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Path integration is carried out in the field of topological defects. The topological
defects being considered include a screw dislocation and a disclination in solid. The
screw dislocation give rise to torsion, while the disclination generates curvature in the
surrounding space. We consider a particle bound in the vicinity of the defect by a short
range repulsive and long range attractive force. By path integration we obtain the energy
spectrum and the corresponding eigenfunctions.
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1 Introduction

We consider a simple topological defect in three dimensions whose geometry is
characterized by the spatial line element [6–8]

dl2 = gijdx
idxj = dr2 + σ2r2dθ2 + (dz + βdθ)2 , (1)

where (r, θ, z) are cylindrical coordinates and σ and β are parameters. This de-
scribes an infinitely long linear dispiration oriented along the z-axis, with two coni-
cal singularities at the origin as seen in (3) and (4). The three dimensional geometry
of the medium is characterized by nontrivial torsion and curvature which are iden-
tified with the surface density of the Burgers and Frank vectors, respectively. The
Burgers vector can be viewed as a flux of torsion and the Frank vector as a flux of
curvature. Since the line element of the metric is known, we can deduce the dual
basis vectors

e1 = dz + βdθ , e2 = dr and e3 = σrdθ . (2)

Observe that the periodic boundary condition in the space of (1) around the z-axis
has periodicity of 2πσinstead of 2π. This corresponds to the removal (σ < 1) or
insertion (σ > 1) of a wedge of material of angle λ = 2π(σ − 1). The Ricci scalar
is given by [1]

R12
12 = R2

2 = 2π
1 − σ

σ
δ(ρ) , (3)

where σ = (1 + λ/2π). From (3) it follows that if 0 < σ < 1 the defect carries
positive curvature and if 1 < σ <∞ the defect carries negative curvature.

The only non-vanishing component of torsion is given by the 2-form [3]

T 1 = 2πβδ(ρ)dρ ∧ dθ . (4)
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The Burgers vector is found by integrating around a closed path C encircling the
dislocation [4]

b1 =

∮

C

h1 =

∫

S

T a = 2πβ (5)

implying that 2πβ is the flux intensity of the torsion source passing through a
closed loop C. This torsion source causes a topological change in the space where
the particle propagates.

2 Lagrangian

The Lagrangian for an electron moving around the dispiration in a scalar po-
tential V (r) and a vector potential A(−→r ) is

L =
1

2
M

(
ds

dt

)2

=
1

2
M

{
ṙ2 + σ2r2θ̇2 +

(
ż + βθ̇

)2
}
− V (r) + eṙ · A . (6)

Suppose that the dispiration and the constant magnetic Φ flux are confined in a
thin impenetrable tube of radius a. For simplicity, however, we assume that the
tube is so thin it can be regarded as a singular line coinciding with the dispiration
line (a → 0). In order to reflect the impenetrable nature of the tube, we shall
include a short range repulsive force. The vector potential outside the flux tube is
given by

A =
Φ

2πσr
êθ . (7)

With the aid of the above equation, the vector potential term in the Lagrangian
(5) can be written as eṙ · A = αχ̇. In this case, the Lagrangian is written as

L =
1

2
M

{
ṙ2 + (ż + β′χ̇)

2
}

+ α~χ̇− V (r) , (8)

where χ = σθ, β′ =
β

σ
and we made use of the two-dimensional squared velocity

ṙ2 = ṙ2 + r2χ̇2 (9)

and α =
qΦ

2πσ~c
= φ/σ, where φ the magnetic flux.

3 Propagator

The transition amplitude (propagator) for the three dimensional motion of the
particle from point x′ = (r′, χ′, z′) to point x′′ = (r′′, χ′′, z′′) can be calculated by
the path integral

K (x′′,x′; τ) =

∫ x′′=x(t′′)

x′=x(t′)

exp

{
i

~

∫ t′′

t′
L dt

}
D3x (10)
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where τ = t′′ − t′. The path integral is explicitly expressed as

K (r′′, z′′; r′, z′; τ) =

∫ r′′=r(t′′)

r′=r(t′)

∫ z′′=z(t′′)

z′=z(t′)

DzD2r×

× exp

[
i

~

∫ t′′

t′

{
M

2
ṙ2 + α~χ̇− V (r) +

M

2
(ż + β′χ̇)

2
}

dt

]
.

(11)

We first calculate the z-integration by letting ζ = z + β ′χ. Carrying out the
integration yields

∫ ζ′′=ζ(t′′)

ζ′=ζ(t′)

exp

[
iM

2~

∫ t′′

t′
ζ̇2dt

]
Dζ =

= limN → ∞
∫ N∏

j=1

exp

[
iM

2~

(ζj − ζj−1)
2

ε

] N−1∏

j=1

dζj =

=

√
iM

2π~τ
exp

[
iM (ζ ′′ − ζ ′)

2

2πτ

]
,

(12)

where τ = t′′ − t′. We may re-express the R.H.S. of (12) as

√
iM

2π~τ
exp

[
iM (ζ ′′ − ζ ′)2

2πτ

]
=

1

2π

∫ ∞

−∞

e−i~τk2/2Mei(ζ′′−ζ′)kdk , (13)

where ~k is the z component of momentum of the particle. We also notice that

ζ ′′ − ζ ′ = z′′ − z′ + β′ (χ′′ − χ′) = z′′ − z′ + β′

∫ t′′

t′
χ̇dt . (14)

Incorporating these results into the path integral (10), we decompose the propagator
as

K (x′′,x′; τ) =
1

2π

∫ ∞

−∞

dkeik(z′′−z′)e−i~τk2/2MK(k) (r′′, r′; τ) , (15)

where the two-dimensional propagator for a fixed k-value is

K(k) (r′′, r′; τ) =

∫ r′′=r(t′′)

r′=r(t′)

exp

{
i

~

∫ t′′

t′

[
M

2
ṙ2 + (α+ β′k) ~χ̇− V (r)

]
dt

}
D2r .

(16)

4 Path integration in the covering space

Usually the angular variable χ varies from 0 to 2πσ. Hence, 0 ≤ ∆χ ≤ 2πσ
for any angular difference. As was mentioned earlier however, the line dispiration
which is described as a line singularity at r = 0 in (2) makes the topology of the
surrounding space non-simply connected. The particle can loop around the singular
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line many times, requiring ∆χ to vary from −∞ to ∞. Therefore, angular path
integration over the usual range gives a partial propagator due to a class of paths
which do not turn around the dispiration line. For the full propagator, we have
to include the contributions from paths belonging to all homotopically different
classes. To carry out the angular path integration, we may either stay in the
physical space M by assuming [5]

∫ t′′

t′
χ̇dt = χ′′ − χ′ + 2nπσ (17)

with 0 ≤ χ < 2πσ, or equivalently, go over to the covering space M ∗ by assuming
[11] ∫ t′′

t′
χ̇dt = χ′′ − χ′ (18)

with −∞ < χ <∞. In (17) n ∈ Z is the winding number.
Momentarily ignoring the winding number, we consider the path integral over

the covering space. The partial propagator belonging to a class of homotopically
equivalent paths which turn around the dispiration by an angle ϕ, −∞ < ϕ < ∞,
may be obtained by subjecting the path integral (15) to the constraint

∫ t′′

t′
χ̇dt = ϕ . (19)

Specifically,

K(k)
ϕ (r′′, r′; τ) =

=

∫ r′′=r(t′′)

r′=r(t′)

δ

(
ϕ−

∫ t′′

t′
χ̇dt

)
exp

{
i

~

∫ t′′

t′

[
M

2
ṙ2 + (α+ β′k)~χ̇− V (r)

]
dt

}
D2r .

(20)
By letting

δ

(
ϕ−

∫ t′′

t′
χ̇dt

)
=

1

2π

∫ ∞

−∞

exp

{
iϕλ−

∫ t′′

t′
λχ̇dt

}
dλ (21)

we can write (20) as

K(k)
ϕ (r′′, r′; τ) =

1

2π

∫ ∞

−∞

∫ r′′=r(t′′)

r′=r(t′)

eiϕλ×

× exp

{
i

~

∫ t′′

t′

[
M

2
ṙ2 − (λ− α~ − β′k) χ̇− V (r)

]
dt

}
D2rdλ .

(22)

It is clear that integration of this constrained propagator over all possible values of
ϕ results in the full propagator (with a fixed value of k),

K(k) (r′′, r′; τ) =

∫ ∞

−∞

K(k)
ϕ (r′′, r′; τ) dϕ , (23)

which takes into account the contributions from all homotopically possible paths.
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5 Angular integration

To carry out the angular path integration in (21), we express the constrained
propagator in discretized form

K(k)
ϕ (r′′, r′; τ) =

1

2π
lim

N→∞

∫ ∞

−∞

dλ

∫ r′′=r(t′′)

r′=r(t′)

eiϕλ
N∏

j=1

K(k)(rj , rj−1; ε)
N−1∏

j=1

D2rj

(24)
with the propagator for a short time interval ε = tj − tj−1 = τ/N ,

K(k)(rj , rj−1; ε) =
M

2πi~ε
exp

(
i

~
Sj

)
, (25)

where

Sj =

∫ tj

tj−1

[
M

2
ṙ2 − (λ− α~ − β′k) χ̇− V (r)

]
dt . (26)

The pre-exponential factor in (25) is a normalization constant determined by the
condition

lim
ε→0

K(k) (rj , rj−1; ε) = δ (rj − rj−1) . (27)

The first term in the short time action (26) may be written as

∫ tj

tj−1

M

2
ṙ2dt =

M

2ε
(rj − rj−1)

2
=
M

2ε

[
r2j + r2j−1 − 2rjrj−1 cos (∆χj)

]
. (28)

Since for the short time action it is sufficient to consider the contributions up to
first order in ε, we utilize the following approximate relation valid for small ε, [5],

cos(∆χ) ' cos(∆χ+ aε) + aε∆χ+ 1
2 a

2ε2 (29)

to write the short time action as

Sj =
M

2ε

(
r2j + r2j−1

)
−M
ε
rjrj−1 cos

(
∆χj−

λ′~ε

Mrjrj−1

)
− λ′2~

2ε2

4Mrjrj−1
−εV (rj) , (30)

where λ′ = λ− α− β′k. Combining the Jacobi–Anger expansion formula

exp(z cosχ) =

∞∑

m=−∞

eimχIm(z) (31)

and the Edward–Gluyaev asymptotic formula for the modified Bessel function

Im(z) ' 1√
2πz

exp

[
z − 1

2z

(
m2 − 1

4

)]
(32)

valid for large z and for arg |(z)| < π/2, we can derive the following asymptotic
relation [2]

exp

{
z cos

[
χ+ i

λ

z

]
− λ2

2z

}
'

∞∑

m=−∞

eimχIm+λ(z) . (33)
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Observe that to express (31) in θ we take m = l/σ so that mχ = lθ and we perform
the sum over l. Making use of (33) we find

exp

(
i

~
Sj

)
=

∞∑

mj=−∞

eimj(χj−χj−1)Rmj+λ′ (rj , rj−1; ε) , (34)

where

Rmj+λ′ (rj , rj−1; ε) = exp

[
iM

2~ε

(
r2j + r2j−1

)
− iε

~
V (rj)

]
I|mj+λ′|

(
Mrjrj−1

i~ε

)
. (35)

Now the angular integration can be carried out, reducing (23) into the form

K(k) (r′′, χ′′; r′, χ′; τ) =
1

2π

∫ ∞

−∞

∞∑

m=−∞

exp
[
im (χ′′ − χ′) + iλϕ

]
Qm+λ−α−β′kdλ ,

(36)
where

Qν = lim
N→∞

(
M

2πi~ε

)N−1 ∫ N∏

j=1

Rν(rj , rj−1; ε)

N−1∏

j=1

rjdrj . (37)

The full propagator with a fixed wave number k can be obtained by integrating
(36) over the covering space variable ϕ:

K(k)(r′′, χ′′; r′, χ′; τ) =

∫ ∞

−∞

K(k)
ϕ (r′′, χ′′; r′, χ′; τ) dϕ =

∞∑

m=−∞

Km(r′′, χ′′; r′, χ′; τ)

(38)
with the partial propagator

Km(r′′, χ′′; r′, χ′; τ) = eim(χ′′−χ′)Qm−α−β′k(r′′, r′; τ) . (39)

Equation (38) gives the partial wave expansion in two dimensions, and the partial
propagator (39) corresponds to the propagator for the m-th partial wave.

6 The winding number representation

By letting λ → λ −m + α + β′k the propagator (35) for a fixed angle ϕ may
also be written as

K(k)
ϕ (r′′, χ′′; r′, χ′; τ) =

1

2π

∫ ∞

−∞

∞∑

m=−∞

eim(χ′′−χ′−ϕ)+i(λ+α+β′k)ϕQλ(r′′, r′; τ)dλ .

(40)
By means of Poison’s sum formula,

∞∑

m=−∞

eimχ = 2π
∞∑

n=−∞

δ(χ+ 2πσn) , (41)
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the above propagator can be cast into the form

K(k)
ϕ (r′′, χ′′; r′, χ′; τ) =

∞∑

n=−∞

δ(χ′′ − χ′ − ϕ+ 2πσn)
1

2π

∫ ∞

−∞

eiλϕQλ(r′′, r′; τ)dλ .

(42)
Again, integration of (42) over ϕ yields

K(k)(r′′, χ′′; r′, χ′; τ) =

∞∑

n=−∞

Kn(r′′, χ′′; r′, χ′; τ) (43)

with

Kn(r′′, χ′′; r′, χ′; τ) = ei(α+β′k)(χ′′−χ′+2πσn)

∫ ∞

−∞

eiλ(χ′′−χ′+2πσn)Qλ(r′′, r′; τ) dλ .

(44)
This is the winding number expansion [10] of the full propagator with a fixed k.
The partial propagator (44) with a fixed winding number n is the propagator for
the particle moving around the dislocation line n times.

7 Radial path integration

To carry out the radial integration, it is necessary to specify the shape of the
potential V (r). We assume that the particle in the field of the screw dislocation
is subjected to a short range repulsion due to the core effect and bound by a long
range attraction. As an exactly solvable example [5], we consider the spherical
potential,

V (r) =
1

2
Mω2r2 +

b~2

2Mr2
. (45)

The short time radial propagator (35) now reads

Rν(rj , rj−1; ε) = exp

[
iM

2~ε
(r2j + r2j−1)−

− iε

~

(
Mω2

4

(
r2j + r2j−1

)
+

b

rjrj−1

)]
Iν

(
Mrjrj−1

i~ε

)
,

(46)

where ν = |m+ λ− α− β′k|. With the help of the asymptotic recombination
formula

Iν(az)ec′/z ⇔ 1√
2πaz

exp

[
az − 1

2az

(
ν2 − 2ac′ − 1

4

)]
⇔ Iν(az) , (47)

where |λ| =
√
|ν|2 + 2ac′, the short time radial propagator becomes

Rν(rj , rj−1; ε) = exp

[
iM

2~ε

(
r2j + r2j−1

)
− iMω2ε

4~

(
r2j + r2j−1

)]
Iµ

(
Mrjrj−1

i~ε

)
, (48)
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where
µ =

√
ν2 + b =

√
|m+ λ− α− β′k|2 + b . (49)

In (48) we notice that the exponential factor can be put into the form

exp

{
iMω

2~

(
r2j + r2j−1

) 1

ωε

(
1 − 1

2 ω
2ε2

)}
. (50)

Here we let ηj =
Mωrj

2~
and ϕj = arcsin(ωε) and define the υ-function as

υµ (η, η′;ϕ) = −i cscϕ exp
[
i (η + η′) cotϕ

]
Iµ

(
−2i

√
ηη′ cscϕ

)
. (51)

Then, the short time radial function can be expressed in terms of the υ-function as

Rν(rj , rj−1; ε) = ei(η+η′) cot ϕIµ

(
−2i

√
ηη′ cscϕ

)
= i sinϕυµ (ηj , ηj−1;ϕ) . (52)

Substitution of this into (37) gives

Qν (r′′, r′; τ) =

(
Mω

2π~

)
lim

N→∞

∫ N∏

j=1

υµ (ηj , ηj−1;ϕ)
N−1∏

j=1

dηj . (53)

Since the υ-function satisfies the convolution relation
∫ ∞

0

υµ (η′′, η;ϕ) υµ (η, η′;ϕ) dη = υµ (η′′, η′; 2ϕ) (54)

the radial integration (53) can be performed, yielding

Qν (r′′, r′; τ) =
M

2π~
υµ (η′′, η′; Φ) , (55)

where µ =
√
|ν|2 + b and Φ = lim

N→∞
(Nϕ) = arcsinωτ . In terms of the modified

Bessel function,

Qν (r′′, r′; τ) =
M

2πi~ sinωτ
exp

[
iM

2~

(
r′2 + r′′2

)
cotωτ

]
Iµ

(
Mωr′r′′

i~ sinωτ

)
. (56)

Thus, from (39) we obtain the full propagator with k fixed

K(k) (r′′, χ′′; r′, χ′; τ) =
M

2πi~ sinωτ
exp

[
iM

2~

(
r′2 + r′′2

)
cotωτ

]
×

×
∞∑

m=−∞

eim(χ′′−χ′)I|µ(m)|

(
Mωr′r′′

i~ sinωτ

)
,

(57)

where µ(m) =

√
|m− α− β′k|2 + b.
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8 Energy Green function

The energy Green function corresponding to the propagator with fixed k is

G (r′′, χ′′; r′, θχ′;E, k) =
1

i~

∫ ∞

0

eiEτ/~K(k) (r′′, χ′′; r′, χ′; τ) dτ (58)

Upon substitution of (57), this equation may be expressed as

G (r′′, χ′′; r′, χ′;E, k) =

∞∑

m=−∞

eim(χ′′−χ′)G(m) (r′′, χ′′; r′, χ′;E, k) , (59)

where

G(m) (r′′, χ′′; r′, χ′;E, k) =

= − M

2π~2

∫ τ

0

exp

[
iM

2~

(
r′2 + r′′2

)
cotωτ

]
eiEτ/~Iµ(m)

(
Mωr′r′′

i~ sinωτ

)
sinωτ dτ .

(60)

The τ -integration in the expression for G(m) can be performed by using the integral
formula (derived from formula 6.669-4 of Gradshteyn–Ryzhik) [9]

∫ ∞

0

e−α(x+y) coth qe−epqI2ν (2α
√
xy csch q) csch q dq =

=
Γ

(
p+ ν + 1

2

)

2α
√
xyΓ(2ν + 1)

W−p,ν(2αx)M−p,ν(2αy)

(61)

valid for Re
(
p+ ν + 1

2

)
> 0, Re(ν) > 0 and x > y. Here, Wµ,ν(z) and Mµ,ν(z) are

the Whittaker functions

Wµ,ν(z) =
Γ(−2ν)

Γ
(

1
2 − ν − µ

) Mµ,ν(z) +
Γ(2ν)

Γ
(

1
2 + ν − µ

) Mµ,−ν(z) (62)

valid when arg |z| < 3π/2 and 2ν is not an integer;

W−µ,ν(−z) =
Γ(−2ν)

Γ
(

1
2 − ν − µ

) M−µ,ν(z) +
Γ(2ν)

Γ
(

1
2 + ν − µ

) Mµ,−ν(z) (63)

valid when arg | − z| < 3π/2 and 2ν is not an integer and

Mµ,ν(z) = e−z/2zν+1/2F
(

1
2 + ν − µ, 1 + 2ν; z

)
, (64)

where

F (a, b; z) = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+ . . . =

∞∑

k=0

(a)k

(b)k

zk

k!
. (65)

(a)k and (b)k are the Pochhammer symbols

(α)k ≡ Γ(α+ k)

Γ(α)
= α(α − 1) · · · (α+ k − 1) . (66)
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Note that the confluent hypergeometric function F
(

1
2 + ν − µ, 1 + 2ν; z

)
vanishes

when 2ν is an integer. Letting 2αx =
Mω

2~
r′′2, 2αy =

Mω

2~
r′2, p = − E

~ω
and

q = iωτ , we get

G(m) (r′′, χ′′; r′, χ′;E, k) =

=
1

π~ω

Γ
(
p+ 1

2 µ+ 1
2

)

r′r′′Γ(µ+ 1)
W−p,µ/2

(
Mω

2~
r′′2

)
M−p,µ/2

(
Mω

2~
r′2

)
.

(67)

9 Energy spectrum

The poles of the partial Green function (60), which give the energy spectrum
of the system, occur in the Gamma function appearing in the numerator (61). In
particular, the Gamma function diverges when

µ

2
+

1

2
− E

~ω
= −n , n = 0, 1, 2, . . . . (68)

As a result we obtain the energy spectrum

En = ~ω

(
n+

µ

2
+

1

2

)
+

(~k)2

2M
= ~ω

(
n+ 1

2

√
|(l − φ− βk)/σ|2 + b+ 1

2

)
+

~
2k2

2M
,

(69)
where n = 0, 1, 2, . . .. Here use was made of m = l/σ, β′ = β/σ and we have taken
q = −e in α leading to α = −φ/σ.

10 The wavefunctions

The energy eigenfunctions can be obtained by taking the residues of G(m)(E, k)
at the poles except for the phase factor. Substituting condition (64) into (63) the

Whittaker function W−p,µ/2

(
M

2~
r′′2

)
becomes

WE/~ω,µ/2

(
M

2~
r′′2

)
=

Γ(−µ)

Γ
(

1
2 − 1

2 µ+ p
) ME/~ω,µ/2

(
Mω

2~
r′′2

)
+

+
Γ(µ)

Γ
(

1
2 + 1

2 µ+ p
) ME/~ω,−µ/2

(
Mω

2~
r′′2

)
.

(70)

However, since
Γ(µ)

Γ
(

1
2 + 1

2 µ+ p
) = 0 the Whittaker function WE/~ω,µ/2

(
M

2~
r′′2

)

reduces to

WE/~ω,µ/2

(
Mω

2~
r′′2

)
=

Γ(−µ)

Γ
(

1
2 − µ

2 − E
~ω

) ME/~ω,µ/2

(
Mω

2~
r′′2

)
, (71)
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from which we find

G(m) (r′′, χ′′; r′, χ′;E, k) =

=
Γ(−µ)

Γ(µ+ 1)

Γ
(

µ
2 + 1

2 − E
~ω

)

Γ
(

1
2 − µ

2 − E
~ω

) 1

π~ωr′r′′
ME/~ω,µ/2

(
Mω

2~
r′′2

)
ME/~ω,µ/2

(
Mω

2~
r′2

)
.

(72)
The residue of G(m) (r′′, χ′′; r′, χ′;E, k) is obtained from

Res
(
G(m)(E)

)
= lim

E→En

(E −En)G(m)(E)
∣∣∣
E=En

. (73)

Taking the limits of the terms in (73), we get

lim
E→En

ME/~ω,µ/2

(
Mω

2~
r′2

)
=

= e−Mωr′2/(4~)z(µ+1)/2) µΓ(µ)

Γ(−n)

∞∑

k=0

Γ(k − n)

Γ(k + µ+ 1)

1

k!

(
Mω

2~
r′2

)k

=

= M−n,µ+1

(
Mω

2~
r′2

)
(74)

and

lim
E→En

[
(E −En)

Γ
(

µ
2 + 1

2 − E
~ω

)

Γ
(

1
2 − µ

2 − E
~ω

)
] ∣∣∣∣

E=En

=
(−1)n2(n−1)/2Γ(1 + n+ µ) sinπµ

π3/2(2n− 1)!!
,

(75)
where we have used

Γ(n+
1

2
) =

√
π (2n− 1)!!

2(n−1)/2
and Γ(−n− µ) =

1

Γ(1 + n+ µ)

π

(−1)n sinπµ
.

With these results, we obtain the residue

Res
(
G(m)(E)

)
=

Γ(−µ)

π~ωΓ(µ+ 1)

(−1)n2(n−1)/2Γ(1 + n+ µ) sinπµ

π3/2(2n− 1)!!
×

×
√

M

2π~2ω
M−n,µ+1

(
Mω

2~
r′2

)√
M

2π~2ω
M−n,µ+1

(
Mω

2~
r′′2

)
.

(76)

Finally, the energy eigenfunctions are

ψ(r, χ, ζ) = C

[
Γ(−µ)

π~ωΓ(µ+ 1)

(−1)n2(n−1)/2Γ(1 + n+ µ) sinπµ

π3/2(2n− 1)!!

M

2π~2ω

]1/2

×

×eik(ζ′′−ζ′)eim(χ′′−χ′)M−n,µ+1

(
Mω

2~
r2

)
, (77)
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where r2 ≡ r′2 + r′′2, µ(m) =

√∣∣m− α− β′k
∣∣2 + b, ζ ′′− ζ ′ = z′′− z′ +β′ (χ′′ − χ),

β′ = β/σ, α = −φ/σ (for q = −e), m = l/σ and χ = σθ. In terms of the Confluent
Hypergeometric function, the eigenfunctions read

ψn(r, θ, z) = Aneik(z′′−z′)ei(l+βk)(θ′′−θ′) r

r∣∣(l+φ−βk)/σ
∣∣2+b

exp

(
−Mωr2

4~

)
×

×F
(
−n,

√∣∣(l + φ− βk)/σ
∣∣2 + b+ 1;

Mω

2~
r2

)
, (78)

where

An = C

[
Γ(−µ)

π~ωΓ(µ+ 1)

(−1)n2(n−1)/2Γ(1 + n+ µ) sinπµ

π3/2(2n− 1)!!

(
M

2~

)µ(
M

2π~2ω

)]1/2

and C is a normalization constant.

11 Concluding remarks

In this note path integration was carried out in the field of a topological defect
described by a combined dislocation and disclination in solid. The energy Green
function was obtained from the propagator of a particle bound in the vicinity of
the defect by a short range repulsive and long range attractive force. From the
Green function the exact energy spectrum and corresponding eigenfunctions were
obtained. The screw dislocation modifies the angular momentum by introducing an
additive correction in much the same manner as the magnetic flux. The case of the
screw dislocation is very analogous to the well known Aharonov–Bohm (AB) effect
and can be interpreted as an extension of the AB effect to include the effects of the
gravitational field on quantum systems. The disclination introduces a multiplicative
modification 1/σ to the angular momentum, the appearance of which is understood
when we recall that the periodic boundary condition in the space of (5) around the
z-axis has periodicity of 2πσ instead of 2π. The presence of both defects cause shifts
in the energy spectrum relative to the defect-free Minkowski case even though the
particle does not directly touch either of the defects. This last fact further motivates
the idea that the topological defects are the gravitational analogy of the AB effect.
It is interesting to observe that because of the occurrence of β ′ (χ′′ − χ) in (ζ ′′ − ζ ′),

the angular wavefunction Θ(θ) ≈ ei(l+βk)(θ′′−θ′) is modified by βk (θ′′ − θ′).
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