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1 Introduction

Recently problems related to surfaces immersed in Rn in connection with inte-
grable systems have been researched extensively (for a review see [1] and the ref-
erences therein). The progress in the analytic treatment of surfaces obtained from
nonlinear differential equations has been rapid and resulted in many new techniques
and theoretical approaches. Some of the most interesting developments have been
in the study of surfaces immersed in Lie algebras, using techniques of completely
integrable systems [2, 3, 4, 5, 6]. These surfaces are characterized by fundamen-
tal forms whose coefficients satisfy Gauss–Weingarten and Gauss–Codazzi–Ricci
equations.

In this paper we review our results obtained in [7] by application of group–
theoretical approach to surfaces associated to the CP N−1 sigma models, namely
the form of Gauss–Weingarten equation, construction of moving frame etc. It turns
out that in CP 1 case the associated surface have constant Gauss curvature. Finally
we construct explicit examples of surfaces; all but one were not constructed in this
way before.
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2 CP
N−1 sigma models and their equations of motion

The points of the complex coordinate space CN will be denoted by z = (z1, . . . , zN )
and the hermitian inner product in CN by

〈z, w〉 = z†w =

N
∑

j=1

z̄jwj . (1)

The complex projective space CP N−1 is defined as a set of 1–dimensional sub-
spaces in CN . The manifold structure on it is defined by an open covering

Uk = {[z] |z ∈ C
N , zk 6= 0}

and coordinate maps

ϕk : Uk → C
N−1 , ϕk(z) =

(

z1

zk
, . . . ,

ẑk

zk
, . . . ,

zN

zk

)

,

where the symbol dash means that the element is omitted.
Let ξ1, ξ2 be the standard Minkowski coordinates in R2, with the metric

ds2 = (dξ1)2 − (dξ2)2 .

In what follows we suppose that ξL = ξ1 + ξ2, ξR = ξ1 − ξ2 are the light–cone
coordinates in R2, i.e.

ds2 = dξL dξR. (2)

We shall denote by ∂L and ∂R the derivatives with respect to ξL and ξR, respectively,
i.e.

∂L = 1
2

(

∂ξ1 + ∂ξ2

)

, ∂R = 1
2

(

∂ξ1 − ∂ξ2

)

.

In the study of CP N−1 sigma models we are interested in maps

[z] : Ω → CP N−1,

where Ω is an open, connected and simply connected subset in R2 with Minkowski
metric (2), which are stationary points of the action functional (see e.g. [8])

S =

∫

Ω

1
4 (Dµz)†(Dµz) dξ1 dξ2 , z† · z = 1 . (3)

The covariant derivatives Dµ act on z : Ω → CN according to the formula

Dµz = ∂µz −
(

z† · ∂µz
)

z , ∂µ ≡ ∂ξµ , µ = 1, 2 (4)

and ensure that the action depends only on [z] : Ω → CP N−1 and not on the choice
of a representative of the class [z]. Thus the map [z] is determined as a solution of
the Euler–Lagrange equations defined by the action (3). Writing

z =
f

|f | (5)
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one may present the action functional (3) also in the form

S =

∫

Ω

L dξL dξR =

∫

Ω

1

4|f |2
(

∂Lf †P∂Rf + ∂Rf †P∂Lf
)

dξL dξR , (6)

where the N × N matrix

P = 1 − 1

|f |2 f ⊗ f † (7)

is an orthogonal projector on CN .
The equations of motion in terms of f read

P

{

∂L∂Rf − 1

(f †f)

(

(f †∂Rf)∂Lf + (f †∂Lf)∂Rf
)

}

= 0 , (8)

and can be also expressed in the form of a conservation law

∂L[∂RP, P ] + ∂R[∂LP, P ] = 0 . (9)

The real–valued currents

JL =
1

f †f
∂Lf †P∂Lf , JR =

1

f †f
∂Rf †P∂Rf (10)

satisfy
∂LJR = ∂RJL = 0 (11)

for any solution f of the equations of motion (8).

3 CP
N−1 sigma model and surfaces

Let us denote
ML = [∂LP, P ] , MR = [∂RP, P ] . (12)

Explicitly we have

MD =
1

f †f

(

P∂Df ⊗ f † − f ⊗ ∂Df †P
)

∈ su(N) , D = L, R . (13)

It follows from (13) that ∂BMD ∈ su(N). From (9) we know that if f is a solution
of the equations of motion (8) then

∂LMR + ∂RML = 0 . (14)

Therefore we can make an identification

XL = ML , XR = −MR (15)

and we have a closed su(N)–valued 1–form

dX = XL dξL + XR dξR . (16)
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We introduce on su(N) a scalar product

(A, B) = − 1
2 tr AB

and identify (N2 − 1)–dimensional Euclidean space with the su(N) algebra

R
N2−1 ' su(N) .

Now we can locally associate to CP N−1 model a surface F by integration of the
locally exact form dX :

X =

∫

γ

dX : R
2 −→ R

N2−1 ' su(N) . (17)

The map X is called the Weierstrass formula for immersion.
By computation of traces we immediately find the components of the induced

metric on the surface F
G =

(

GLL, GLR

GLR, GRR

)

, (18)

where

GLL = (XL, XL) =
1

f †f
∂Lf †P∂Lf = JL ,

GLR = (XL, XR) = − 1

2f †f

(

∂Rf †P∂Lf + ∂Lf †P∂Rf
)

,

GRR = (XR, XR) =
1

f †f
∂Rf †P∂Rf = JR ,

i.e. the first fundamental form of the surface F is

I = JL dξ2
L − 1

f †f

(

∂Rf †P∂Lf + ∂Lf †P∂Rf
)

dξL dξR + JR dξ2
R . (19)

The first fundamental form I defined by (19) is positive for any solution f of
the equations of motion (8). It is positive definite in the point (ξ0

L, ξ0
R) either if

=
(

∂Lf †(ξ0
L, ξ0

R)P∂Rf(ξ0
L, ξ0

R)
)

6= 0 (20)

or if
∂Lf(ξ0

L, ξ0
R) , ∂Rf(ξ0

L, ξ0
R) , f(ξ0

L, ξ0
R) (21)

are linearly independent.
The conditions (20), (21) are the sufficient conditions for the existence of the

surface F associated to the solution f of the equations of motion (8) in the vicinity
of the point (ξ0

L, ξ0
R). If neither of the conditions (20), (21) is met on an image

ImX(Θ) of a lower dimensional subset Θ ⊂ R2 then the surface F may or may not
exist depending on circumstances. If both conditions (20), (21) are violated in the
whole neighborhood Ω ⊂ R2 of the point (ξ0

L, ξ0
R) then the surface doesn’t exist in

the vicinity of the point (ξ0
L, ξ0

R).
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The formula for Gaussian curvature can be written as

K =
1

√

GLLGRR − G2
LR

∂R

(

∂LGLR − 1
2 GLR∂L(ln JL)

√

GLLGRR − G2
LR

)

. (22)

Its explicit evaluation seems to be too complicated in general case.
In the CP 1 case a surprising simplification happens and we have

K = −4 . (23)

Because the Gauss curvature is negative, there are no umbilical points on the surface
and solutions of the equation of motion give rise to pseudospheres immersed in
su(2) ' R3. Examples will be presented in Section 4.

3.1 Gauss−Weingarten equations

We may formally determine a moving frame on a surface in RN2−1 and write the
Gauss–Weingarten equations in the CP N−1 case.

Let f be a solution of (8) such that det(G) is not zero in a neighborhood of
a regular point (ξ0

L, ξ0
R) in R2. Then in this neighborhood the properties of the

associated surface F can be described by the moving frame

~τ = (∂LX, ∂RX, n3, . . . , nN2−1) ,

where the vectors ∂LX , ∂RX , n3, . . . , nN2−1 are assumed to satisfy the normal-
ization conditions

(∂LX, ∂LX) = GLL , (∂LX, ∂RX) = GLR , (∂RX, ∂RX) = GRR ,

(∂LX, nk) = (∂RX, nk) = 0 , (nj , nk) = δjk .
(24)

The moving frame satisfies the Gauss–Weingarten equations

∂L∂LX = AL
L∂LX + AL

R∂RX + QL
j nj ,

∂L∂RX = H̃jnj ,

∂Lnj = αL
j ∂LX + βL

j ∂RX + sL
jknk ,

∂R∂LX = H̃jnj ,

∂R∂RX = AR
L∂LX + AR

R∂RX + QR
j nj ,

∂Rnj = αR
j ∂LX + βR

j ∂RX + sR
jknk , (25)

where sL
jk + sL

kj = 0, sR
jk + sR

kj = 0, j, k = 3, . . . , N2 − 1

αL
j =

H̃jGLR − QL
j GRR

det G
, βL

j =
QL

j GLR − H̃jGLL

det G
,

αR
j =

QR
j GLR − H̃jGRR

det G
, βR

j =
H̃jGLR − QR

j GLL

det G
,
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AL
L =

1

det G
<
{

1

f †f

(

JR∂Lf † + GLR∂Rf †
)

P∂L∂Lf −

− 2∂Lf †f

(f †f)2
(∂Rf †P∂Lf)GLR − 2f †∂Lf

f †f
JLJR

}

,

AL
R =

1

det G
<
{

− 1

f †f

(

JL∂Rf † + GLR∂Lf †
)

P∂L∂Lf +

+
2∂Lf †f

(f †f)2
(∂Rf †∂Lf)JR +

2f †∂Lf

f †f
JLGLR

}

, (26)

AR
L , AR

R have similar form and can be obtained by exchange L ↔ R. The explicit
form of the coefficients H̃j , QD

j (where D = L, R; j = 3, . . . , N2−1) depends on the
chosen orthonormal basis of the normal space span{n3, . . . , nN2−1} to the surface
F at the point X(ξ0

L, ξ0
R).

Equivalently, the Gauss–Weingarten equations can be written in the N × N

matrix form
∂L~τ = U~τ , ∂R~τ = V ~τ , (27)

where

U =

















AL
L AL

R QL
3 . . . QL

N2−1

0 0 H̃3 . . . H̃N2−1

αL
3 βL

3 sL
33 . . . sL

3(N2−1)

. . . . . . . . . . . . . . .

αL
(N2−1) βL

(N2−1) sL
(N2−1)3 . . . sL

(N2−1)(N2−1)

















,

V =

















0 0 H̃3 . . . H̃N2−1

AR
L AR

R QR
3 . . . QR

N2−1

αR
3 βR

3 sR
33 . . . sR

3(N2−1)

. . . . . . . . . . . . . . .

αR
(N2−1) βR

(N2−1) sR
(N2−1)3 . . . sR

(N2−1)(N2−1)

















.

(28)

The Gauss–Codazzi–Ricci equations take the form

∂RU − ∂LV + [U, V ] = 0 (29)

and are identically satisfied for any solution f of (8).
The second fundamental form of the surface F at the regular point p takes the

shape of a map
II(p) : TpF × TpF → NpF ,

where TpF , NpF denotes the tangent and normal space to the surface F at the
point p, respectively.

According to [9, 10], the second fundamental form can be formulated as

II =

(

∂2X

∂ξj∂ξk

)⊥

dξj dξk ,
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i.e.

II = (∂L∂LX)⊥dξL dξL + (∂L∂RX)⊥dξL dξR + (∂R∂RX)⊥dξR dξR , (30)

where ( )⊥ denotes the normal part of the vector. The mean curvature vector is

H = (G−1)jk

(

∂2X

∂ξj∂ξk

)⊥

,

i.e.

H =
1

det G

(

GRR(∂L∂LX)⊥ − 2GLR(∂L∂RX)⊥ + GLL(∂R∂RX)⊥
)

. (31)

Unfortunately, it is clear that after explicit calculation of (
∂2X

∂ξj∂ξk
)⊥ in the case

N > 2 both the second fundamental form and the mean curvature vector will
contain terms like P∂L∂Lf ⊗ f † etc., since they are not in TpF and they have
nothing to cancel with. Therefore the resulting expressions are rather complicated
and we present them only formally

II = (∂L∂LX − AL
L∂LX − AL

R∂RX) dξL dξL + 2(∂L∂RX) dξL dξR+

+(∂R∂RX − AR
L∂LX − AR

R∂RX) dξR dξR .
(32)

where AL
L, . . . , AR

R are defined in (26) and ∂B∂DX are expressed in terms of f by

∂L∂RX = ∂R∂LX = [∂LP, ∂RP ] =

=
1

f †f

(

P∂Lf ⊗ ∂Rf †P − P∂Rf ⊗ ∂Lf †P
)

+

+
1

(f †f)2
(

∂Lf †P∂Rf − ∂Rf †P∂Lf
)

f ⊗ f † , (33)

∂L∂LX =
1

f †f

(

P∂L∂Lf ⊗ f † − f ⊗ ∂L∂Lf †P
)

+

+
2

(f †f)2
(

(∂Lf †f)f ⊗ ∂Lf †P − (f †∂Lf)P∂Lf ⊗ f †
)

,

∂R∂RX =
1

f †f

(

f ⊗ ∂R∂Rf †P − P∂R∂Rf ⊗ f †
)

+

+
2

(f †f)2
(

(f †∂Rf)P∂Rf ⊗ f † − (∂Rf †f)f ⊗ ∂Rf †P
)

. (34)

The mean curvature vector is

H =
1

det G

(

GRR(∂L∂LX − AL
L∂LX − AL

R∂RX) − 2GLR(∂L∂RX)+

+GLL(∂R∂RX − AR
L∂LX − AR

R∂RX)
)

.

(35)
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For the CP 1 model it is natural to identify the one–dimensional space NpF with
R. Using parametrization

f = (1, w) , (36)

we find

II =
2i

(1 + ww̄)2
(

∂Lw∂Rw̄ − ∂Rw∂Lw̄
)

dξL dξR . (37)

3.2 The moving frame of a surface in the algebra su(N)

Let us choose an orthonormal basis in su(N) in the following form

(Ajk)ab = i(δjaδkb + δjbδka) , j < k ≤ N ,

(Bjk)ab = (δjaδkb − δjbδka) , j < k ≤ N ,

(Cp)ab = i

√

2

p(p + 1)

(

p
∑

d=1

δdaδdb − pδp+1,aδp+1,b

)

, p < N . (38)

Let f be a solution of the equations of motion (8) and let (ξ0
L, ξ0

R) be a regular
point in R2, i.e. such that det G

(

f(ξ0
L, ξ0

R)
)

6= 0. Let us denote f0 = f(ξ0
L, ξ0

R),
X0 = X(ξ0

L, ξ0
R). Define

Φ†
k =





































1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
...

...
...

...
...

...

0 . . .
f̄0

k

(
P

N
j=k f0

j f̄0
j )1/2

(
PN

j=k+1
f0

j f̄0
j )1/2

(
P

N
j=k f0

j f̄0
j )1/2 0 . . .

0 . . . − (
PN

j=k+1
f0

j f̄0
j )

1/2

(
PN

j=k f0
j f̄0

j )1/2

f0
k

(
PN

j=k f0
j f̄0

j )1/2 0 . . .

0 . . . 0 0 1 . . .
...

...
...

...
...

...
0 . . . 0 . . . 0 1





































, k ≤ N − 2 ,

Φ†
N−1 =





















1 0 . . . 0
0 1 . . . 0
...

...
...

...

0 . . .
f̄0

N−1

(f0
N−1

f̄0
N−1

+f0
N f̄0

N)
1/2

f̄0
N

(f0
N−1

f̄0
N−1

+f0
N f̄0

N)
1/2

0 . . . − f0
N

(f0
N−1

f̄0
N−1

+f0
N f̄0

N)
1/2

f0
N−1

(f0
N−1

f̄0
N−1

+f0
N f̄0

N)
1/2





















,

Φ† = Φ†
1Φ

†
2 . . . Φ†

N−1 ∈ SU(N) . (39)

If any of the denominators vanishes then the corresponding matrix Φk is defined
to be the unit matrix.
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Then

Φ†f0 = (
√

f0†f0, 0, . . . , 0)T ,

∂Φ
LX0 ≡ Φ†∂LX(ξ0

L, ξ0
R)Φ =

1
√

f0†f0

(

0 −∂Φ
Lf0†

∂Φ
Lf0 0

)

, (40)

∂Φ
RX0 ≡ Φ†∂RX(ξ0

L, ξ0
R)Φ = − 1

√

f0†f0

(

0 −∂Φ
Rf0†

∂Φ
Rf0 0

)

,

where 0 denotes null (N − 1) × (N − 1) matrix and the vectors ∂Φ
Df0 ∈ CN−1 are

defined by

(∂Φ
Df0)j−1 = (Φ†∂Df(ξ0

L, ξ0
R))j , D = L, R , j = 2, . . . , N .

Assume that one finds orthonormal vectors (using a variant of Gramm–Schmidt
orthogonalization procedure)

Ã1j , B̃1j , j = 3, . . . , N

such that

(∂Φ
KX0, Ã1j) = 0 , (∂Φ

KX0, B̃1j) = 0

and

span (∂Φ
KX0, Ã1j , B̃1j)K=L,R , j=3,...,N = span (A1j , B1j)j=2,...,N . (41)

Define

Ãjk = Ajk , B̃jk = Bjk , C̃p = Cp , 1 < j < k ≤ N , p = 1, . . . , N − 1 .

Then the moving frame of F at the point X0 = X(ξ0
L, ξ0

R) satisfying both the
normalization conditions (24) and the Gauss–Weingarten equations (25) is given
by

∂LX = Φ∂Φ
LX0Φ† ,

∂RX = Φ∂Φ
RX0Φ† ,

nA
jk = ΦÃjkΦ† , (42)

nB
jk = ΦB̃jkΦ† , 1 < j < k ≤ N ,

nC
p = ΦC̃pΦ

† , p = 1, . . . , N − 1 .

In N = 2 case a significant simplification occurs, namely there is only one
normal vector to the surface immersed in su(2)

n = nC
p = ΦC̃1Φ

†

and no orthogonalization is needed.

9
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4 Examples of surfaces in su(2)

Assuming
f = (1, w) ,

we may write the equations of motion in the form

∂L∂Rw − 2w̄

1 + ww̄
(∂Lw∂Rw) = 0 (43)

and the Weierstrass coordinate representation of the surface F immersed in R3

X1 =

∫

γ

−i

2(1 + ww̄)2

[

(∂Lw + w2∂Lw̄ − ∂Lw̄ − w̄2∂Lw) dξL +

+(∂Rw̄ + w̄2∂Rw − ∂Rw − w2∂Rw̄) dξR

]

,

X2 =

∫

γ

1

2(1 + ww̄)2

[

−(∂Lw + w2∂Lw̄ + ∂Lw̄ + w̄2∂Lw) dξL +

+(∂Rw + w2∂Rw̄ + ∂Rw̄ + w̄2∂Rw) dξR

]

,

X3 =

∫

γ

−i

(1 + ww̄)2

[

(w∂Lw̄ − w̄∂Lw) dξL + (w̄∂Rw − w∂Rw̄) dξR

]

. (44)

Xi depend on the end point (ξL, ξR) of the curve γ in R2 only, its other end point
(ξ0

L, ξ0
R) is assumed to be fixed.

We remind that in the su(2) case the resulting surfaces have constant negative
Gaussian curvature (23)

K = −4 .

4.1 Symmetry reduction

For the purpose of investigation of symmetries it appears to be useful to write the
equation of motion (43) in terms of real and imaginary part. Let us denote

w = u + iv .

Then the equation of motion (43) reads

∂L∂Ru =
2

1 + u2 + v2

(

u(∂Lu∂Ru − ∂Lv∂Rv) + v(∂Lv∂Ru + ∂Lu∂Rv)
)

,

∂L∂Rv =
2

1 + u2 + v2

(

u(∂Lv∂Ru + ∂Lu∂Rv) − v(∂Lu∂Ru − ∂Lv∂Rv)
)

.

The algebra of symmetry generators is infinite dimensional, consisting of

G = CξL ⊕ CξR ⊕ su(2) , (45)

where CξD , D = L, R denote infinite dimensional algebras of conformal transfor-
mations

CξD = {fD(ξD)∂ξD |fD ∈ C∞(R)}

10
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and su(2) is generated by transformations involving only dependent coordinates

L1 = u∂v − v∂u ,

L2 = 1
2 (1 + u2 − v2)∂u + uv∂v , (46)

L3 = −uv∂u + 1
2 (−1 + u2 − v2)∂v .

It turns out that only the vector field1)

Y = L1 + a∂ξL + b∂ξR , a, b ∈ R (47)

leads to solutions allowing associated surfaces, i.e. such that (20) holds2). A
solution invariant under (47) is of the form

w = R(χ)ei(ξL/a−f(χ)) , χ =
ξL

a
− ξR

b
, (48)

where R, f : R → R. Substituting this form of w into the equation of motion (43)
one finds two coupled ordinary differential equations of second order

R′′ − 2R

1 + R2
R′2 +

R(1 − R2)

1 + R2
(f ′ − f ′2) = 0 , (49)

f ′′ +
1 − R2

R(1 + R2)
(2R′f ′ − R′) = 0 , (50)

R′, f ′ etc. denote derivatives with respect to the symmetry variable χ. The system
(49),(50) has a similar form as the one obtained by the symmetry reduction of
the equations of the CP 1 sigma model in (1+2)–dimensions in [11]. Using the
procedure described there we arrive at an equivalent set of ODEs

U ′2 = −4A2U4 + 4KU3 + (8A2 − 8K − 1)U2 + 4KU − 4A2 , (51)

f ′ = A
(1 + R2)2

R2
+

1

2
, (52)

where

R(χ) =
√

−U(χ) , (53)

A, K are constants of integration.

A considerable number of solutions of (51) exists in terms of elementary func-
tions, elliptic functions and Painlevé transcendents [11]. We now use some of them
to construct several solutions of (43) and associated surfaces.

1) i.e. all other vector fields giving regular solutions can be transformed to (47) by symmetries
2) Relation (21) cannot hold if N = 2 since then f, ∂Lf, ∂Rf ∈ C2 are linearly dependent.
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4.2 The tanh solution

Firstly, we select for the construction of an example of associated surface a special
solution of (51)

U = − tanh2

(

χ − c

4a

)

.

Consequently, we find from (53), (52) that

R(χ) = tanh

(

χ − c

4a

)

, f(χ) =
χ + d

2
, (54)

d ∈ R being a constant of integration. Finally, substituting (54) into (48) we find
the solution of the equation of motion (43)

w = tanh α eiβ , (55)

where

α =
1

4

(

ξL

a
− ξR

b
− c

)

, β =
1

2

(

ξL

a
+

ξR

b
− d

)

and a, b, c, d are real parameters.
Using formula (14) the corresponding surface is a pseudosphere immersed in R3

(see Fig. 1)3) and can be written in a parametric form

X1 =
− cosβ

2 cosh 2α
+

1

2 cosh2
,

X2 = − sin β

2 cosh2α
, (56)

X3 =
tanh 2α − tanh 2

2
+ 1 − α ,

where we have assumed that the initial point of the curve was chosen

(α0, β0) = (1, 0) ,

i.e.

(ξ0
L, ξ0

R) =

(

2a +
d + c

2
,−2b +

d − c

2a

)

.

The surface is shown in Figure (1). Its tangent and normal vectors are

∂L
~X =

(

sin β + cosβ tanh 2α

4a cosh2α
,
sin β tanh 2α − cosβ

4a cosh 2α
,− (tanh 2α)2

4a

)T

,

∂R
~X =

(

sin β − cosβ tanh 2α

4b cosh2α
,
sin β tanh 2α + cosβ

4b cosh 2α
,
(tanh 2α)2

4b

)T

, (57)

~n =

(

tanh 2α cosβ, tanh 2α sin β,
1

cosh 2α

)T

.

3) All figures presented in this paper were constructed using Maple 9 computer algebra system.
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Fig. 1. Surface (56) associated to the tanh solution (55)

The properties of the surface are characterized by the first fundamental form

I =
1

16a2
dξL dξL − 1

8ab

(

2(tanh 2α)2 − 1
)

dξL dξR +
1

16b2
dξR dξR , (58)

the second fundamental form

II =
1

2ab

tanh 2α

cosh 2α
dξL dξR , (59)

the principal, mean and Gaussian curvatures

k1 = 2 sinh 2α , k2 = − 2

sinh 2α
,

H = sinh 2α − 1

sinh 2α
, K = −4 . (60)

The values of entries in matrices U , V in the Gauss–Weingarten equations (25) are

AL
L =

(sinh 2α)2 − 1

a sinh 4α
,

AL
R = − b cosh 2α

2a2 sinh 2α
,

13
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AR
L =

a cosh 2α

2b2 sinh 2α
,

AR
R =

(sinh 2α)2 − 1

b sinh 4α
. (61)

4.3 Exponential well solution

As an example of exponential solution of (49), (50) we select for the following,
so-called exponential well solution

R(χ) =

√

(p − 1) cosh(g(χ)) + (p + 1)

(p − 1) cosh(g(χ)) − (p + 1)
, (62)

f(χ) = arctan

(

p + 1

2
√−p

tanh g(χ)

)

+
(p + 2

√−p − 1)χ − 2
√−pχ0

2(p − 1)
+ d ,

where

g(χ) =
(p + 1)(χ − χ0)

2(p − 1)
, p < −1 .

The solution of the equation of motion (43) is expressed using the formula (48)

w = R(χ)ei(ξL/a−f(χ)) , χ =
ξL

a
− ξR

b
.

The first and second fundamental forms of the associated surface can be ex-
pressed from (62) by a straightforward, if tedious calculation. Because the results
appear to be quite complicated, we don’t present them here. The mean curvature
is

H = −e4g(χ) − 6e2g(χ) + 1

2 eg(χ) (e2g(χ) − 1)
. (63)

The Weierstrass coordinate representation (44) of the associated surface in this
case seems to be integrable only numerically. A picture of the surface is given in
Fig. 2 for the values of parameters

a = 1 , b = 1 , p = −3

2
, χ0 = 0 , d = 0 , ξL, ξL ∈ (−40, . . . , 40) .

4.4 Elliptic solution

There exists also a class of solutions of (49), (50) which can be written in terms of
elliptic functions. We select for the construction of a surface one of them which is
written in terms of Jacobi sn function

R(χ) =
√−p sn

(

√

Kq (χ0 − χ),

√

p

q

)

, f(χ) =
χ + d

2
, (64)

where

p =
1 + 8K −

√
1 + 16K

8K
, q =

1 + 8K +
√

1 + 16K

8K
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Fig. 2. The surface associated to the exponential well solution (62)

and in order for R(χ) to be real

K ∈
(

− 1

16
, 0

)

.

The solution of the equation of motion (43) is therefore

w(ξL, ξR) =
√
−p sn

(

√

Kq

(

ξ0 −
ξL

a
+

ξR

b

)

,

√

p

q

)

e
i
2
(ξL/a+ξR/b−d) . (65)

Since any further manipulations with the solution (65) are becoming more and
more tedious and time–consuming, we resort to numerical calculation and present
a picture of the associated surface in Fig. 3 for the parameters

a = b = 1 , ξ0 = 0 , d = 0 , K = − 1

20
, ξL, ξR ∈ (−10, . . . , 10) .

5 Concluding remarks

The objective of this paper has been to present the structural equations de-
scribing two–dimensional surfaces immersed in su(N) Lie algebra. We perform
this analysis using the CP N−1 sigma model defined on Minkowski space. The first
and second fundamental forms, the Gaussian curvature and mean curvature vector
are expressed in terms of any regular solution (i.e. such that the metric (18) is non-
singular) of CP N−1 sigma model. We present an implementation of this method
for construction of surfaces in su(2) algebra and give several examples.
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Fig. 3. The surface associated to the elliptic solution (65)

A question arises whether such approach can be extended to the complex grass-
manian nonlinear sigma models in two dimensional Euclidean (Minkowski) space.
Note that the grassmanian sigma models are generalization of the CP N−1 models
considered here and they share various interesting properties like the existence of
(anti)instantons, an infinite number of conserved quantities and complete integra-
bility. Further, can they provide new classes of surfaces more diverse than the ones
discussed in su(2) case? This task shall be undertaken in our future work.
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[7] A.M. Grundland and L. Šnobl: preprint math.DG/0405513, submitted for publica-
tion.

[8] W.J. Zakrzewski: Low Dimensional Sigma Models, Adam Hilger, Bristol, 1989.

[9] S. Kobayashi and K. Nomizu: Foundation of Differential Geometry, John Wiley,
New-York, 1963.

[10] T.J. Willmore: Riemannian Geometry, Clarendon, Oxford, 1993.

[11] A.M. Grundland, P. Winternitz and W.J. Zakrzewski: J. Math. Phys. 37 (1996)
1501.

17


