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1 Introduction

Although Galilean relativity has been superseded by Einstein’s theory, there
exists a wealth of low–energy systems, particularly in condensed matter physics and
low–energy nuclear physics, where any new method or result concerning Galilean
invariance is likely to be useful. Landau’s theory of superfluid state of 4He is
but an example. The general program presented hereafter consists in investigating
physical applications of a metric formulation of Galilei invariance such that one can
use tensor analysis, as it is done in relativistic physics. Hereafter, we summarize
Refs. [1] – [6], which follow the approach in Ref. [7]. Similar procedures can be
found in [8].

We define a five–dimensional Galilei-vector to be such that a boost acts on it as

x′ = x −Vt ,
t′ = t ,
s′ = s−V · x + 1

2
V2t ,

(1)

with relative velocity V. The scalar product

(A|B) = AµBµ ≡ A ·B −A4B5 −A5B4 , (2)
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of two Galilei–vectors A and B is invariant under transformation (1). Therefore,
we define the Galilean metric as

gµν = gµν =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0









. (3)

Clearly this may be diagonalized to diag(1, 1, 1,−1, 1), so that our starting point is
in fact the fifteen–dimensional inhomogeneous Lorentz group in (4, 1) space–time.
The fact the algorithm allows one to retrieve Galilei–invariant equations amounts to
the fact that this Lorentz group contains the eleven–dimensional central extension
of the Galilei group.

We can write Eq. (1) as
x′µ = Λµ

νx
ν , (4)

where µ denotes the row and ν the column (so that Λµ
ν is the (µν)–entry), or









x′1

x′2

x′3

x′4

x′5









=









1 0 0 −V1 0
0 1 0 −V2 0
0 0 1 −V3 0
0 0 0 1 0

−V1 −V2 −V3
1
2
V2 1

















x1

x2

x3

x4

x5









. (5)

Galilean one–forms transform as

x′µ = Λ ν
µ xν , (6)

where µ now denotes the column and ν the row (that is Λ ν
µ is the (νµ)–entry), or

(x′1, x
′
2, x
′
3, x
′
4, x
′
5) = (x1, x2, x3, x4, x5)









1 0 0 V1 0
0 1 0 V2 0
0 0 1 V3 0
0 0 0 1 0
V1 V2 V3

1
2
V2 1









, (7)

the matrix elements are calculated from x′µ = gµαx
′α =

Λ ν

µ

︷ ︸︸ ︷

gµαΛα
βg

βν xν . Note that
the units of s are L2T−1.

Throughout these notes we utilize the Galilei–vectors (x1, . . . , x5) with each
component having units of length:

(x1, . . . , x5) =

(

x, v4t,
s

v5

)

. (8)

For a real field φ̃, the projection is defined as

φ̃(x) ≡ φ(x, t) + a0s . (9)
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For a complex field ψ̃ we use the definition:

ψ̃(x) ≡ eia0sψ(x, t) . (10)

Hereafter, we take v4 = v5 in Eq. (8), except in Section 3, where v4 = c and v5 = 1.
In Sections 2, 6 and 7, we use Eq. (10) with a0 = −m, but we use a0 = −mc in
Section 3. In Sections 4 and 5, where we consider real scalar fields, we utilize Eq.
(9) with a0 = −1.

From Eq. (8), and the following definition for the five–momentum

pµ ≡ −i∂µ =

(

−i∇,−i
∂t

v4
,−iv5∂s

)

, (11)

together with E = i∂t, as well as m = i∂s, we obtain

pµ =

(

p,−E

v4
,−mv5

)

,

pµ = gµνpν =

(

p,mv5,
E

v4

)

.

(12)

Thereupon the mass does not enter as an external parameter, but as a remnant
of the fifth component of the particle’s momentum, starting from an apparently
massless theory in five dimensions!

In Section 2, we consider the Klein–Gordon Lagrangian in five dimensions, and
see that the reduction leads to the Schrödinger field. In Section 3, we retrieve the
equations of ‘Galilean electromagnetism’, first described in 1973 by Le Bellac and
Lévy-Leblond, and we determine the Lagrangians which provide those equations.
In Sections 4 and 5, we describe the Euler equations for fluids, and present some
models for superfluids, respectively. The Dirac equation turns out to reduce to the
Lévy-Leblond equations, as shown in Section 6, and linear Bhabha wave equations
for particles with spins 0 and 1 are presented in Section 7.

2 Klein−Gordon Lagrangian and Schrödinger field

In this section, let us consider a simple example of a relativistically invariant
wave equation, obtained from the Galilean Klein–Gordon Lagrangian:

LGKG = − 1

2m

(
∂µΦ∗∂µΦ − k2|Φ|2

)
− V

(
|Φ|

)
. (13)

By ‘Galilean’, we mean that the field is defined on the extended space–time, and this
model will describe non-relativistic physics, once we have defined the embedding
defined in Eq. (8). The Euler–Lagrange field equation taken with respect to Φ∗

gives the scalar equation

1

2m
(∂µ∂µ + k2)Φ =

δV

δΦ∗
. (14)
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With the embedding defined in Eqs. (8) and (10), if we absorb k into the energy
operator, then this becomes the Schrödinger equation:

i∂tϕ = − 1

2m
∇2ϕ+

δV

δϕ∗
. (15)

(The more familiar Schrödinger equation, i∂tϕ = − 1

2m
∇2ϕ + V(r)ϕ, may be ob-

tained by restricting the potential to V (|ϕ|) = −V(r)|ϕ|2.) Now, if, rather than
first finding the Euler–Lagrange equations, we begin by substituting Eqs. (8) and
(10) into the Lagrangian LGKG, then it becomes

L = − 1

2m
|∇ϕ|2 − i

2

(
(∂tϕ

∗)ϕ− ϕ∗∂tϕ
)
− V

(
|ϕ|

)
. (16)

The variation with respect to ϕ∗ leads, once again, to the Schrödinger equation
(15). In the next sections, we will see that for other models, the resulting equations
of motion are not the same, depending on the order in which we perform the re-
duction or compute the Euler–Lagrange equations. For the quartic self-interaction,
V (|Φ|) = 1

2
λΦ4, Eq. (15) becomes

i∂tϕ = − 1

2m
∇2ϕ+ λ|ϕ|2ϕ . (17)

This is referred to as the non-linear Schrödinger equation or, to condensed matter
physicists, as the Gross–Pitaevskii equation.

3 Galilean electromagnetism

In this section, we turn to the ‘Galilean electromagnetism’ described thirty years
ago by Le Bellac and Lévy-Leblond [9]. Hereafter, we retrieve its Galilei–invariant
‘electric’ and ‘magnetic’ limits by using the tensorial form of Maxwell equations,
and determine the Lagrangian densities from which the following field equations
are derived. The Galilean Maxwell equations read:

∇ · B = 0 ,

∇ · Em =
1

ε0
ρm ,

∇×B = µ0J ,

∇×Em = −∂tB

(18)

for the ‘magnetic’ limit, and

∇ · B = 0 ,

∇ · Ee =
1

ε0
ρe ,

∇×B = µ0J + µ0ε0∂tEe ,

∇×Ee = 0

(19)
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for the ‘electric’ limit. Note that the displacement current term is missing in the
third line of Eq. (18), and that the Faraday induction term does not appear in the
last line of Eq. (19). The purpose of Le Bellac and Lévy-Leblond was to write down
the laws of electromagnetism by enforcing Galilean relativity rather than Einstein’s
relativity. Therefore, the equations above could have been formulated during the
pre-relativity era.

The authors of Ref. [9] have observed that the Lorentz transformation of a
four–vector (u0,u):

u′0 = γ

(

u0 − 1

c
V · u

)

,

u′ = u− γ
V

c
u0 +

V

V2
(γ − 1)V · u ,

(20)

where γ ≡
(
1 − V2/c2

)−1/2
, with relative velocity V and speed of light in the

vacuum c, admits two well-defined Galilean limits. One limit is related to largely
time–like vectors, with u′0 = u0 and u′ = u −

(
V/c

)
u0, and it corresponds to

the electric limit. The second limit is for largely space–like vectors, which satisfy
u′0 = u0 − c−1V · u and u′ = u, and is associated with the magnetic limit. The
magnetic limit corresponds to systems were the magnetic field is much greater
than the electric field. The opposite situation, where the electric field is large,
corresponds to the electric limit. In addition to the field equations, Le Bellac and
Lévy-Leblond have determined various field transformations, but they have not
discussed which Lagrangians provide the two Galilean limits [9]. We will show
hereafter that the two Lagrangians have the same form, and both involve different
auxiliary fields, which are set equal to zero once the equations of motion have been
obtained.

In this section, we utilize Eq. (8) in such a way that all the components have
units of length:

(x, t) ↪→ xµ = (x1, · · · , x5) ≡ (x, ct, s) , (21)

where c has the dimension of a velocity. Eq. (21) implies that we must replace Eq.
(12) with

∂µ =

(

∇, 1
c
∂t, ∂s

)

, −i∂µ =

(

p,−E
c
,−mc

)

, (22)

so that p4 = −p5 = mc and p5 = −p4 = E/c. Thus, we obtain ∂s = −imc.
The five–dimensional Galilean Lagrangian of electromagnetism, that is, the

Maxwell Lagrangian interacting with an external five–current Jµ, is given by

LGEM = −1

4
FµνF

µν +
1

ε0c
JµA

µ , (23)

where

Fµν = ∂µAν − ∂νAµ . (24)
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If we calculate the Euler–Lagrange equations for the gauge fields Aµ, we obtain the
field equations

∂µFαβ + ∂αFβµ + ∂βFµα = 0 , (25)

and

∂µF
µν = − 1

ε0c
Jν . (26)

For later convenience, let us introduce the parameter µ0:

µ0ε0 =
1

c2
. (27)

In Ref. [2], we have shown that these equations lead to the electric and magnetic
limits, as identified by Le Bellac and Lévy-Leblond in Ref. [9]. Moreover, we have
noticed that the transformation laws of Aµ, Jµ and the electromagnetic field can be
retrieved very naturally with our five–dimensional algorithm. However, one cannot
determine the Lagrangians which provide the two Galilean limits, Eqs. (18) and
(19), by simply defining the fields as in Ref. [2]. Indeed, if we substitute Eqs. (39)
and (40) of Ref. [2] into Eq. (23), then we find the Lagrangian

L = − 1
2
B2

e + µ0ε0∂tAe · ∇φe + 1
2
µ2

0ε
2
0(∂tφe)

2 − µ0Je ·A , (28)

which clearly does not lead to Eq. (19). For the magnetic limit, the situation is
even worse, because the electric field does not appear at all within the Lagrangian.
Substituting equations (49) and (50) of Ref. [2] into the Lagrangian given by Eq.
(23), we find

L = − 1
2
B2

m − µ0Jm · A . (29)

It appears that in order to construct two such Lagrangians, with one leading
to the electric limit, and the other leading to the magnetic limit, one needs to
introduce auxiliary fields. The latter are used throughout the computation of the
Euler–Lagrange equations, and only then they may be eliminated. Hereafter, we
utilize the formalism based on a Minkowski space–time in (4, 1) dimensions to
find that the ensuing field equations may be obtained from a single Lagrangian in
(4, 1) dimensions which reduces to two different Lagrangians in (3, 1) space–time.
It turns out that one set of auxiliary fields leads to the electric limit, whereas a
complementary set of auxiliary fields provides the magnetic limit. Whereas the
form of this Lagrangian, as well as the physical and auxiliary fields, are suggested
very naturally by using the Minkowski space in (4, 1), it would be far from obvious
without this formalism. This is done by defining the five–potential as

Aµ(x) =
(
A(x, t),−φm(x, t),−φe(x, t)

)
. (30)

That these fields do not depend on s can be traced back, using Eq. (12), to the
fact that they describe a massless field, so that i∂s = m = 0. The five–current Jµ

is defined similarly,

Jµ =
(
(J(x, t),−cρm(x, t),−cρe(x, t)

)
, (31)
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where each component is independent of s.
Let us denote the components of the field strength tensor by

Fµν =









0 cB3 −cB2 Em1 Ee1

−cB3 0 cB1 Em2 Ee2

cB2 −cB1 0 Em3 Ee3

−Em1 −Em2 −Em3 0 a
−Ee1 −Ee2 −Ee3 −a 0









, (32)

so that, from Eqs. (24) and (30), we find

a = −1

c
∂tφe ,

cB = ∇×A ,

Em = −∇φm − 1

c
∂tA ,

Ee = −∇φe .

(33)

Then, by substituting this into Eq. (23), the Galilean version of Lagrangian LEM

reads

LGEM = −1

2
c2B2 + Em ·Ee +

1

2c2
(∂tφe)

2 +
1

ε0c
J ·A − 1

ε0
ρmφe −

1

ε0
ρeφm . (34)

This is the central result of this section.
Once again, let us recall that there are not two kinds of physical electric fields,

Ee and Em. Only one is taken to be the physical field, while the other is an
auxiliary field, in the respective (i.e. electric or magnetic) limit. If we compute the
Euler–Lagrange equations with respect to the fields φe, φm and A, we find

∇ ·
(

−∇φm − 1

c
∂tA

)

=
1

ε 0
ρm +

1

c2
∂ttφe , (35)

∇ · (−∇φe) =
1

ε 0
ρe , (36)

and

c∇×B =
1

ε0c
J +

1

c
∂t(−∇φe), (37)

respectively.
In order to retrieve Le Bellac and Lévy-Leblond’s magnetic limit [9], we define

the auxiliary quantities φe and ρe as

φe = 0 , ρe = 0 , (38)

with Em given by Eq. (33), so that Eqs. (35) and (37) reduce to the Gauss’s law,

∇ · Em =
1

ε0
ρm , (39)
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as well as

∇×B = µ0J , (40)

respectively. The Eq. (36) vanishes identically.

The electric limit is obtained by defining

φm = 0 , ρm = 0 , (41)

with Ee given by Eq. (33). From Eqs. (36) and (37) we find Gauss’s law,

∇ ·Ee =
1

ε0
ρe , (42)

and

∇×B = µ0J + µ0ε0∂tE, (43)

respectively. From Eq. (35), we obtain the Lorentz gauge condition:

∇ · A +
1

c
∂tφe = 0 . (44)

Now let us turn to the homogeneous Eqs. (25), that is,

∇ ·B = 0 ,

∇×Em + c∂4B = 0 ,

∇×Ee + c∂5B = 0 ,

∇a− ∂4Ee + ∂5Em = 0 .

(45)

The first of these clearly leads to

∇ ·B = 0 , (46)

in both limits. The second leads, in the magnetic limit defined by Eqs. (33) and
(38), to

∇×Em = −∂tB , (47)

and vanishes identically in the electric limit, defined by Eq. (41). The third equa-
tion gives

∇×Ee = 0 , (48)

in the electric limit, Eq. (41), and vanishes identically in the magnetic limit, Eq.
(38). The fourth equation leads to an identically vanishing result. To summarize,
the magnetic limit of the Maxwell Eqs. (18) is retrieved from Eqs. (39), (40), (46)
and (47). The electric limit equations (19) are obtained by collecting Eqs. (42),
(43), (46) and (48).
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4 Fluids: Euler equation

In the next two sections, we summarize some results of Refs. [3, 4]. We consider
real scalar fields, and consider them in the context of fluids and superfluids models.
In the present section, we show the covariant five–dimensional form of the Euler
equation of fluids.

Let us start with the functional Lagrangian :

L̃[ρ̃, φ̃] = − 1
2
ρ̃∂µφ̃∂

µφ̃− V (ρ̃) . (49)

Euler–Lagrange equation for ρ̃ is 1
2
∂µφ̃∂

µφ̃ + V ′(ρ̃) = 0. Define the embedding in
Eqs. (8) and (9), with v4 = v5 and a0 = −1, as well as

ρ̃(x) ≡ ρ(x, t) . (50)

This gives
1
2
∇φ · ∇φ+ ∂tφ = −V ′. (51)

If we compute the gradient of this expression, we find

(∇φ · ∇)∇φ+ ∂t(∇φ) = −∇(V ′) . (52)

With v = ∇φ and ∇(V ′) = ρ−1∇p, where p denotes the pressure, we find the Euler
equation,

∂tv + (v · ∇)v = −1

ρ
∇p . (53)

When we compute the Euler–Lagrange with respect to φ̃, we find the continuity
equation:

∂tρ+ ∇(ρ∇φ) = 0 . (54)

Now consider the following Lagrangian, which depends on a complex field:

L̃[ψ̃, ψ̃∗] = k1

(
∂µψ̃∂

µψ̃∗ − V (|ψ̃|)
)
. (55)

If we define the real fields ρ̃ and φ̃ by using the Madelung prescription,

ψ̃ ≡
√

ρ̃ eiφ̃, (56)

then the Lagrangian becomes

L̃[ρ̃, φ̃] = k1

(

ρ̃∂µφ̃∂
µφ̃+

1

4ρ̃
∂µρ̃∂

µρ̃− V
(√

ρ̃
))

, (57)

or
L̃ = k1

(

ρ̃∂µφ̃∂
µφ̃− V (ρ̃)

)

, (58)

where V ≡ V − 1

4ρ̃
∂µρ̃ ∂

µρ̃. Clearly, Eq. (58) coincides with Eq. (49).
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5 Models for superfluidity

5.1 Barotropic irrotational fluid

In this section, we discuss some models proposed by Takahashi to describre super-
fluidity [7]. The model for compressible irrotational barotropic fluids with pressure
proportional to the square of the mass density based on

L̃ =
ρ0

8v2
0

(

∂µφ̃∂µφ̃− 2v2
0

)2

. (59)

The φ̃ is related to velocity potential. The equation of motion with respect to φ̃ is

∂µ∂
µφ̃− 1

2v2
0

(∂µ∂
µφ̃)(∂ν φ̃∂

ν φ̃) − 1

v2
0

(∂µφ̃)(∂ν φ̃)(∂µ∂ν φ̃) = 0 . (60)

If we take v4 = v5 in Eq. (8), and Eq. (9) with a0 = −1, then Eq. (59) reduces to

L =
ρ0

2v2
0

(
1

2
∇φ · ∇φ+ ∂tφ− v2

0

)2

. (61)

With similar definitions, the equation of motion, Eq. (60), becomes

v2
0∇2φ−∂2

t φ = ∇2φ
(

1
2
∇φ · ∇φ+ ∂tφ

)
+ 1

2
∇φ ·∇ (∇φ · ∇φ)+ 2∇(∂tφ) ·∇φ , (62)

which is the equation (5.40) obtained by Takahashi [7]. Some solutions for one–
dimensional case have been found in [4]. A symmetry analysis leads to vector fields

v1 = ∂t ,

v2 = ∂φ ,

v3 = ∂x ,

v4 =

(

t− φ

v2
0

)

∂φ − x

2v2
0

∂x ,

v5 = x∂φ + t∂x ,

v6 = x∂x + t∂t + φ∂φ .

(63)

The vectors v1+cv3 and v3+cv2 generate travelling–wave solutions. The subgroup

generated by v6 lead to scale–invariant solutions φ(x, t) =
1

3

x2

t
+(v2

0+k
2)t±i

√

2

3
kx.

The v5–invariant solutions have the form φ(x, t) =
x2

2t
− k1

2
ln t+v2

0t−
k2

2
and from

v4 we find φ(x, t) =
cx2

t+ k
+ v2

0t (where c = 1/2 or 1/3).

Now consider the Lagrangian

L̃ ∝ Dµψ̃D
µψ̃∗ ≡ (∂µψ̃ + iÃµψ̃)(∂µψ̃∗ − iÃµψ̃∗) , (64)
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with Ãµ = k∂µρ̃. The Euler–Lagrange equation for ψ̃∗ with Eqs. (8) and (10), and
ρ̃(x ≡ ρ(x, t) gives

∇2ψ − 2ia0

v5
v4
∂tψ + ik(∇ · ∇ρ)ψ + 2ik∇ρ · ∇ψ−

−2ik
v5
v4
a0(∂tρ)ψ − k2(∇ρ · ∇ρ)ψ = 0 .

(65)

With v4 = v5, a0 = −m and k = m, this gives

i∂tψ = m(∂tρ)ψ − 1

2m
(∇ + im∇ρ)2 ψ , (66)

which is equation (6.5) of [7].
Now consider a Galilei–null vector

ũµ
p ≡

(

up, v4,
1

2v5
u2

p

)

, (67)

and a real scalar field φ̃ with Eq. (9). Take the scalar product

Φ̃p = ũµ
p∂µφ̃ = up · ∇φ+ 1

2
a0u

2
p + ∂tφ , (68)

which, using v4 = v5 and a0 = −1, leads to

Φp = ∂tφ+ up · ∇φ− 1
2
u2

p . (69)

Similarly, let us construct Φm = ∂tφ+um ·∇φ− 1
2
u2

m. The subscripts p and m refer
to the collective and individual modes of the fluid, respectively. Next, consider

χm ≡ i

2
ũµ

m

[

ψ̃∗∂µψ̃ − (∂µψ̃
∗)ψ̃

]

=

=
i

2

(
ψ∗

[
∂tψ + um · ∇ψ

]
−

[
∂tψ
∗ + um · ∇ψ∗

]
ψ + iu2

ma0ψ
∗ψ

)
,

(70)

where we have defined the embedding as in Eqs. (8) and (10). If we choose a0 = 0,
then the last term in χm vanishes:

χm = ψ∗ [∂tψ + um · ∇ψ] − [∂tψ
∗ + um · ∇ψ∗]ψ . (71)

If we use the definitions

ηm(x) ≡ αψ∗(x) + α∗ψ(x) , (72)

and
ρm(x) ≡ mψ∗(x)ψ(x) , (73)

then the Lagrangian of equation (3.12) of [7] takes the form

L =
ρ0

2v2
0

(Φp(x) − v2
0)2 + ηm(x)Φp(x) + ρm(x)(Φp(x) − Φm(x)) + χm(x) , (74)

where χm, ηm and ρm are given by Eqs. (71), (72) and (73), respectively, and Φp,
Φm are given by Eq. (69).
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5.2 Generalized models for non−barotropic fluids

In this section, we generalize Eq. (59) by relaxing the condition p ∝ ρ2 (p: pressure,
ρ: its density) to allow p ∝ ργ (γ ≥ 1). For γ 6= 1, let us consider

L̃ = kp(∂φ̃∂φ̃− v2
0)p, (75)

for which the equation of motion reads

(
1
2
∂µφ̃∂

µφ̃− v2
0

)

∂ν∂
ν φ̃+ (p− 1)∂µν φ̃∂

µφ̃∂ν φ̃ = 0 . (76)

When we consider Eq.(8) with v4 = v5 and a0 = −1, we find

v2
0∇2φ− (p− 1)∂2

t φ = ∇2φ
(

1
2
∇φ · ∇φ+ ∂tφ

)
+ (p− 1)∇φ · ∇

(
1
2
∇φ · ∇φ + 2∂tφ

)
.

(77)
For p = 1, we obtain

v2
0∇2φ = ∇2φ

(
1
2
∇φ · ∇φ+ ∂tφ

)
, (78)

whereas the case p 6= 1 is equivalent to the Takahashi model. Another possibility,
corresponding to γ = 1, is

L̃[φ̃] = k exp
(

∂φ̃∂φ̃− v2
0

)

. (79)

The corresponding equation of motion,

v2
0∂µ∂

µφ̃+ ∂µν φ̃∂
µφ̃∂ν φ̃ = 0 , (80)

reduces to
v2
0∇2φ+ ∂ttφ+ ∇φ · ∇

(
1
2
∇φ · ∇φ+ 2∂tφ

)
= 0 . (81)

Other equations relevant in condensed matter physics may be obtained with

L̃[ψ̃, ψ̃∗] ∝ (∂ψ̃∂ψ̃∗ − V (|ψ̃|))p, (82)

for a complex field ψ̃. The choice p = 1 and V = λ|ψ̃|4, with the embedding in Eqs.
(8) and (10), gives us

L = k1

(
∇ψ · ∇ψ∗ − im(ψ∗∂tψ − ψ∂tψ

∗) − λ|ψ|4
)
. (83)

The Euler–Lagrange equation, with v4 = v5 and a0 = −m leads to the non-linear
Schrödinger equation,

i∂tψ = − 1

2m
∇2ψ +

λ

m
|ψ|2 ψ . (84)

Similar equations are used in effective theories of superconductivity and Bose–
Einstein condensation (see references in [3]).

12
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5.3 Model of non-viscous fluids and liquid helium

Consider Eq. (49), with Clebsch–like transformation ∂φ̃ → ∂φ̃+ α̃∂β̃,

L̃ = − ρ̃

2v2
0

(∂µφ̃+ α̃∂µβ̃)(∂µφ̃+ α̃∂µβ̃) − V (ρ̃) . (85)

If we define
α̃(x) = α(x, t) ,

β̃(x) = β(x, t) ,

ρ̃(x) = ρ(x, t) ,

(86)

together with Eq. (9) for φ̃(x), and Eq. (8) for space–time (here we take a0 = +1),
then the Lagrangian of Eq. (85) on the Newtonian space–time becomes

L =
ρ

v2
0

(

∂tφ− 1

2
∇φ · ∇φ + α(∂tβ − 1

2
α∇β · ∇β) − α∇φ · ∇β

)

− V (ρ) . (87)

This may be expressed as

L =
ρ

v2
0

(

∂tφ+ α∂tβ − 1

2
v2

)

− V (ρ) , (88)

where v = −∇φ − α∇β. This Lagrangian was employed by Thellung and Ziman
(see Section 4.3 of Ref. [3]).

6 Interacting Fermi field

The Galilean version of the Dirac equation has been investigated using the
present formalism in Ref. [2]. Therein we have retrieved the Lévy-Leblond equa-
tions [11], as well as the Pauli equation, spin–orbit interaction and a Darwin–like
term. Moreover, a generalized model involving the interaction of a non-abelian
gauge field with the Dirac field has been presented. Hereafter we complete the
discussion by examining the related Lagrangian densities.

First, let us consider the Galilean Dirac Lagrangian for the free Fermi field:

LGDirac = Ψ
(

iγµ
↔
∂ µ − k

)

Ψ , (89)

where A
↔
∂B ≡ 1

2
[A∂B−(∂A)B]. We use the following gamma matrices (see Omote

et al. [7]):

γ =

(
σ 0
0 −σ

)

, γ4 =

(
0 0

−
√

2 0

)

, γ5 =

(
0

√
2

0 0

)

, (90)

where each entry is a two-by-two matrix and the σ are the Pauli matrices:

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (91)
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These gamma matrices satisfy the usual relation: {γµ, γν} = 2gµν , where gµν is
the Galilean metric. Following Omote et al. [7], we define the adjoint spinor by
Ψ = Ψ†ζ, with

ζ =
−i√

2

(
γ4 + γ5

)
=

(
0 −i
i 0

)

. (92)

Let us now utilize the embedding within the Lagrangian (89). From the defini-

tions above, with spinor Ψ ≡
(
ψ1

ψ2

)

and Eq. (10), we find that Eq. (89) becomes

LGDirac = 1
2

[

(∇ψ†2) · σψ1 − ψ†2σ · ∇ψ1 − ψ†1σ · ∇ψ2 + (∇ψ†1) · σψ2

]

−
−
√

2
2

(ψ†1∂tψ1 − (∂tψ
†
1)ψ1) + im

√
2ψ†2ψ2 − ik(ψ†2ψ1 − ψ†1ψ2) .

(93)

Variations of this Lagrangian with respect to ψ1 and ψ2 lead to

i
√

2∂tψ
†
1 + i∇ψ†2 · σ + kψ†2 = 0 , (94)

and
(∇ψ†1) · σ + ikψ†1 + i

√
2mψ†2 = 0 , (95)

respectively. With respect to their conjugates ψ†1 and ψ†2, we obtain

i
√

2∂tψ1 + (iσ · ∇ + k)ψ2 = 0 , (96)

and
(iσ · ∇ψ1 − k)ψ1 +

√
2mψ2 = 0 , (97)

respectively. When we substitute ψ2 from Eq. (96) into Eq. (97), we obtain

i∂tψ1 = − 1

2m

(
∇2 + k2

)
ψ1 . (98)

If we absorb the constant k into the energy operator, we clearly obtain Eq. (15)
with a constant potential.

Now let us return to the Lagrangian of Eq. (89) and find the Euler–Lagrange
equations before performing any embedding. The variation of LGDirac with respect
to Ψ gives

(iγµ∂µ − k)Ψ = 0 . (99)

The Euler–Lagrange equation with respect to its adjoint gives

Ψ
(
iγµ

←
∂ µ +k) = 0 , (100)

where A
←
∂≡ ∂A. Now, by using the embedding defined in Eq. (10) into Eq. 99)

leads to Eqs. (96) and (97), whereas with Eq. (100) we retrieve Eqs. (94) and (95).
As usual, by multiplying Eq. (99) on the left with iγµ∂µ +k, we find Eq. (14) with
a constant potential.
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Now we consider the interaction of the Fermi field with the gauge field. Here
we consider the Galilean covariant version of the QED Lagrangian:

LGQED = LGDirac + Lint. + LGEM. ,

= Ψ(iγµ
↔
∂ µ − k)Ψ − eΨγµΨAµ − 1

4
F µνFµν ,

= Ψ(iγµ
↔
Dµ − k)Ψ − 1

4
F µνFµν ,

(101)

with the usual definition
Dµ ≡ ∂µ + ieAµ . (102)

In order to expand this Lagrangian in terms of the embedding in Eq. (8), we
make use of earlier results, namely Eqs. (10), (30), (34), and (93), and we get

LGQED = 1
2

[

(∇ψ†2) · σψ1 − ψ†2σ · ∇ψ1 − ψ†1σ · ∇ψ2 + (∇ψ†1) · σψ2

]

−
−
√

2
2

(
ψ†1∂tψ1 − (∂tψ

†
1)ψ1

)
+ im

√
2ψ†2ψ2 − ik(ψ†2ψ1 − ψ†1ψ2)−

−ie(ψ†1σ ·Aψ2 + ψ†2σ ·Aψ1) + ie
√

2(φmψ
†
1ψ1 + φeψ

†
2ψ2)−

− 1
2
(∇×A)2 + (∇φm + ∂tA) · ∇φe + 1

2
(∂tφe)

2 .

(103)

Note that we take c = 1. The Euler–Lagrange equation with respect to ψ†1 leads to

σ · (i∇− eA)ψ2 +
√

2(i∂t + eφm)ψ1 + kψ2 = 0 , (104)

and to
σ · (i∇− eA)ψ1 − kψ1 +

√
2(m+ eφe)ψ2 = 0 , (105)

when it is calculated with respect to ψ†2. This leads to the Lévy-Leblond Eqs. [11]
if we take k = 0 and choose the magnetic limit, defined in Section 3, by taking
φe = 0.

Now we briefly discuss the opposite procedure, which consists in considering the
Euler–Lagrange equations in the (4, 1) manifold, and then defining the embedding.
From the variation of LGQED with Ψ, we find

(iγµDµ − k)Ψ = (iγµ∂µ − eγµAµ − k)Ψ = 0 . (106)

The field equations of motion with respect to Aµ read ∂µF
µν = eΨγνΨ. The

covariant expansion of these equations is discussed in Section 4 of Ref. [2]. Therein,
it was shown to lead to the Pauli equation, and to describe the correct Landé factor
of the electron’s intrinsic magnetic moment, as well as the spin–orbit coupling and
a term similar to the Darwin term.

7 Bhabha−DKP equation: spin zero and spin one

This section is a summary of Refs. [5, 6]. The Duffin–Kemmer–Petiau (DKP)
equation is

(βµ∂µ + k)Ψ = 0 , (107)
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and the matrices β obey the so-called DKP algebra:

βµβλβν + βνβλβµ = gµλβν + gνλβµ , (108)

where gµν is the Galilean metric. The adjoint of Ψ is defined by Ψ ≡ Ψ†η, where

η = (β4 + β5)2 + 1. (109)

In the following, we use the momentum version of Eq. (107):

(βµpµ − ik)Ψ = 0 . (110)

7.1 DKP equation for spin zero

For spinless particles, we take

β1 =











0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0











, β2 =











0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0











,

β3 =











0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0











, β4 =











0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 −1 0











,

β5 =











0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0











.

(111)

They belong to the Lie algebra so(5, 1), with Jµ6 ≡ βµ, µ = 1, . . . , 5. Matrices in
Eq. (111) satisfy the DKP algebra given by Eq. (108).

Hereafter, we review the results obtained in [6]. If we introduce a DKP spinor

Ψ ≡







A

θ
ϕ
φ






, (112)

16



Galilean field theories

with A = (Ax, Ay, Az), then Eq. (110) gives

−ikA + pφ = 0 ,

−ikθ + p4φ = 0 ,

−ikϕ+ p5φ = 0 ,

p ·A − p5θ − p4ϕ− ikφ = 0 .

(113)

These equations can be expressed in terms of φ as p2φ − 2p4p5φ + k2φ = 0, and
this becomes the Schrödinger equation,

Eφ =
p2

2m
φ , (114)

by defining p → (p, p4, p5) such that p4p5 = mE and by absorbing the constant k
into the energy as E → E − k2/(2m).

The harmonic oscillator is described by performing the non-minimal substitu-
tion p → p + iωηr, with η given by Eqs. (109) and (111). After performing the
change ω → mω, rather than Eq. (114), we find

Eφ =

(
p2

2m
+

1

2
mω2r2 − 3

2
h̄ω

)

φ . (115)

This equation has been obtained in Ref. [10] as a low–velocity limit of the corre-
sponding relativistic problem.

7.2 DKP equation for spin one

If we use the shorthand notation eij to represent a fifteen-by-fifteen matrix whose
only non-zero entry is ij, defined to be one, that is, (eij)mn ≡ δimδjn, then the
DKP generators of the spin one representation are

β1 = e13,1 + e14,4 + e12,8 − e11,9 − e9,11 + e8,12 + e1,13 + e4,14 ,

β2 = e13,2 + e14,5 − e12,7 + e10,9 + e9,10 − e7,12 + e2,13 + e5,14 ,

β3 = e13,3 + e14,6 + e11,7 − e10,8 − e8,10 + e7,11 + e3,13 + e6,14 ,

β4 = −e10,4 − e11,5 − e12,6 + e1,10 + e2,11 + e3,12 + e15,14 + e13,15 ,

β5 = −e10,1 − e11,2 − e12,3 + e4,10 + e5,11 + e6,12 − e15,13 − e14,15 .

(116)

They also correspond to the basis elements Jµ6 of so(5, 1).
Here we only consider the DKP simple harmonic oscillator by first performing

the non-minimal substitution of the previous section, where η is given by Eqs. (109)
and (116), and substitute Eq. (116) into Eq. (110), with the DKP spinor given by

Ψ =






v1
...
v15




 . (117)
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Then we obtain

EA =

[
p2

2m
+

1

2
mω2r2 − 3

2
h̄ω − ω

h̄
L · S

]

A . (118)

This is the non-relativistic version obtained earlier [Equation (16) in Ref. [10]]. It
should be emphasized that both spin 0 and spin 1 require the same definitions of
p4 and p5 as for spinless particles.
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