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1 Introduction. Motivations.

The present talk is devoted to an old problem of the particle position operator
[2] in the relativistic quantum theory [1]. The notion of the relativistic coordinate
is necessary element of any version of the quantum theory of particle interaction.
First of all because we need to compare the measurement results with the theory
predictions and consider the uncertainty relations. Even the old ideas on the space
non-commutativity is also one of the approaches probing this key problem. We can
understand this in a sense that in the relativistic quantum theory the adequate
variables in terms of which the interaction is switched on in ”natural” way are
different from standard spatial coordinates and they are stiil expecting for their
discovery.

In particular, the two body problem is important in this sense. In any case,
if we have the bound state, we must be able to separate the motion of the center
of mass and internal motion. The elementary systems [2] play important role as
initial and final states of collision phenomena.

In the non-relativistic case the Galilean invariance of the system as a whole takes
place in the case of potential functions V (r) depending only on relative distance
between interacting particles r = |r|. In this case the coordinates of the center of
mass R and r are separated. The free motion of the bound state (of the system
as the whole) is described by the irreducible unitary representation of the Galilean
group. From this point of view it would be natural to call the potentials of the type
V (r) the Galilean potentials. The internal motion of the system is reduced to the
motion of the effective particle with the reduced mass µ in the field of potential.
Even in the free case such separation is an important property. We also can call
the two-body systems with the spherically symmetric potentials V (r) the Galilean
elementary systems by evident analogy with the relativistic particle localization
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concept of E. Wigner [2].
To find the possibility to generalize these concepts to the relativistic case im-

portant challenge. Many physicists were occupied with search for its solution.
Physically the situation is clear. At least the states like π–meson consist of the
quark and anti–quark and their state vector describes the relativistic motion of the
system as a whole. At least for the durations less than its life time. Note that
according to E.Wigner [2] π–meson is an elementary system. Also we must not
neglect the great effectiveness of the non-relativistic compound models for such sys-
tems. These non-relativistic models (with spherically symmetric potentials) work
very efficiently, and they describe the bound states which are the elementary sys-
tems. But in fact these compound systems are relativistic and it is necessary to
have the comprehensive relativistic potential model standing behind.

Also it is very important to stress that keeping in mind the potential relativistic
models we seek for such relativistic analog of the relative coordinate r on which the
interaction potential depends so that the total relativistic invariance is respected
in analogy with Galilean invariance of the non-relativistic two–particle problem
with the potentials V (r) depending on the relative distance between interacting
particles.

This discussion can be continued but it is clear that old problem of finding
the relativistic position operator still deserves to search for its solution. The basic
ideas on this subject have bee expressed by Newton and Wigner [2]. Their essential
result is that for single particles a notion of the localizability and a corresponding
commuting observables are uniquely determined by relativistic kinematics. On
the other hand no relativistic quantum theory of interaction based on these ideas
was constructed. In the present contribution we shall consider the possibility to
introduce the concept of the non-commuting relativistic position operators obey-
ing all Newton–Wigner postulates, having the transparent physical interpretation
and admitting very simple quantum dynamical interpretation.

It must be stressed that the standard quantum–mechanical position operator
x̂ = ih̄∇p is connected with the Euclidean structures in terms of which the local-
ization of a particle is considered. Let us quote here [2]: ”Existence and uniqueness
of a notion of localizability for a physical system are properties which depend only
on the transformation law of the system under Euclidean group, i.e., the group of
all space translations and rotations. The analysis of localizability in the Lorentz
and Galilei invariant cases is then just a matter of discussing what representations
of the Euclidean group can arise there”. Both groups — Galilean and Poincaré
contain the Euclidean group as their subgroup. But might be there are another
realizations of the Euclidean group in the framework of the representation theory
which allows another definition of the position operator? We try to show here that
the answer is positive.

Now we recall two key notions of [2]. (There exists a huge literature on the
subject, see for example [4] and references therein)

– Elementary systems. These are the systems whose states transform as an
irreducible representation of the Poincaré group i.e. continuum wave func-
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tions. This condition is quite unambiguous. ”. . . All states of the system
be obtainable from the relativistic transforms of any state by superpositions.
In other words there must be no relativistically invariant distinction between
the various states of the system which would allow for the principle of super-
position” [2].

– Particles. According to E.Wigner these are structure–less objects which
obey the restrictions: (a) Particle states form an elementary system. (b) ”It
should not be useful to consider the particle as a union of other particles”.
These words have been written more than 50 years ago. Despite the great
progress in ”particle physics”, the clear notion of the particle sill doesn’t
exist. The Wigner’s notions of the elementary systems and particles is unfairly
shadowed by another notions which doesn’t make the situation more clear. We
shall not go into thedetails of this theme and make only the hypothesis that
bound states of elementary systems are realized in some cases as elementary
systems. We shall call them the relativistic bound states.

The fact that the manifold of the physically realizable states contains only
solutions with the positive energy has a number of consequences for the observables.
Consider the solutions of the Klein–Gordon equation ϕ, ψ:

ϕ, ψ ∈ {(+) : pµpµ = (p0)2 − p̃2 = m2c2 , p0 ≥ 0} , (1)

with the inner product

(ϕ, ψ) =

∫

(+)

dΩp ϕ(p)ψ(p) , dΩp =
dpmc

p0
. (2)

The standard position operator
ˆ̂x = ih̄∇p (3)

is non-hermitian in the metric (2):

(
ϕ, ˆ̂xψ

)
=

∫

(+)

dΩp ϕ(p) ih̄∇p ψ(p) =

=

∫

(+)

dΩp

[(
ih̄∇p −

ih̄p

p2 +m2c2

)
ϕ(p)

]
ψ(p) . (4)

So the operator ih̄∇p does not correspond to any observable and can no be
interpreted as an physical operator. It follows also that the Klein–Gordon wave
function can not be considered as an probability amplitude to find the particle at
the point x at the moment of time x0.

To answer the question: what is the probability to find a particle at the point
y at some moment of time y0 we must

1. Find the hermitian operator which can pretend to the role of the position;

2. Find its eigenfunctions ψy,y0(x).
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If particle is in the state with the wave function ϕ(x), then the probability to
find the particle at the point y at the moment y0 = x0 will be

(
ψy,x0(x), ϕ

)
.

The simplest way to obtain the position operator is to accept that the position
operator is the hermitian part of x̂ = ih̄∇p:

x̂NW =
1

2

[
x̂ + x̂†

]
= ih̄∇p −

ih̄

2

p

p2 +m2c2
. (5)

Newton and Wigner derived this operator on a basis of a number of conditions
which localized states must satisfy:

(a) The states representing a system localized at time x0 at y must form a linear
manifold S0, i.e. that the superposition of two such localized states be again
localized in the same manner.

(b) The set S0 is invariant under rotations about the origin and reflections both
of the spatial and of the time coordinate.

(c) If a state ψ is localized (as above) at origin, a spatial displacement of ψ shall
make it orthogonal to all states of S0.

(d) Regularity condition: all generators of the Lorentz group preserve the nor-
malizability condition: if ψ is normalizable then

(Mµνψ,Mµνψ)

(ψ, ψ)
<∞ . (6)

This condition excludes discontinuous states as localized ones and is essential
in fixing the phase of the localized state wave function. In what follows we
use the unit system in which h̄ = c = 1 if other is not stipulated.

Let the state ψ0(k) at the moment x0 = 0 is localized at the origin. The
translation operator in the momentum space is simply a factor

e−ika ,

so that the state ψy(k) obtained as the result of the translation of ψ0 by y is
localized at y at the moment y0 = x0 = 0 and has the form

ψy(k) = e−ikaψ0(k) . (7)

This transformed state, in accordance with (c) must be orthogonal to ψ0(k):

(ψy, ψ0) = δ(y) =

∫
dΩk |ψ0(k) |2e−ika =

1

(2π)3

∫
dk e−ika . (8)

This is satisfied if |ψ0(k)|2 =
k0

(2π)3
. Taking into account the regularity condition

(6) which forbids any k–depending phase factor and putting the constant phase
factor equal to 1 we obtain

ψ0(k) = (2π)−3/2
(
k0

)1/2
(9)
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and for the wave function localized at y = 0

ψy(k) = (2π)−3/2 e−iky
(
k0

)1/2
. (10)

For the wave function of the localized state (at the moment x0) ψy(x) in the
configurational space we obtain

ψy(x) =

∫
dΩkeikx ψy(x) =

1

(2π)3/2

∫
dk√
k0

eik(x−y) =

= const
(mc
h̄r

)5/4

K5/4

(
r

λ0

)
, r = |x− y| , λ0 =

h̄

mc
, (11)

Kν(z) is MacDonald’s function, λ0 — Compton wave length of the particle.

Observations

First: ψ0(k) is the eigenfunction of the Newton–Wigner position operator:

x̂NW

{
e−iky

(
k0

)1/2
}

= i

{
∇k − 1

2

k

(k0)2

} {
e−ikyk0

1/2
}

=

= y
{
e−ikyk0

1/2
}
. (12)

Second: In the configurational space x̂NW is a non-local operator

x̂NW =

{
x̂ +

1

2

1

4 + m2c2
∇

}
. (13)

Third: The localized eigenfunction is not δ(x−y) as in the non-relativistic the-
ory, it is a function smeared in the spatial region of the size of the Compton
wave length of the particle λ0, because δ(x − y) can’t be constructed from
the positive frequency solutions only.

Fourth: The following commutation relations are satisfied:
[
x̂iNW, x̂

j
NW,

]
= 0 ,

[
x̂iNW, p

j ,
]

= iδij . (14)

Fifth: x̂NW is a vector in respect to rotations. Under spatial translations

Tax̂NWT
−1
a . (15)

Sixth: Non-relativistic limit

x̂NW −→ x̂ = i∇p . (16)

The content of this article is as follows. In Sect.2 we consider the noncom-
mutative alternative to the Newton-Wigner coordinate and related concept of the
relativistic configurational space. In Sect.3 the two-body problem in the relativistic
configurational space is formulated. In Sect.4 zero mass case is considered.
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2 Alternative to Newton−Wigner approach

The Newton–Wigner theory uses essentially the momentum space. To establish
the nonlocal operator x̂NW (13) in the configurational space would be very difficult.

But there is another circumstance essential for formulating the main idea of the
present paper. In [1] the wave functions localized at different points are connected
by translation:

x −→ x + a , eik(x+a) = eikxeika . (17)

The second relation has two mathematical meanings.

1. We consider, as in [1] the translations in the configurational space. Then the
plane waves (exponentials) are the matrix elements of the irreducible unitary
representations of the translation group numbered by the value of momen-
tum k. Fourier transformation is the expansion in matrix elements of the
unitary irreducible representations of the translation group of the configura-
tional space.

2. We consider (in contrast to [1]) the translations in the momentum k–space.
Then the same formula (17) describes the matrix element of the product
of two irreps numbered by x and a correspondingly by the vector (of the
momentum space) k. The inverse Fourier transformation is the expansion
in matrix elements of the unitary irreducible representations of the translation
group of the momentum space space.

Such a symmetry between transformation within the same representation and
the product of the representations is specific to the Euclidean translations. In the
non-relativistic theory the difference between 1. and 2. is formal and unimportant
because the geometries of the configurational and momentum spaces are isomor-
phic (mathematically) and Euclidean. Physical sense of the configurational and
momentum spaces is different of course. The translations of the momentum space
corresponds to Galilean transformations:

x −→ x + Vt ,

ẋ −→ ẋ + V ,

mẋ −→ mẋ +mV

p −→ p + k , p = mẋ , k = mV .

(18)

The position operator (4) is the generator of translations of the momentum space.
Now we formulate the alternative to the Newton–Wigner concept. It is based

on the simple observations.

1. From (4) we conclude that the geometry of the momentum space i.e. the man-
ifold of realizable states of the relativistic particle of the positive frequency
is the Lobachevsky space (1). We shall develop the one particle relativistic
theory accepting this as the triggering point. Then we must substitute;

6



Newton–Wigner postulates and commutativity of position operators

2. Galilean group −→ Lorentz group;

3. Galilean boosts −→ Lorentz boosts

x̂ = ih̄∇p −→ x̂rel , (19)

where

x̂rel = ih̄

√
1 +

p2

m2c2
∇p . (20)

Thereby we consider (20) as the candidates for the relativistic position opera-
tors. But these are non-commuting operators. So proceeding along this geomet-
rically natural way first what we must do is to give up with the commutativity
of components of the position operator. We stress that in [1] the commutativity
requirement is tacitly contained in the list of basic natural requirements.

First of all we note immediately that operators (20) are hermitian with the
norm (2). After lifting the commutativity condition we can say that that the new
position operators are (the simplest!) hermitian operators in this metric.

Next we consider the problem of measurement. Evidently, in contrast with the
commutative case the components of the position operator can not be measured.
We note that A.Wightman refuses entirely to consider the non-commuting position
operators from this point of view: ”. . . operators which could not serve as position
observables since their three components do not commute”. But there are no reasons
to reject the idea that the very concept of the configurational space in the relativistic
case is modified as compared with the non-relativistic theory. As the consequence
of such a modification must be the change of the all concept of the measuring the
position, uncertainty relations etc.

To make this statements more clear, let us return for a time being to the non-
relativistic case. As coordinates commute, we can diagonalize simultaneously all
three components of it.

At the same time many other operators of the universal enveloping algebra of
the Euclidean Lie algebra also are diagonal. For example the Casimir operator x̂2

which is invariant operator of the Euclidean group of the momentum space

[
x̂2

]
eipx = 4p eipx = x2eipx ,

x̂ieipx = xieipx , 0 ≤ x <∞, −∞ < xi <∞
(21)

Important is that the common eigenfunctions of these operators eipx are the
kernels of the Fourier transform connecting the Euclidean momentum space of the
non-relativistic quantum mechanics and corresponding configurational space.

In the relativistic case it is natural to consider as the momentum space adequate
from the physical point of view the space given by (1), i.e. the Lobachevsky space
of the physical solutions of the Klein–Gordon equation. Integration over this space
(with the Lorentz–invariant volume element |DΩp) is given by (2). If we wish
to follow the concept presented in the previous paragraph we should consider the
universal enveloping algebra of the Lorentz group., determine the maximal set of
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mutually commuting operators, determine their common eigenfunctions (new plane
waves) and spectrum. The Casimir operator of the Lorentz group Lie algebra can
be chosen in the form

r̂2 = x̂2
rel −

M2

m2c2
− h̄2

m2c2
, (22)

where M is the angular momentum operator. The non-relativistic limit of (22) is
x̂2 (see (21)). Spectrum of r for the unitary representations takes continuous and
discrete values. All these representations find the applications in various models of
relativistic interactions. We shall concentrate on the so called principal series for
which 0 ≤ r <∞.

The eigenfunctions of r̂2 are the matrix elements of unitary irreducible repre-
sentations of the Lorentz group or their generating functions — kernels of Gelfand–
Graev transformations:

r̂2〈p|r〉 = r2〈p|r〉 , 〈r|p〉 = 〈p|r〉∗ . (23)

They play the role of plane waves in the given relativistic formalism. Explicitly

〈r|p〉 =

(
p0 − pn

mc

)−1−irmc/h̄

, n2 = 1 . (24)

The unit vector n gives the sense to the symbol r — by definition

r = rn . (25)

We shall call the space of vectors r the relativistic configurational space1) . The
partial expansion for the the plane wave (24) is

〈r|p〉 =

∞∑

l=0

il(2l+ 1)pl(coshχ, r)Pl(np · n) ,

p0 = coshχ , p = sinhχnp , n2
p = 1 , (26)

where

pl(coshχ, r) = (−1)l
√

π

2 sinhχ

Γ(ir + l + 1)

Γ(ir + 1)
P

−1/2+ir
−1/2+ir coshχ . (27)

The expansion (26) is analogous to the non-relativistic one

eipr =

∞∑

l=0

il(2l + 1)jl(pr)Pl(np · n) , (28)

where jl(pr) =

√
π

2pr
Jl+1/2 are the spherical Bessel functions. In the non-relati-

vistic limit
pl(coshχ, r) −→ jl(pr) . (29)

1) The concept of the relativistic configurational space have bbeen introduced in [6] (see also
[5]), for further references see [7]-[9]
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The orthogonality and completeness conditions for the relativistic plane waves
are

1

(2π)3

∫
〈r|p〉 〈p|r′〉dΩp = δ(r − r′) ,

1

(2π)3

∫
〈p|r〉 〈r|p′〉dr = δ(p − p′) = δ(p− p′)

p0

mc
.

(30)

The relativistic configurational space is an example of the quantum 3–dimen-
sional Euclidean space. The quantum nature of the r–space is predefined by the
fact that the the Lie algebra of its isometry group is realized in a framework of
noncommutative differential calculus. The momentum operators (generators of
translations) are

H0 = p̂0 = cosh

(
i
∂

∂r

)
+

i

r
sinh

(
i
∂

∂r

)
− 4ϑ,ψ

2r2
exp

(
i
∂

∂r

)
,

p̂1 = − sinϑ cosψ

[
exp

(
i
∂

∂r

)
−H0

]
− i

(
cosϑ cosψ

r

∂

∂ϑ
− sinψ

r sinϑ

∂

∂ψ

)
exp

(
i
∂

∂r

)
,

p̂2 = − sinϑ sinψ

[
exp

(
i
∂

∂r

)
−H0

]
− i

(
cosϑ sinψ

r

∂

∂ϑ
+

cosψ

r sinϑ

∂

∂ψ

)
exp

(
i
∂

∂r

)
,

p̂3 = − cosϑ

[
exp

(
i
∂

∂r

)
−H0

]
+ i

sinϑ

r

∂

∂ϑ
exp

(
i
∂

∂r

)
. (31)

They play the role of inner derivatives in relevant differential calculi. These oper-
ators mutually commute

[p̂µ, p̂ν ] = 0 , µ, ν = 0, 1, 2, 3 . (32)

But the corresponding differentials of the coordinate functions don’t commute
with the coordinate functions themselves. For the details we refer the reader to [9]
- [11]. Note that that the integration in the second formula in (30) is carried over
with the Euclidean volume element dr.

The common eigenfunctions of p̂µ are 〈r|p〉 (23)

p̂µ〈r|p〉 = pµ〈r|p〉 , (33)

from which we conclude that the ”plane waves” (23) indeed describe the free rela-
tivistic motion with definite value of the 4–momentum. This is a new realization of
the Lie algebra of the Euclidean group which we discussed in the Introduction.

Operators p̂µ identically satisfy the relativistic relation between energy and
momentum (1). Important is also to note that these operators solve the problem

of ”extracting the root square” in the relation p̂µ =
√

p2 +m2c2:

p̂0〈r|p〉 = p0〈r|p〉 =
√

p2 +m2c2 〈r|p〉 . (34)

In the non-relativistic limit

|p| � mc , p0 ∼= mc+
p2

2mc
, r � h̄

mc
(35)
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relativistic plane waves 〈r|p〉 transfer to usual plane waves

〈r|p〉 = exp

[
−

(
1 + ir

mc

h̄

)
ln

(
p0 − pn

mc

)]
∼=

∼= exp

[
−

(
1 + ir

mc

h̄

)
ln

(
1 − pn

mc
+

p2

2m2c2
+ . . .

)]
∼=

∼= exp

(
i
p · (rn)

h̄

)
= exp

(
i
pr

h̄

)
. (36)

The wave function of the particle can be expanded in the Fourier integral in the
relativistic plane waves

ψ(r) =
1

(2π)3/2

∫
〈r|p〉ψ(p) dΩp . (37)

Particles are localized in the relativistic configurational space in a usual sense.
The position operator r̂ in r–representation acts on a wave function in a usual way

r̂ψ(r) = rψ(r) . (38)

The eigenfunctions ψr0
(r) of r̂ corresponding to the eigenvalue r0 are ψr0

(r) =
δ (r − r0) so that

r̂ψr0
(r) = rψr0

.(r) (39)

Eigenfunctions corresponding to different eigenvalues — i.e. the states localized at
different points r0 and r̃0 are orthogonal

∫
ψr0

ψ
r̃0

dr = δ (r̃0 − r0) , (40)

which is the usual localization condition in the new relativistic configurational
space.

3 Relativistic two−body problem.

We start with the non-relativistic two–body problem. In the non-relativistic
theory the two–body Hamiltonian operator

H = − h̄2

2m1
4r1 −

h̄2

2m2
4r2 + V (r) , (41)

H = − h̄2

2M
4R − h̄2

2µ
l4r + V (r) , (42)

where

M = m1 +m2 , µ =
m1m2

M
, R =

m1r1 +m2r2

M
, r = r1 − r2 , (43)
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or in the momentum space variables

H =
P2

2M
+

p2

2µ
+ V (r) , (44)

where
P = p1 + p2 , p =

p1

m1
− p2

m2
. (45)

The way we consider here the two–body problem is rather artificial but it admits
the natural generalization to the relativistic two–body problem in the framework
of the approach considered here. Consider the free motion wave functions of the

separate particles ψ
(0)
1 (r1), ψ

(0)
2 (r2). Writing them in terms of the CM and relative

coordinates R and r we obtain the ”bilocal” dependence of the individual wave
functions

ψ
(0)
1 (r1) = eip1r1 = ψ

(0)
1 (R, r) = eip1R eip1

m2

M
r ,

ψ
(0)
2 (r2) = eip2r2 = ψ

(0)
2 (R, r) = eip2R e−ip2

m1

M
r .

(46)

This reflects the simple fact that these wave functions can be obtained from
the individual wave functions of the separate particles in the CM system (i.e.

exp
(
ip1

m2

M
r
)
, and exp

(
−ip2

m1

M
r
)

where
m2

M
r, and −m1

M
r are the coordinates

of the first and the second particle in the CM system correspondingly) by the
translation by R. In this way we factorize the dependence on the CM coordinate
R, and relative coordinate r for individual particles. Now taking the products of
the corresponding parts of these wave functions, we restore the CM coordinate R

dependence
ΦCM(R) = eip1R eip2R = eiPR (47)

and relative coordinate r dependence (effective particle free motion)

φ
(0)
eff (r) = exp

(
ip1

m2

M
r
)

exp
(
−ip2

m1

M
r
)

= exp

[
i

(
p1

m1
− p2

m2

)]
µr = eipr (48)

of the two–body wave function

ψ(0) (r1, r2) = ψ(0)
(
R +

m2

M
r,R− m1

M
r
)

= TRψ
(0)

(m2

M
r,−m1

M
r
)
, (49)

TRri = ri + R , (50)

ψ(0) (r1, r2) = ψ
(0)
1 (r1)ψ

(0)
2 (r2) = φ(0) (R, r) = EiPReipr . (51)

So that
φ(0) (R, r) = ΦCM(R)φ

(0)
eff (r) and φ

(0)
eff (r) = φ(0) (0, r) . (52)

In the presence of the interaction φ
(0)
eff (r) is changed for φeff (r) which is not

already factorized and satisfies the Schrödinger equation

[
p2

2µ
+ V (r)

]
φeff(r) = Eφeff(r) . (53)
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The effective wave function φeff (r) can be expressed in terms of the corresponding
wave function in the momentum space

φeff(r) =
1

(2π)3/2

∫
eiprφeff(p) dp . (54)

The system as a whole moves with the constant momentum, so that Φcm(R) does
not change in the interacting case. The factorization of the individual wave func-
tions does not take place but the relation (52) is valid so the Fourier transform for
the total wave function φ(R, r) = Φcm(R)φeff(r) is

φ(R, r) =
1

(2π)3/2

∫
eiKReikrφP(K,k) dK dk , (55)

where
φP(K,k) = δ (P −K)φeff .(p) (56)

In the relativistic configurational r–space no local addition theorem like (17)
exists and we must use the expansion (26). From this expansion the following
”nonlocal” addition theorem follows [6]

∫
〈r|p1〉 〈p2|r〉 dn =

∫
〈r|p1(−)p2〉 dn , (57)

where q = p1(−)p2 is a vector p1 boosted into the Lorentz frame moving with the

velocity v =
p2c√

p2
2 +m2c2

q = p1(−)p2 ,(
p1(−)p2

)
0

=
(
coshχ1 coshχ2 − sinhχ1 sinhχ2 (np1 · np2)

)
. (58)

Of course for the standard plane waves the integral addition theorem like (57)
is valid ∫

exp
(
ip1

m2

M
r
)
· exp

(
−ip2

m1

M
r
)

dn =

∫
eipr dn . (59)

The formula (59) becomes necessary if we wish to multiply not the exponents
themselves but their partial expansions (28). We see that the integration over dn
is necessary to restore the partial expansion

eipr =

∞∑

l=0

il (2l + 1) jl

(∣∣∣∣
m2p1 −m1p2

M

∣∣∣∣
)
Pl(np · n) (60)

in the right hand side of (48). But such angular averaging commutes with the
Galilean Hamiltonians (spherically symmetric potentials)

∫ [
p2

2µ
+ V (r)

]
ψ(r) dn =

[
p2

2µ
+ V (r)

] ∫
ψ(r) dn . (61)
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Transferring to the relativistic two–body problem we must first note that hyper-
boloids in the momentum space corresponding to different particles are different,
see (1). This must be taken into account for example in (24):

〈r|pi〉 =
(
coshχi − sinhχi (npi

· n)
)−1−irmic/h̄

, i = 1, 2 , (62)

where r is the (dimensional) analog of the relative distance between particles in the
relativistic configurational space.

Thus the free relativistic two body wave function φ
(r,0)
eff (r) by analogy with (48)

can be chosen in a form

φ
(r,0)
eff (r) =

〈
m2

M
r

∣∣∣∣p1

〉 〈
p2

∣∣∣∣
m1

M
r

〉
. (63)

It describes the free motion in the CM system, the relativistic free motion (see
Sec.2), and has the right non-relativistic limit. There are several possibilities to
generalize for the relativistic case the formula (48) but our choice is the simplest
from the formal point of view and most transparent from the physical point of view.
In explicit form

φ
(r,0)
eff (r) =

(
coshχ1 − sinhχ1 (np1 · n)

)−1−i(m2/M) (rm1c/h̄)×

×
(
coshχ2 − sinhχ2 (np2 · n)

)−1+i(m1/M) (rm2c/h̄)
.

(64)

Now we apply the addition theorem (57) and obtain

∫ 〈
m2

M
r

∣∣∣∣p1

〉 〈
p2

∣∣∣∣
m1

M
r

〉
dn =

∫
〈r|q〉 dn , (65)

where q is given by (58). Remarkable is that the mass entering the expression for
the relativistic plane wave in the right hand side of (65) is the reduced mass (43)

〈r|q〉 =
(
coshχq − sinhχq (nq · n)

)−1−irµc/h̄
. (66)

We shall consider (66) as the free relativistic effective wave function describing

the relative motion. In the presence of potential the φ
(0)
eff (r) is modified and we

have analogously to (54)

φ
(r)
eff (r) =

1

(2π)3/2

∫
〈r|k〉φ(r)

eff (k) dΩk . (67)

Now we consider the arbitrary frame of reference. In absence of the external
field the our 2–body system moves with the constant velocity. This allows us to
write the relativistic 2–body wave function in the form indistinguishable from (56)

φ
(r)
P (K,k) = δ (P−K)φ

(r)
eff (p) (68)
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and

φ
(r)
P (R, r) = TRφ

(r)
eff (r) = TR

1

(2π)3/2

∫
〈r|k〉φ(r)

eff (k) dΩk =

=
1

(2π)3/2

∫
eiPR〈r|k〉φ(r)

eff (k)dΩk (69)

or

φ
(r)
P (R, r) =

1

(2π)3/2

∫
eiKReikrφ

(r)
P (K,k) dK dΩk . (70)

Now bilocal character of the 2–body wave function in contrast to the non-
relativistic case becomes essential because the variables R, and r have the different
nature.

4 Massless case

This section arose as the result of the discussion with Prof. J. Niederle during
my presentation of this talk at the Symposium. See in this connection [3, 12]

In distinction with the case m 6= 0 the relativistic plane waves for the massless
particles 〈ρ, α|s, φ〉 are singular functions and must be regularized [13]. As we
shall see no other singularities emerge in the theory of the massless particles in
the framework of the relativistic localization concept. Accepting the choice of the
plane wave regularization once and forever we resolve the old problem of massless
relativistic particle localization [3, 12]. We define the regularized massless plane
waves as [14]

〈ρ̃|p̃〉 = 〈ρ, α|s, φ〉 = s−iρ−1/2
(
1 − cos(φ− α)

)−iρ−1/2

+
, (71)

where the generalized function x+ is defined as

xλ+ =

{
0 x ≤ 0

xλ x > 0
(72)

or

xλ+ =
eiπλ (x− iε)

λ − e−iπλ (x+ iε)
λ

2i sin iπλ
. (73)

The case of the massless scalar particle in two spatial dimensions is considered.
The point on the upper pole of the cone

pµpµ = (p0)2 − p̃2 = 0 , p0 ≥ 0 , p̃2 = p2
1 + p2

2 (74)

is parameterized as

{pµ} = {s, s cosφ, s sinφ} , 0 ≤ s <∞ , 0 ≤ φ < 2π . (75)

Correspondingly the relativistic configurational space is 2–dimensional. The
coordinates in it are given as

ρ̃ = {ρ cosα, ρ sinα} , 0 ≤ ρ <∞ , 0 ≤ α < 2π . (76)
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The series expansion of the plane wave (71) has the form

〈ρ, α|s, φ〉 =
2−iρΓ (1/2− iρ) Γ (−iρ) s−iρ−1/2

√
2π

×

×
∞∑

n=−∞

(−1)n ein(φ−α)

Γ (1/2 + n− iρ) Γ (1/2− n− iρ)
.

(77)

The plane waves obey the orthogonality

1

(2π)
2

∫
〈ρ̃|p̃〉 〈p̃|ρ̃′〉 dΩp =

δ (ρ̃− ρ̃′)

µ(ρ)
, (78)

where
µ(ρ) = ρ tanhπρ (79)

and completeness conditions

1

(2π)
2

∫
〈p̃|ρ̃〉 〈ρ̃|p̃′〉 dΩρ = |p̃ | δ (p̃− p̃′) , (80)

where

dΩp =
dp̃

|p̃ | , dΩρ = ρ tanhπρ . (81)

The localization problem in the relativistic configurational space for massless
particles in principle does not differ from the case m 6= 0. Particles are localized in
the relativistic configurational space in a usual sense. The position operator ρ̂ in
ρ–representation acts on a wave function in a usual way

ρ̂ψ(ρ) = ρψ(ρ) . (82)

The eigenfunctions ψρ
0
(ρ) of ρ̂ corresponding to the eigenvalue ρ0 are ψρ

0
(ρ) =

δ (ρ − ρ0) so that
ρ̂ψρ

0
(ρ) = ρ0ψρ

0
(ρ) . (83)

Eigenfunctions corresponding to different eigenvalues — i.e. the states localized at
different points ρ0 and ρ̃0 are orthogonal

∫
ψρ

0
ψ

ρ̃
0

dρ = δ (ρ̃0 − ρ0) , (84)

which is the usual localization condition in the new relativistic configurational
space.
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