mass and the speed of light, i.e.
E2 = p2c2 + m2c4. Let Aµ denote the vector potential of electromagnetic field,
substituting the usual momentum-wavefunction relation

muµ =
1

ψ
(−ih̄∂µ − qAµ)ψ (2)

into Eq.(1), we obtain a new quantum wave equation

[(−ih̄∂µ − qAµ)ψ] · [(−ih̄∂µ − qAµ)ψ] = −m2c2ψ2 , (3)

where the left hand side of the above equation corresponds to the product of momen-
tum and momentum itself, not the product of momentum operator and momentum
operator. Eq. (3) is a nonlinear quantum wave equation, is not the Klein–Gordon
wave equation. In the recent years, the interest in Eq. (3) is increasing, it was
found that by solving Eq. (3) for hydrogen atom, the fine structure of energy can
be calculated correctly, the spin effect of electron can also been revealed by Eq,(3)
in a magnetic field [2, 3, 4], it was also found that the Dirac wave equation and
Klein–Cordon wave equation can be derived out from Eq. (3) when we abandon the
higher order terms or nonlinear terms [5].
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In the present paper, a path integral method based on the momentum-wavefun-
ction relation was developed, it differs from the Feynman’s path integral. The path
integral method was applied to hydrogen atom, the energy levels were calculated
out with the same fine structure and spin effect as the Dirac wave equation. It
was pointed out that the path integral method is a rapid quantum computation
method.

2 Path integral method

Consider Eq. (2), its path integral form is given by

ψ = ei/h̄
∫

(pµ+qAµ)dxµ , (4)

where pµ = muµ is the momentum of the particle, in the Cartesian coordinate
system (x1, x2, x3, x4 = ict), from the Eq. (1), the momentum components satisfy

p2
1 + p2

2 + p2
3 + p2

4 = −m2c2 . (5)

In the following sections, in order to investigate the validity and usefulness of
Eq. (4), we apply the path integral to hydrogen atom. Obviousely, the path in-
tegral Eq.(4) is different from the Feynman’s path integral.

3 The fine structure of hydrogen atom

In the followings, we use Gaussian units, and use me to denote the rest mass of
electron. In a spherical polar coordinate system (r, θ, ϕ, ict), the nucleus of hydrogen

atom provides a spherically symmetric potential V (r) =
e

r
for the electron (q = −e),

the displacement elements and vector potential are given by

dxr = dr ,

dxθ = rdθ ,

dxϕ = r sin θdϕ ,

Ar = Aθ = Aϕ = 0 ,

A4 = iV = i
e

r
.

Then, the wavefunction is given by

ψ = ei/h̄
∫

prdxr ei/h̄
∫

pθdxθ ei/h̄
∫

pϕdxϕ ei/h̄
∫

(p4+qA4/c) dx4 .

For separating the variables so that ψ = R(r)X(θ)φ(ϕ)e−iEt/h̄ for energy eigen-
states, we expect

φ(ϕ) = ei/h̄
∫

pϕdxϕ , (6)

X(θ) = ei/h̄
∫

pθdxθ , (7)
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R(r) = ei/h̄
∫

prdxr , (8)

e−iEt/h̄ = e
i/h̄
∫

t

0
(p4+qA4/c)d4 . (9)

The angular momentum magnitude and its z-axis component magnitude are de-
noted by J and Jz respectively, we have

pϕr sin θ = Jz (const.)
(√

p2
θ + p2

ϕ

)

r = J (const.)

From Eq.(9), we have

p4 =
−E − icqA4/c

ic
=

−E − e2/r

ic

and we have

pr = ±
√

−m2
ec

2 − p2
θ − p2

ϕ − p2
4 =

= ±

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

.

Thus we have

φ(ϕ) = exp

(

i

h̄

∫

pϕdxϕ

)

= C1 exp

(

i

h̄
Jzϕ

)

,

X(θ) = exp

(

i

h̄

∫

pθdxθ

)

= C2 exp

(

± i

h̄

∫ θ

0

√

J2 − J2
z

sin2 θ
dθ

)

,

R(r) = C3 exp



± i

h̄

∫ r

0

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

dr



 ,

where C1, C2 and C3 are integral constants. Since φ(ϕ) and X(θ) must be periodic
functions, and the radical wavefunction R(r) forms a ”standing wave” in the range
from r = 0 to r = ∞, these requirements demand

1

h̄

∫ 2π

0

Jzdϕ = 2πm , (m = 0, ±1 ,±2, . . .) , (10)

1

h̄

∫ 2π

0

√

J2 − J2
z

sin2 θ
dθ = 2πk , (k = 0, 1, 2, . . .) , (11)

1

h̄

∫

∞

0

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

dr = πs , (s = 0, 1, 2, . . .) . (12)

These definite integrals have been evaluated in the Appendix by using the residue
theorem and contour integrations in complex space, to note that the last two in-
tegrands are multiple-valued functions when over their turning points, the results
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are given by
Jz = mh̄ ,

1

h̄

∫ 2π

0

√

J2 − J2
z

sin2 θ
dθ =

2π

h̄
(J − |Jz|) ,

J =
(

k + |m|
)

h̄ = jh̄ ,

1

h̄

∫

∞

0

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

dr =
πEα

√

m2
ec

4 −E2
− π

√

j2 − α2 = πs ,

(13)

where α =
e2

h̄c
is known as the fine structure constant.

Form the last Eq.(13) , we obtain the energy levels given by

E = mec
2

[

1 +
α2

(
√

j2 − α2 + s)2

]

−1/2

, (14)

where j = k + |m|, because of the restriction of j 6= 0 in Eq.(14), we find j =
1, 2, 3, . . .

The result, Eq.(14), is completely the same as the calculation of the Dirac wave
equation[6] for the hydrogen atom, it is just the fine structure of hydrogen

energy.

4 Electronic spin

If we put the hydrogen atom into an external uniform magnetic field B which
is along the z axis with the vector potential (Ar, Aθ, Aϕ) = (0, 0, 1

2 Br sin θ), i.e.
B = Bez , where ez is the unit vector along the z axis. According to Eq. (4), the
energy eigenstates of the hydrogen atom is described by

ψ = R(r)X(θ)φ(ϕ)e−iEt/h̄ ,

φ(ϕ) = exp

(

i

h̄

∫

(

pϕ +
qAϕ

c

)

dxϕ

)

,

X(θ) = exp

(

i

h̄

∫

pθdxθ

)

,

R(r) = exp

(

i

h̄

∫

prdxr

)

,

e−iEt/h̄ = exp

(

i

h̄

∫ t

0

(

p4 +
qA4

c

)

dx4

)

.

The magnitude of the angular momentum is denoted by J and its component along
the z-axis by Jz, then

pϕr sin θ = Jz , (const.) ,

(
√

p2
θ + p2

ϕ)r = J , (const.) ,
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we also have the same expressions as

p4 =
−E − icqA4/c

ic
=

−E − e2/r

ic
,

pr = ±
√

−m2
ec

2 − p2
θ − p2

ϕ − p2
4 = ±

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

,

thus we have

φ(ϕ) = ei/h̄
∫

(pϕ+qAϕ/c)dxϕ =

= exp

(

i

h̄

∫

(

pϕ +
q

2c
r sin θB

)

r sin θ dϕ

)

=

= C1 exp

(

i

h̄

(

Jz − e

2c
r2 sin2 θB

)

ϕ

)

= C1e
imϕ ,

X(θ) = ei/h̄
∫

pθdxθ = C2 exp

(

± i

h̄

∫ θ

0

√

J2 − J2
z

sin2 θ
dθ

)

=

= C2 exp

(

± i

h̄

∫ θ

0

√

J2 − (mh̄+
e

2c
r2 sin2 θB)2 sin−2 θ dθ

)

'

' C2 exp



± i

h̄

∫ θ

0

√

J2 − m2h̄2

sin2 θ
− mh̄er2B

c
dθ



 ,

R(r) = C3 exp

(

± i

h̄

∫ r

0

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

dr

)

,

where C1, C2 and C3 are integral constants, we have neglected O(B2) terms. Since
φ(ϕ) and X(θ) must be periodic functions, and the radical wavefunction R(r) forms
a ”standing wave” in the range from r = 0 to r = ∞, these requirements demand

1

h̄

∫ 2π

0

(Jz − 1
2 er

2 sin2 θB) dϕ = 2πm , (m = 0, ±1, ±2 . . .),

1

h̄

∫ 2π

0

√

J2 − m2h̄2

sin2 θ
− mh̄er2B

c
dθ = 2πk , (k = 0, 1, 2, . . .) ,

1

h̄

∫

∞

0

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

dr = πs , (s = 0, 1, 2, . . .)

These definite integrals have been evaluated in the Appendix, given by

Jz − 1
2 er

2 sin2 θB = mh̄ ,

1

h̄

∫ 2π

0

√

J2 − m2h̄2

sin2 θ
− mh̄er2B

c
dθ = 2π

(

1

h̄

√

J2 − mh̄er2B

c
− |m|

)

,
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we get

J2 − mh̄er2B

c
=
(

k + |m|
)2
h̄2 = j2h̄2 .

We have

1

h̄

∫

∞

0

√

−m2
ec

2 − J2

r2
+

1

c2

(

E +
e2

r

)2

dr =

=
1

h̄

∫

∞

0

√

−m2
ec

2 − 1

r2

(

j2h̄2 +
mh̄er2B

c

)

+
1

c2

(

E +
e2

r

)2

dr =

=
πEα

√

m2
ec

4 +mh̄ecB − E2
− π

√

j2 − α2 = πs

and we obtain the energy levels of hydrogen atom in the magnetic field given by

E =
√

m2
ec

4 +mech̄B

[

1 +
α2

(
√

j2 − α2 + s)2

]

−1/2

. (15)

In the usual spectroscopic notation of quantum mechanics, four quantum num-
bers: n, l, ml and ms are used to specify the state of an electron in an atom. After
the comparison, we get the relations between the usual notation and our notation.

n = j + s, s = 0, 1, . . . , j = 1, 2, . . .

l = j − 1 ,

max(ml) = max(m) − 1 .

We find that j takes over 1, 2, . . . , n; for a fixed j (or l), m takes over −(l +
1), −l, . . . , 0, . . . , l, l + 1. In the present work, spin quantum number is absent.

According to Eq.(15), for a fixed (n, l), equivalent to (n, j = l + 1), the energy
level of hydrogen atom will split into 2l+3 energy levels in the magnetic field, given
by

E =

(

mec
2 +

meh̄B

2mec

)

[

1 +
α2

(
√

j2 − α2 + s)2

]

−1/2

+O(B2) . (16)

Considering m = −(l + 1), −l, . . . , 0, . . . , l, l + 1, this effect is equivalent to the
usual Zeeman splitting in the usual quantum mechanics given by

E = Enl +
(ml ± 1)eh̄B

2mec
.

But our work works on it without spin concept, the so-called spin effect has been
revealed by Eq. (16) without spin concept, this result indicates that electronic spin
is a kind of orbital motion. In Stern-Gerlach experiment, the angular momentum
of ground state of hydrogen atom is presumed to be zero according to the usual
quantum mechanics, thus ones need make use of the spin. But in the present
calculation, the so-called spin has been merged with the orbital motion of the
electron.

Bear in mind that simplicity is always a merit for the physics.
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5 Discussion

1.rapid quantum computation

Since the path integral method for quantum mechanics needs not to evaluate
quantum wave equation (2 order or nonlinear ones), in addition, the wavefunction
of the path integral is single component wavfunction, the path integral method
definitely is a rapid quantum computation method. This path integral method
provides a great prospects for computer computation in some research fields such
as Xα, ab-initio, LMTO, DV, etc.

The path integral method developed in the present paper differs essentially from
the Feynman’s path integral.

2. the explanation of the wavefunction

The wavefunction ψ we employed in the calculation for hydrogen atom differs
from the wave function in the usual quantum mechanics, because it is found that
the wavefunction ψ keeps |ψ| = 1 everywhere in the hydrogen atom. But this kind
of wavefunction can interference with each other, for the detail discussions consult
the papers[9, 7].

6 Conclusion

Using equation

µµ + qAµ)ψ = −ih̄∂µψ

and its integral solution

ψ = exp

(

i

h̄

∫

(pµ + qAµ) dxµ

)

a path integral method for calculating quantum states of particle was developed,
differing from the Feynman’s path integral. The path integral method is directly
applied to hydrogen atom, the energy levels are calculated out with the same fine
structure and spin effect as the Dirac wave equation. The approach has a important
advantage : it is a rapid computation method comparing to traditional quantum
mechanics.

The present calculation is characterized by using the usual momentum-wave-
function relation directly, it provides an insight into the foundations of quantum
mechanics.

A Appendix: The evaluations of the integrations

In this appendix we give out the evaluations of the integrations appeared in the
preceding sections, i.e. Eq. (11) and Eq. (12).
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A.1 Wave-attenuating boundary condition

Consider the integrand in Eq. (11), it is a multiple-valued function, may be written
as

√

J2 − J2
z

sin2 θ
=
√

f(θ) , f(θ) = J2 − J2
z

sin2 θ
.

The function f(θ) may be divided into the three regions: (0, a), (a, b), and (b, π),
where a and b are the turning points at where the function f(θ) changes its sign,
as shown in Figure 1. Like

√
−5 = ±i

√
5 or (±i

√
5)2 = −5, we find

∫ a

0

√

f(θ)Dθ =

∫ a

0

√

−|f(θ)| = dθ = ±i

∫ a

0

√

|f(θ)| dθ = ±iA ,

∫ b

a

√

f(θ) dθ =

∫ b

a

√

|f(θ)| dθ = B ,

∫ π

b

√

f(θ) dθ =

∫ π

b

√

−|f(θ)| dθ = ±iA ,

where A and B are two real numbers, then the integration of Eq. (11) has three
possible solutions given by

∫ 2π

0

√

J2 − J2
z

sin2 θ
dθ =







2(B + 2iA)
2B
2(B − 2iA)

The second branch of this result is reasonable, because only it can fulfil the re-
quirement that the wavefunction is a periodic function for the varialbe θ. The
multiple-valued result arises from

√

−|f(θ)| = ±i
√

|f(θ)|.
How to determine the sign of the multiple-valued function reasonably? Let us

turn to our experience that we have had in the usual quantum mechanics. Consider
the motion of a particle in a finitely deep potential well as shown in Figure 2, there
are also two turning points a and b. If the particle moves over the turning point a
or b for E < V0 (bound states), its momentum will become imaginary ±i|p| with
uncertain sign. As we know in the usual quantum mechanics the wavefunction is
given by

ψ(x) =



































D exp

(

−i
i|p|
h̄
x

)

, x < a ,

G sin

( |p
0
|

h̄
x+ δ

)

, a < x < b ,

D exp

(

−i
−i|p|
h̄

x

)

, x > b .

In which we have taken the plus sign for the imaginary momentum in x < a and
minus sign in x > b, to satisfy the wave-attenuating boundary condition for
the regions over the turning points.

In the followings, we use this wave-attenuating boundary condition to determine
the sign of double-valued imaginary momentum: take plus sign in the region over
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Fig.1(hydrogen)

0   a   b   π          2π   θ

f

Fig. 1. The function has sign-changed points a and b.

Fig.2(Hydrogen)

V

E

V0

a        0       b     x

Fig. 2. A finitely deep potential well that has two turning points a and b.

the left turning point, whereas take minus sign in the region over the right turning
point.

A.2 Integration 1

To apply the wave-attenuating boundary condition to the following wavefunction

X(θ) = C2 exp

(

− i

h̄

∫

√

J2 − J2
z

sin2 θ
dθ

)

due to the wave-attenuating for the turning points, the integrand must choose the
signs as

∫ a

0

√

J2 − J2
z

sin2 θ
dθ = +i

∫ a

0

√

|f(θ)| dθ = iA , (17)

∫ b

a

√

J2 − J2
z

sin2 θ
dθ =

∫ b

a

√

f(θ) dθ = B ,

∫ π

b

√

J2 − J2
z

sin2 θ
dθ = −i

∫ π

b

√

|f(θ)| dθ = −iA . (18)
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Thus the integration may have a real solution, actually it may be written as

∫ 2π

0

√

J2 − J2
z

sin2 θ
dθ = 2

∫ b

a

√

J2 − J2
z

sin2 θ
dθ = 2B . (19)

In order to evaluate the definite integral of Eq. (19), we make use of contour
integral in complex plane. Consider a contour Cδ which is a unit circle around zero,
as shown in Figure 3, using z = eiθ, we have

Fig.3(Hydrogen)

 -1       0        +1

i

Cδ

θ

Fig. 3. Unit circle contour for evaluating integral

I1 =

∫ 2π

0

√

J2 − J2
z

sin2 θ
dθ =

∫

Cδ

√

J2 +
4J2

z z
2

(z2 − 1)2
dz

iz
=

=

∫

Cδ

√

J2(z2 − 1)2 + 4J2
z z

2

±(z2 − 1)

dz

iz
.

As we have known that
√

f(θ)|θ=π/2 or θ=3π/2 =
√

J2 − J2
z , substituting z = i or

z = −i into the above integrand, we find the integrand must take the minus sign.
Thus

I1 =

∫

Cδ

√

J2(z2 − 1)2 + 4J2
z z

2

−(z2 − 1)

dz

iz
.

For scrutinizing the sign of the integrand over the turning points, we have

√

f(θ) =

√

J2(z2 − 1)2 + 4J2
z z

2

−(z2 − 1)
=

√

J2(z2 − 1)2 + 4J2
z z

2

−(2iz)(z2 − 1)/(2iz)
=

=

√

J2(z2 − 1)2 + 4J2
z z

2

−(2iz) sin θ
= i

√

J2(z2 − 1)2 + 4J2
z z

2

2z sin θ
,

we find that the integrand takes plus sign over the left turning point (θ → 0+, z →
1) and minus sign over the right turning point (θ → π−, z → −1), in accordance
with the sign requirement of Eq. (17) and (18).
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Continue our calculation, we have

I1 =

∫

Cδ

√

J2(z2 − 1)2 + 4J2
z z

2

−(z2 − 1)

dz

iz
=

=

∫

Cδ

(

1

z
− 1/2

z − 1
− 1/2

z + 1

)

√

J2(z2 − 1)2 + 4J2
z z

2
dz

i
.

Now we find that the integrand has the three poles at z = 0 and z = ±1. We let
the contour Cδ pass by the pole z = +1 through the interior of the unite circle,
as indicated by the dash line in Figure 3, likewise, let the contour Cδ pass by the
pole z = −1 through the exterior of the unite circle. The deformation made for
Cδ has no influence on the integration value because the left deformation cancels
the right deformation in the integration due to the opposite signs of the integrand
near the left and right poles. Let C ′

δ denote the deformed contour, we continue the
calculation by using Laurent’s series expansion and the residue theorem.

I1 =

∫

C′

δ

(

1

z
− 1/2

z − 1
− 1/2

z + 1

)

√

J2(z2 − 1)2 + 4J2
z z

2
dz

i
=

=

∫

C′

δ

1

z

√

J2(z2 − 1)2 + 4J2
z z

2
dz

i
−
∫

C′

δ

1/2

z − 1

√

J2(z2 − 1)2 + 4J2
z z

2
dz

i
−

−
∫

C′

δ

1/2

z + 1

√

J2(z2 − 1)2 + 4J2
z z

2
dz

i
=

=

∫

C′

δ

J +O(z2)

z

dz

i
−
∫

C′

δ

|Jz| +O(z2 − 1)

z + 1

dz

i
= 2π

(

J − |Jz |
)

.

A.3 Integration 2

To apply the wave-attenuating boundary condition to the following wavefunction

R(r) = C3 exp



− i

h̄c

∫

√

(

E +
e2

r

)2

−m2
ec

4 − J2h̄2c2

r2
dr



 ,

where it has also two turning points r1 and r2 from r = 0 to r = ∞ when E2 < m2
ec

4

(bound states), as shown in Figure 4, where

g(r) =

(

E +
e2

r

)2

−m2
ec

4 − j2h̄2c2

r2
,

we take the following signs for its asymptotic behavior, i.e.

√

g(r)|r→0 =

√

e4 − j2h̄2c2

r
= i

√

j2h̄2c2 − e4

r
,

√

g(r)|r→∞ =
√

E2 −m2
ec

4 = −i
√

m2
ec

4 −E2 .
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0   r1            r2       r 

g 

Fig. 4. The function has two sign-changed points r1 and r2.

In order to evaluate the definite integral of Eq.(12), consider a contour C con-
sisting of Cγ , L−, Cδ and L around zero in the plane as shown in Figure 5, the
radius of circle Cγ is large enough and the radius of circle Cδ is small enough. The
integrand of the following equation has no pole inside the contour C, so that we
have

Fig.4(Hydrogen)

Cγ   Cδ    δ  L  γ

L-

i

Fig. 5. Unit circle contour for evaluating integral

∫

C

√

(

E +
e2

z

)2

−m2
ec

4 − j2h̄2c2

z2
dz =

∫

Cγ

+

∫

L−

+

∫

Cδ

+

∫

L

= 0 .

Now we evaluate the integration on each contour with our sign choice for the double-
valued function, using Laurent’s series expansion and the residue theorem.

∫

Cγ

=

∫

Cγ

√

(

E +
e2

z

)2

−m2
ec

4 − j2h̄2c2

z2
dz =

= −
∫

Cγ

i

√

m2
ec

4 +
j2h̄2c2

z2
−
(

E +
e2

z

)2

dz =

12
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= −i

∫

Cγ

[

√

m2
ec

4 −E2 − Ee2
√

m2
ec

4 −E2

1

z
+ O

(

1

z2

)

]

dz =

= i
2πiEe2

√

m2
ec

4 −E2
= − 2πEe2

√

m2
ec

4 −E2
,

∫

Cδ

=

∫

Cδ

i

√

m2
ec

4 +
j2h̄2c2

z2
−
(

E +
e2

z

)2

dz =

= i

∫

Cδ

√

m2
ec

4z2 + j2h̄2c2 − (Ez + e2)
2

z
dz =

= i

∫

Cδ

√

j2h̄2c2 − e4 +O(z)

z
dz =

= i(−2πi)

√

j2h̄2c2 − e4 = 2π

√

j2h̄2c2 − e4 .

Because the integrand is a multiple-valued function, when the integral takes
over the path L− we have z = e2πire0i, thus

∫

L−

=

∫ δ

γ

√

e−2πi(. . .) = −
∫ δ

γ

=

∫ γ

δ

=

∫

L

.

For a further manifestation, to define z −H = w = ρeiβ, where

H =
m2

ec
4r2 + j2h̄2c2 −E2r2 − e4

2Ee2
,

we have
∫

L−

=

∫

L−

√
2Ee2

√
z −H

z
dz =

∫

L−

√
2Ee2

√
w

z
dz =

=

∫

L−

√

2Ee2ρ eiβ/2

z
dz =

∫

L(γ→δ)

√

2Ee2ρ ei(β+2π)/2

ze2πi
d
(

ze2πi
)

=

= −
∫

L(γ→δ)

√

2Ee2ρ eiβ/2

z
dz =

∫

L(δ→γ)

√

2Ee2ρ eiβ/2

z
dz =

∫

L

,

where we have use the relation of z and w in the fourth step of the above equation,
as shown in Figure 6, to note that w rotates around zero with z. Thus we have

∫

L

=
1

2

(∫

L

+

∫

L−

)

= −1

2

(∫

Cγ

+

∫

Cδ

)

=
πEe2

√

m2
ec

4 −E2
− π

√

j2h̄2c2 − e4 .

Thus Eq. (12) becomes

1

h̄c

∫

∞

0

√

(

E +
e2

r

)2

−m2
ec

4 − j2h̄2c2

r2
dr =

πEα
√

m2
ec

4 −E2
− π

√

j2 − α2 ,
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Fig.6(Hydrogen) 

i 

z  w 

O     H     r 

Fig. 6. contour for evaluating integral

where α =
e2

h̄c
is known as the fine structure constant.

A.4 Discussion: the motion over turning points

Following the sign change for imaginary momentum over turning points, discussed
in the preceding sections, we find that the periodic condition or standing wave
condition in hydrogen atom may written as

2

∫ b

a

√

J2 − m2

sin2 θ
dθ = 2πk

1

h̄c

∫ r2

r1

√

(

E +
e2

r

)2

−m2
ec

4 − J2h̄2c2

r2
dr = πs ,

because the contributions of the integrands in the regions over the turning points are
eliminated automatically. What are their physical meanings ? A direct explanation
is that it is not necessary for the electron to enter the regions over the turning points,
in compliance with classical physics.

In addition, the residue theorem we used in the paper gives out accurate results
for our integrations, not approximate ones.
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