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We review the spin bit model describing anomalous dimensions of the operators of
Super Yang–Mills theory. We concentrate here on the scalar sector. In the limit of large
N this model coincides with integrable spin chain while at finite N it has nontrivial chain
splitting and joining interaction.
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1 Introduction

Effective description of gauge interactions in terms of string has a long history
[1] (see [2] for a more recent review). Last years the development of the field has
streamlined into what is know as AdS/CFT (or Maldacena) conjecture [3, 4], which
claims that superstring theory in the background of AdS5×S5 is essentially the same
as N = 4 Super Yang–Mills (SYM) model in four–dimensional Minkowski space
which is the topological boundary of AdS5. The assumption is based on the fact that
two theories have the same symmetry group whose bosonic part SO(2, 4)× SU(4)
is one one hand the symmetry group of AdS5 × S5 space and one the other hand
is the conformal group of four–dimensional Minkowski space. (Due to vanishing of
β–functions N = 4 SYM model is a conformally invariant model.)

Identifying irreducible representation of both groups one can put into one-to-
one correspondence operators in SYM and states in the string theory. In partic-
ular, anomalous dimensions of operators in SYM theory (which are eigenvalues of
the dilations) correspond to energy levels in string theory (see [5] for a review of
AdS/CFT correspondence).

Recently much progress was achieved in understanding the scaling properties
of SYM operators (see e.g. [6]). In particular, it was found for the scalar sector
of SYM theory operators that in the planar limit the anomalous dimension matrix
can be mapped into the Hamiltonian of integrable SU(4) ∼ SO(6) spin chain [7],
this result was further generalized to the whole symmetry supergroup SU(2, 2|4)
in [8]. Thus, Bethe Ansatz allows one to find the planar anomalous dimension
of any operator in SYM without computing explicitly the corresponding Feynman
diagrams. This spin chain is supposed to be a discrete version of the string in AdS
background.

Going beyond the planar limit results in allowing chains to split and join. (When
a fixed number of impurities is considered this dynamics can be described in terms
of a quantum mechanical system like one in [9].) The natural task is, then, to
extend the spin chain description to the nonplanarity. Indeed, one can do a one-to-
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one map of SYM operators into a system of interacting spins — spin bits such that
the anomalous dimension matrix of SYM operators maps to a Hamiltonian for this
spin system at finite N . In this note we are going to review this model. Interesting
reader can find more details in the original paper [10].

2 Preliminaries

We consider scalar k–trace operators of the type1),

O = tr φ
i
(1)
1

· · ·φ
i
(1)
L1

tr φ
i
(2)
1

· · ·φ
i
(2)
L1

. . . tr φ
i
(k)
1

· · ·φ
i
(k)
Lk

, (1)

where Li are the lengths of traces and L = L1 + L2 + · · · + Lk is the total length.
The above operators can be equivalently represented in the following form,

O ≡ |s; γ〉 = φ
a1aγ(1)

i1
φ

a2aγ(2)

i2
. . . φ

aLaγ(L)

iL
, (2)

where γ is an element of the permutation group of {1, 2, . . . , L} and s labels the
indices i1, i2, . . . , iL. In particular, the operator (1) corresponds to a permutation
with cycles (L1)(L2) . . . (Lk). It is not difficult to see that to each permutation one
can put into correspondence a trace of operators if one specifies the index of each
letter.

Graphically the field φ insertion will be represented by a site with two valent
lines, like follows:

k

The incoming arrow connects with the site γ−1(k) while the outgoing one goes to
γ(k). In general, the arrow denote the action of the permutation.

3 The Hamiltonian

The Hamiltonian in the combinatorial form is obtained by computing the action
of the operator [11]

H ≡ ∆(2) = − : tr[φm, φn][φ̌m, φ̌n] : − 1
2 : tr[φm, φ̌n][φm, φ̌n] : , (3)

where,

φ̌ab
i =

∂

∂φba
i

, (4)

and colons denote that derivatives do not act on other fields in the group.
Let us compute directly the action of the operator (3) on a state |s; γ〉,

H |s; γ〉 =
[

2(δj1j4δj2j3 − δj1j3δj2j4) : trφj1φj2 φ̌j3 φ̌j4 : +

+δj1j3δj2j4 : trφj1 φ̌j2φj3 φ̌j4 : +

+δj1j4δj2j3 : trφj1 φ̌j2 φ̌j3φj4 :
]

(

φ
a1aγ(1)

i1
. . . φ

aLaγ(L)

iL

)

.

(5)

1) The number of traces can vary, it is a dynamical quantity
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Fig. 1. Action of Σkl on the permutation state γ.

Application of the operator from the second line of (5) yields,

2δakaγ(l)
(

φ
a1aγ(1)

i1
. . . φ

aaγ(k)

ik
. . . φala

il
. . . φ

aLaγ(L)

iL

)

−

−2δakaγ(l)
(

φ
a1aγ(1)

i1
. . . φala

ik
. . . φ

aaγ(k)

il
. . . φ

aLaγ(L)

iL

)

.
(6)

This corresponds to graphs with modified cyclic structure: γ 7→ γ · σkγl
and γ 7→

σkl ·σkγl
·γ ·σkl respectively for the first and second line of (6) (see fig. 1. Therefore,

action of this part of the Hamiltonian (3) can be represented as,

2
[

|s; γ · σkγl
〉 − |s; σkl · γ · σkγl

· σkl〉
]

. (7)

Analogously, the second line of (5) produce the modified cycles given by,

∑

kl

Kkl

[

|s; γ · σkγl
〉 − |s; γ · σγkγl

〉
]

. (8)

Combining both results (7) and (8) together, one gets for the total Hamiltonian :

H |s; γ〉 =
∑

kl

2
(

|s; γ · σkγl
〉 − |s; σkl · γ · σkγl

· σkl〉
)

+

+
∑

kl

Kkl

(

|sγ · σkγl
〉 − |s; γ · σγkγl

〉
)

=

=
∑

kl

[

2(1 − Pkγ−1(l)) + (Kkγ−1(l) − Kγ−1(k)γ−1(l))
]

|sγ · σkl〉 ≡

≡
∑

kl

(Hkγ−1(l) − Hγ−1(k)γ−1(l))Σkl |s; γ〉 .

(9)

Here we introduced the joining/splitting operator Σkl, which change the permuta-
tion group element as follows,

Σkl |s; γ〉 =

{

|s; γ · σkl〉 , k 6= l ,

N |s; γ〉 , k = l .
(10)

Factor N for coinciding k and l appears due to the fact that splitting and joining
the trace in the same point results in multiplying by tr Id = N .
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Note that since γk appears as index in the spin part (9) the order between Γkl

and Hkl is important. One can, however re-sum (9) in order to get a form in which
spin and permutation parts are completely independent and commute:

H =
∑

k,l

Hkl(Σkγl
− Σγkγl

) . (11)

4 The Hilbert space

Consider the description of the operators (2) in terms of the spin states. The
L-field operator like (1) should be labelled by the spin variables {sα

n} and a per-
mutation group element γ.

The spin part itself is represented by a vector in the tensor product of one spin
representations corresponding to each “site” n,

|s1〉 ⊗ |s2〉 · · · ⊗ |sL〉 ≡ |s〉 . (12)

Obviously, one can choose an orthonormal, basis in the one–spin space such
that, sn = sα

neα and

〈eα | eβ〉 = δαβ . (13)

The “graph” part of the state we denote by |γ〉, γ ∈ ΓL, permutation group of
L elements. For the space of permutation there is a natural scalar product,

〈γ | γ′〉 = δγγ′ , (14)

i.e. it is zero for different permutations and unity when contracted with itself.
The states in our model should be represented as elements tensor product of

the above two spaces modulo the symmetry group SL,

|{s}, γ〉 ∈ {|{s}〉 ⊗ |γ〉}/SL , (15)

where the symmetry group acts as follows,

Σ̂σ |s〉 ⊗ |γ〉 = |sσ〉 ⊗
∣

∣σ−1 · γ · σ
〉

, σ ∈ SL , (16)

where

sσ = {sσ(1), sσ(2), . . . , sσ(L)} (17)

is a permutation of indices given by σ ∈ SL. Indeed, as it is not very difficult to see
the original and permuted states describe, in fact, the same trace in SYM model.

Given an arbitrary basis element |s〉 ⊗ |γ〉 one can find an element of the factor
(15) by averaging with respect to the action of the group ΓL,

|s; γ〉 =
1

|SL|

∑

σ∈SL

|sσ〉 ⊗
∣

∣σ−1 · γ · σ
〉

≡ Π̂ |s〉 ⊗ |γ〉 , (18)
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where Π is the cyclic symmetry projector,

Π =
1

|SL|

∑

σ∈SL

Uσ ⊗ Σ̂σ , (19)

where Uσ and Σ̂σ are the following operators

Uσ = P1σ(1) ⊗ P2σ(2) · · · ⊗ PLσ(L) , Σ̂σ |γ〉 =
∣

∣σ−1 · γ · σ
〉

(20)

and |SL| stays for the order of SL. As we mentioned Π is a projector, i.e. Π2 = Π,
also it is not difficult to see that Π commutes with permutation invariant operators.

Obviously, the above states are invariant with respect to the action of the gauge
group SL. In particular, when σ = γ this symmetry represents the cyclicity of the
trace(s).

5 Gauge symmetry

Let us show that the spin bit Hamiltonian (11) can be seen as arising from
gauging of the planar spin chain. Since γ has the natural interpretation of the
connection then the γ preserving symmetry n 7→ σ(n) has the meaning of the
“global” gauge symmetry. (In fact this is translation symmetry.)

As we have seen in the previous section, an arbitrary permutation leads to more
general transformation rules for “points” and “connections”

n 7→ σ(n) , γ 7→ σ−1 · γ · σ . (21)

Now, this is the localized version of the shift transformation, i.e. the discrete analog
of the diffeomorphism transformations.

By direct evaluation of the Hamiltonian (11) one can show that it is invariant
with respect to transformations (21). The Hamiltonian (11) can be rewritten in
the following form,

H =
∑

kl

VklHkl , (22)

where,
Vkl = Σkγl

− Σγkγl
. (23)

In above expression Vkl can be expressed as the discrete gauge connection between
sites k and l.

On the other hand, consider the planar spin chain Hamiltonian,

H0 =
∑

k

Hk,k+1 =
∑

kl

V
(0)
kl Hkl , (24)

where,

V
(0)
kl = δkγ0(l) − δγ0(k)γ0(l) , γ0(n) = n + 1 . (25)

The above expression (25) differs from the complete nonplanar Vkl in eq. (23) by
the only fact that operators Σkl are replaced by Kronecker delta symbols δkl.
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Now it is clear, that passing from planar to general non-planar description
amounts in “switching on” the gauge field operator Vkl (or Σkl), which plays the
role of the gauge field. This procedure is sensitive to transformation properties of
the fields to the permutation group action only and not on the structure of Hkl.
Therefore, this procedure can be applied for obtaining the nonplanar Hamiltonian
in the case of the spin chain with arbitrary group just passing from V (0) to V .
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