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This paper focus’s upon the derivation of the similarity solutions of a free boundary
problem arising in glaciology. With reference to shallow ice sheet flow we present a
potential symmetry analysis of the second order non-linear degenerate parabolic equation
that describe non-Newtonian ice sheet dynamics in the isothermal case. A full classical and
also a non-classical symmetry analysis is presented. A particular example of a similarity
solution to a problem formulated with Cauchy boundary conditions is described. This
demonstrates the existence of a free moving boundary and also an accumulation–ablation
function with realistic physical properties.
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1 Introduction

In recent years there has been much interest on modelling ice sheet dynamics
especially because of its importance in the understanding of global climate change,
global energy balance and circulation models. Although various physical theories
for large ice sheet motion have been presented there exists no general mathematical
treatment. In this paper we consider an obstacle formulation of slow, isothermal,
one dimensional ice slow on a rigid bed due to Fowler [1] .

The model describing the ice sheet dynamics is formulated in terms of the
following one dimensional non-linear degenerate diffusion equation:

Ψ (x, t, u,ut,ux,uxx) ≡ ut − a−

(

un+2 |ux|
n−1

ux

n+ 2
− fu

)

x

= 0 , (1)

where a suffix indicates a partial derivative. Moreover u = u (x, t) > 0 is the
top surface of the sheet, a = a (x, t) is the accumulation–ablation rate function,
f = f (x, t) is the basal velocity, n is the Glen exponent (typically n ≈ 3). The
physical problem may be characterized by the following properties as have recently
been discussed by Calvo et al [2]:

1. Given an initial ice sheet initial u (x, 0), and known a (x, t), f (x, t) to use the
partial differential equation. to find u (x, t) over a parabolic domain.

2. An ice free region (melt zone) u (x, t) = 0 exists which defines two free bound-
aries x− (t) and x+ (t).

3. Physically admissible solutions are non-negative u (x, t) ≥ 0 for which a > 0
except in a region near the two free boundaries where a < 0.
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It is the aim here to show that similarity solutions compatible with these
statements do exist. To assist the mathematical analysis the ice sheet model
will be written in a conserved or potential form, namely the first order system,
Ψ ≡ (Ψ1,Ψ2) = 0 where:

Ψ1 = vx − u+ λ = 0 ,

Ψ2 = vt −
un+2 |ux|

n−1
ux

n+ 2
+ fu = 0 , (2)

where v = v (x, t) is the potential function and where λ = λ (x, t) is such that

a ≡ λt . (3)

It is noted that Bluman et al [3], [4] first introduced the method for finding new
classes of symmetries when partial differential equations can be written in potential
form. They demonstrated that the Lie point symmetries of the potential system
induce non-Lie contact symmetries for the original partial differential equation.

2 Potential symmetry analysis of the ice sheet equation

In the classical Lie group method, one–parameter infinitesimal point transfor-
mations,with group parameter ε are applied to the dependent and independent
variables (x, t, u, v). In this case the transformation, including that of the potential
variable are

x̄ = x+ εη1 (x, t, u, v) +O
(

ξ2
)

, t̄ = t+ εη2 (x, t, u, v) +O
(

ε2
)

,

ū = u+ εφ1 (x, t, u, v) +O
(

ξ2
)

, v̄ = v + εφ2 (x, t, u, v) +O
(

ε2
)

(4)

and the Lie method requires form invariance of the solution set:

Σ ≡ {u(x, t), v(x, t), Ψ = 0} . (5)

This results in a system of overdetermined, linear equations for the infinitesimals
η1, η2, φ1 and φ2. The corresponding Lie algebra of symmetries is the set of vector
fields

X = η1 (x, t, u, v)
∂

∂x
+ η2 (x, t, u, v)

∂

∂t
+ φ1 (x, t, u, v)

∂

∂u
+ φ2 (x, t, u, v)

∂

∂v
. (6)

The condition for invariance of (1) is the equation

X
(1)
E (Ψ) |Ψ1=0,Ψ2=0 = 0 , (7)

where the first prolongation operator X
(1)
E is written in the form

X
(2)
E = X + φ

[t]
1

∂

∂ut
+ φ

[x]
1

∂

∂ux
+ φ

[t]
2

∂

∂vt
+ φ

[x]
2

∂

∂vx
, (8)
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where φ
[t]
1 , φ

[x]
1 and φ

[t]
2 , φ

[x]
2 are defined through the transformations of the partial

derivatives of u and v. In particular:

ūx̄ = ux + εφ
[x]
1 (x, t, u, v) +O

(

ε2
)

,

ūt̄ = ut + εφ
[t]
1 (x, t, u, v) +O

(

ε2
)

,

v̄x̄ = vx + εφ
[x]
2 (x, t, u, v) +O

(

ε2
)

,

v̄t̄ = vt + εφ
[t]
2 (x, t, u, v) +O

(

ε2
)

. (9)

Once the infinitesimals are determined the symmetry variables may be found from
condition for invariance of surfaces u=u (x, t) and v=v (x, t):

Ω1=φ1−η1ux − η2ut = 0 ,

Ω2=φ2−η1vx − η2vt = 0 . (10)

In the following the Macsyma program symmgrp.max [5] and Maple software have
been used to calculate the determining equations. In the case of the ice equation (2)
there are nine over-determined linear determining equations. From these equations
it may be shown that:

η1 = η1 (x, t) = (c0 − z)x+ s , (11)

η2 = η2 (t) , (12)

φ1 = φ1 (t, u) = zu , (13)

φ2 = φ2 (x, t, v) = g + c0v , (14)

where s = s (t), z = z (t) and g = g (x, t) and c0 is an arbitrary constant such that:

(3n+ 2) z + η2t
− (n+ 1)c0 = 0 , (15)

(zx− s− c0x) λx − η2λt + zλ− gx = 0 , (16)

xλzt − λst − gt = 0 , (17)

(zx− s− c0x) fx − η2ft = −f
(

(3n+ 1)z − nc0
)

+ xzt − st . (18)

When it is assumed that s (t) and z (t) are known then equation (15) may be
used to determine η2 (t) whilst (16) to (18) may be used to determine g (x, t), λ (x, t)
and f (x, t).

We observe that we have shown that the potential symmetries of the conserved
form of the ice dynamics equations (2) are entirely equivalent to those of single
equation.(1). This is so because according to [4] additional symmetries can only be
induced by the potential system when:

η2
1v

+ η2
2v

+ φ2
1v

6= 0 . (19)

Clearly substitution of equations (11), (12) and (13) demonstrate that this is not
the case.
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In addition that a differential consequence of equations (16) and (17) incorpo-
rating the relation (3) is the differential equation for a, similar in form to (18),
namely:

(zx− s− c0x) ax − η2at = −a(n+ 1) (3z − c0) . (20)

Moreover, we note that equation (16) may be obtained directly by differentiating
the second surface invariant condition (10) with respect to x and then applying (2),
(11) – (14) together with the first of (10).

In summary, the results (15) to (20) together with the first invariant condition at
(10) may be simplified by eliminating z using (15) and combined to give three first
order partial differential equations which u (x, t), a (x, t) and f (x, t) must satisfy,
namely:

(

s+
((2n+ 1) c0 + rt)

3n+ 2
x

)

ux + rut =
(n+ 1) c0 − rt

3n+ 2
u , (21)

(

s+
((2n+ 1) c0 + rt)

3n+ 2
x

)

ax + rat =
(n+ 1)

3n+ 2
(c0 − 3rt) a , (22)

(

s+
((2n+ 1) c0 + rt)

3n+ 2
x

)

fx + rft =
((2n+ 1) c0 − (3n+ 1) rt)

3n+ 2
f +

xrtt

3n+ 2
+ st ,

(23)
where r (t) ≡ η2 (t) has been used to simplify the notation.

3 Solutions for the case n = 3

The exponent n which occurs in (1) is the so called Glen’s exponent and Fowler
[1] suggests that n ≈ 3 in physically realistic situations Thus in the following we
will assume that n = 3 although the analysis is unchanged for any non-Newtonian
values n > 1. The results presented assumed that each of the functions u, a and f
explicitly depend on x and t.

3.1 The case f = 0

Firstly, substitution of f = 0 into equation (23) gives r(t) = c1t+ c2 and s(t) = c3.

3.1.1 The subcase 7c0 + c1 6= 0, c1 6= 0

The solution of (21) and (22) may be expressed in terms of the similarity variable
ω = ω (x, t) for which:

ω (x, t) = (x+ c3) (c1t+ c2)
−(7c0+c1)/(11c1)

, when 7c0 + c1 6= 0 , (24)

with:

u (x, t) = ψ (ω) (c1t+ c2)
(4c0−c1)/(11c1)

, (25)

a (x, t) = A (ω) (c1t+ c2)
(4c0−12c1)/(11c1) . (26)
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Substituting the relationships into equation (1) with n = 3 gives rise to the ordinary
differential equation:

d

dω

(

ψ5ψ3
ω

5
+

(c1 + 7c0)ωψ

11

)

− c0ψ −A = 0 . (27)

3.1.2 The subcase 7c0 + c1 = 0, c1 6= 0

For this subcase it may be shown that:

ω (x, t) = x+ c3 ln (c1t+ c2) , when 7c0 + c1 = 0, , (28)

with

u (x, t) = ψ (ω) (c1t+ c2)
−1/7

, (29)

a (x, t) = A (ω) (c1t+ c2)
−8/7

. (30)

Substituting the relationships into equation (1) with n = 3 gives rise to the ordinary
differential equation:

d

dω

(

ψ5ψ3
ω

5
+ 7c0c3ψ

)

− c0ψ −A = 0 . (31)

3.1.3 The subcase c1 = 0

Without loss of generality consider the case c2 = 1. The solution of (21) and
(22) may be expressed in terms of the similarity variable ω = ω (x, t) for which:

ω (x, t) = (x+ c3) e−(7c0t)/(11) , (32)

with:

u (x, t) = ψ (ω) e4c0t/11 , (33)

a (x, t) = A (ω) e4c0t/11 . (34)

Substituting the relationships into equation (1) with n = 3 gives rise to the ordinary
differential equation:

d

dω

(

ψ5ψ3
ω

5
+

7c0ωψ

11

)

− c0ψ −A = 0 . (35)

3.2 The case s = 0, r 6= 0, f 6= 0

In this case equations (21) to (23) may be integrated immediately to give solutions
in terms of the similarity variable ω = ω (x, t) for which:

ω (x, t) = xr−1/11 exp

(

−
7c0
11

∫

dt

r

)

, (36)
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with:

u (x, t) = ψ (ω) r−1/11 exp

(

4c0
11

∫

dt

r

)

, (37)

a (x, t) = A (ω) r−12/11 exp

(

4c0
11

∫

dt

r

)

, (38)

f (x, t) =
(ωrt

11
+ F (ω)

)

r−10/11 exp

(

7c0
11

∫

dt

r

)

. (39)

Substituting the relationships into equation (1) with n = 3 gives rise to the ordinary
differential equation:

3
5 ψ

5ψ2
ωψωω + ψ4ψ4

ω + 7
11 c0ωψω − 4

11 c0ψ − ψFω − ψωF −A = 0 . (40)

That is:
d

dω

(

ψ5ψ3
ω

5
+

7c0ωψ

11
− ψF

)

− c0ψ − A = 0 . (41)

3.3 The case s 6= 0, r 6= 0, f 6= 0

In this case the similarity variable has the form:

ω (x, t) = xr−1/11 exp

(

−
7c0
11

∫

dt

r

)

− b (t) , (42)

where

b (t) =

∫
{

s

r12/11
exp

(

−
7c0
11

∫

dt

r

)}

dt (43)

and the solutions (370 and (38) for u (x, t) and a (x, t) still apply. However the
solution for f (x, t) now becomes:

f (x, t) =
[ωrt

11
+ F (ω) + h (t)

]

r−10/11 exp

(

7c0
11

∫

dt

r

)

, (44)

where

h (t) =
rt + 7c0

11
b+ rbt . (45)

The resulting ordinary differential equation is once again (41).

3.4 The case r = 0, f 6= 0

In the following only the non-trivial case c0 6= 0 is considered. Equations (21) to
(23) may be integrated immediately to give the following solutions:

u (x, t) = m (11s+ 7c0x)
4/7

, (46)

a (x, t) = n (11s+ 7c0x)
4/7

, (47)

f (x, t) = p (11s+ 7c0x) −
xst

7c0
, (48)
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where the relationship between the functions m = m (t), n = n (t) and p = p (t)
may be found upon substitution of equations (46) to (48) into (1). The following
equation holds:

mt = −11c0mp− n+
704c40m

8

5
. (49)

4 Results of the non-classical analysis

In this section consideration is given the non-classical approach which is a gen-
eralization of the classical Lie method due to Bluman & Cole [6] that in corporates
the surface invariant condition.

In the following the ice–sheet equation will be considered in the form (1) and
the symmetry generator will now have the form:

X = η1 (x, t, u)
∂

∂x
+ η2 (x, t, u)

∂

∂t
+ φ (x, t, u)

∂

∂u
(50)

and the condition for invariance of (1) is the equation

X
(2)
E (Ψ) |Ψ=0,Ω=0 = 0 , (51)

where the second prolongation operator X
(2)
E is written in the form

X
(2)
E = X + φ[t] ∂

∂ut
+ φ[x] ∂

∂ux
+ φ[xx] ∂

∂uxx
, (52)

where φ[t], φ[x] and φ[xx], are defined through the transformations of the partial
derivatives of u. In particular:

ūx̄ = ux + εφ[x] (x, t, u) +O
(

ε2
)

,

ūt̄ = ut + εφ[t] (x, t, u) +O
(

ε2
)

, (53)

ūx̄x̄ = ux + εφ[xx] (x, t, u) +O
(

ε2
)

and the condition for invariance of surface u=u (x, t) is:

Ω=φ−η1ux − η2ut = 0 . (54)

With the aid of Macsyma program symmgrp.max adapted for non-classical anal-
ysis it may be shown that equation (1) has the following infinitesimals:

η2 (x, t, u) = 1 , (55)

η1 (x, t, u) = h+ x
(2n+ 1)g2 − gt

(3n+ 2)g
, (56)

φ (x, t, u) = u
(n+ 1)g2 + gt

(3n+ 2)g
, (57)
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where g = g (t), h = h (t). For this case the functions u (x, t), a (x, t) and f (x, t)
satisfy:

[

(3n+ 2)gh+ x
(

(2n+ 1)g2 − gt

)]

ux + (3n+ 2)gut = u
(

(n+ 1)g2 + gt

)

, (58)
[

(3n+ 2)gh+ x
(

(2n+ 1)g2 − gt

)]

ax + (3n+ 2)gat = (n+ 1)
(

g2 + gt

)

, (59)

[

(3n+ 2)gh+ x
(

(2n+ 1)g2 − gt

)]

fx + (3n+ 2)gft =

= f
(

g2(1 + 2n) + gt(1 + 3n)
)

+ (3n+ 2) (ght − hgt) − xg

(

gt

g

)

t

. (60)

We observe that equations (58) to (60) are essentially the same as (21) to (23)
and so conclude that the non-classical symmetries are equivalent to the potential
cases.

5 Particular example

Consider the case of a non-sliding ice sheet at the base so that f = 0 and
consider the particular values, c0 = −0.1, c1 = 1, c2 = 1 and c3 = 0 with the initial
condition for the ice sheet profile:

u (x, 0) = ψ (ω) = 1
2 cos

(

ω
4

)

. (61)

Then according to he subcase 7c0 + c1 6= 0, c1 6= 0 and equations (24), (25) the
similarity solution is

ω (x, t) =
x

(1 + t)
0.0273 , (62)

u (x, t) =
ψ (ω)

(1 + t)0.1272 (63)

with accumulation–ablation function given by (26) and (27) so that:

a (x, t) = A (ω) (1 + t)
0.0727

(64)

with

A(ω) = 0.153× 10−4 cos4
(

ω
4

)

sin4
(

ω
4

)

− 0.916× 10−5 cos6
(

ω
4

)

sin2
(

ω
4

)

+

+ 0.636× 10−1 cos
(

ω
4

)

− 0.341× 10−1ω sin
(

ω
4

)

. (65)

In this case the propagation fronts of the ice sheet region are are found from:

ψ = 0 , (66)

so
x±(t) = ±2π (1 + t)

0.0273
(67)

8



Similarity solutions of an equation describing ice sheet dynamics

and the finite velocity is:

d

dt
x±(t) = ±0.0546π (1 + t)

−0.973
. (68)

Figures 1 – 3 illustrate the time evolution of the ice sheet u (x, t) and also the
accumulation–oblation function a (x, t). This example clearly demonstrates the
changes in the propagation fronts x±(t) of the ice sheet. In addition it demonstrates
the critical property of the existence of a closed form solution for the accumulation–
ablation function which changes sign, and is negative near the propagation fronts.

Fig. 1. Plots of the initial ice sheet profile, u (x, 0) [upper curve] and also the initial
accumulation–ablation function, a (x, 0) [lower curve] versus x.

6 Comments and future work

In this paper we have concentrated on the problem of determining closed form
similarity solutions using potential symmetries for the ice sheet dynamics model
in the forms (1) and (2). These are the so called strong forms [2]. The main
aim has been to demonstrate that classes of such solutions exist and that they
contain physically realistic properties. However the strong formulation of the ice
sheets dynamics problems contains certain modelling deficiencies because inadmis-
sible solutions for which u (x, t) < 0 are possible. Certainly the solution approach
presented here demonstrates the possibility of such unrealistic solutions. It is for
this reason that this research is continuing and in the next phase we are seeking
solutions corresponding to the weak formulation of the problem by Dı́az and Schiavi
[7], [8] containing a function β (u) < 0 and a modified model:

Ψ (x, t, u,ut,ux,uxx) ≡ ut − a+ β −

(

un+2 |ux|
n−1

ux

n+ 2
− fu

)

x

= 0 . (69)
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Fig. 2. Plots of the ice sheet profile, u (x, 100) [upper curve] and also the accumulation–
ablation function, a (x, 100) [lower curve] at time t = 100 versus x.

Fig. 3. Plots of the ice sheet profile, u (x, 10000) [upper curve] and also the accumulation–
ablation function, a (x, 10000) [lower curve] at time t = 10000 versus x.

In this case the focus is on both a classical and a non-classical symmetry reduc-
tion of the equation. It is expected that use of the non-classical method on this
occasion will extend the range of possible solutions.

In a further development we consider a more general framework to encompass a
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wider range of physical applicability for the mathematical analysis. This is achieved
by defining two functions:

φ (r) = |r|
n−1

r , ψ (s) = sn (70)

and defining the new functions U(x, t) and b (s) so that:

U = um = ψ (u) , ⇒ U1/m = u = ψ−1 (U) = b (u) (71)

so that:
φ (ψ (u)x) = φ (Ux) = |Ux|

p−2
Ux , (72)

where p = n+ 1. In this way the mathematical framework may be taken to be:

b (U)t − [kφ (W ) − fb (U)]x + β (U) − a (x, t) = 0 , (73)

where k is a constant and:
W = Ux . (74)

This may also be written in a conserved or potential form by writing

Vx + λ− b = 0 , (75)

Vt − kψ + bf = 0 , (76)

W = Ux , (77)

where b = b (U), ψ = ψ (U), λ = λ (x, t, U), f = f (x, t) provided that:

a− β ≡ λt . (78)
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