2k—dimensional N = 8 supersymmetric quantum mechanics
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We demonstrate that two-dimensional N = 8 supersymmetric quantum mechanics
which inherits the most interesting properties of N = 2,d =4 SYM can be constructed if
the reduction to one dimension is performed in terms of the basic object - N =2,d =4
vector multiplet. In such a reduction only complex scalar fields from the N = 2,d = 4
vector multiplet become physical bosons in d = 1, while the rest of the bosonic compo-
nents are reduced to auxiliary fields thus giving rise to (2, 8, 6) supermultiplet in d = 1.
We construct the most general action for this supermultiplet with all possible FI terms
included and explicitly demonstrate that the action possesses duality symmetry extended
to the fermionic sector of theory. To deal with the second—class constraints presented
in the system, we introduce the Dirac brackets for the canonical variables and find su-
percharges and Hamiltonian which form the N = 8 super Poincare algebra with central
charges. Finally, we explicitly present the generalization of the two-dimensional N = 8
SQM to the 2k-dimensional case with a special Kahler geometry in the target space.
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1 Introduction

Among extended supersymmetric theories in diverse dimensions those which
have eight real supercharges are most interesting. Mainly, this interest is moti-
vated by the existence of off-shell superfield formulations. In the N = 2, d = 4 case
the invention of the harmonic superspace [1] and projective superspace [2] opened
a way for a detailed description of these theories. Another motivation comes from
a possibility of obtaining exact quantum results for N = 2, d = 4 theories in
the famous Seiberg-Witten approach [3, 4]. Finally, let us mention that super-
symmetry severely restricts possible target-space geometries. When the number of
supercharges exceeds eight, the target spaces are restricted to be symmetric spaces,
while beyond sixteen supercharges there is no freedom left. Thus, the theories with
eight supercharges are the last case of theories with extended supersymmetries
which have a rich geometric structure of the target space (see e.g. [5]).
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One of the most investigated theories with eight supercharges is N =2, d =4
SYM theory. It has been much explored and many exciting results have been
obtained. The heart of the N = 2, d = 4 SYM theory is formed by a vector
supermultiplet, which describes spin-1 particles, accompanied by complex scalar
fields and doublets of spinor fields. The geometry of the scalar fields is restricted to
be a Kéhler one [6] of special type. The restriction that the metric is defined by a
holomorphic function is crucial for the Seiberg-Witten approach. Other interesting
properties of the N = 2, d = 4 SYM theory are duality in the scalar sector [3, 4]
and possibility of spontaneous partial breaking of the N = 2 supersymmetry by
adding two types of Fayet-Iliopoulos (FT) terms [7, 8].

In [9] it has been shown that the theories with eight supercharges can be simi-
larly formulated in diverse dimensions still sharing the common properties. In this
respect, the one-dimensional case has a special status, because the standard reduc-
tion from the N =2, d =4 SYM to d = 1 gives rise to the N = 8 supersymmetric
theory with five bosons, i.e., the (5, 8, 3) supermultiplet [9, 10]. Of course, after
such a reduction almost all nice features of N = 2 SYM mentioned above disappear.
Naturally, an obvious question arises whether it is possible to construct an N = 8,
d =1 theory which

— may be obtained by reduction from the N =2, d =4 SYM,

— contains 2k (in the simplest case only two) bosonic fields with a special Kéhler
geometry in the target-space,

— possesses the duality transformations, properly extended to the fermionic
sector,

— has a proper place for FI terms.

The goal of the present paper is to demonstrate that N = 8 supersymmetric quan-
tum mechanics with all such properties may indeed be constructed. Our main idea
is to perform the reduction to one dimension in terms of the basic object - N =2
vector multiplet A instead of the reduction in terms of a prepotential [9, 10]. In this
approach only a complex scalar from the N = 2, d = 4 vector multiplet becomes a
physical boson in d = 1, while the rest of the bosonic components are reduced to
auxiliary fields. Thus, we finish with the (2, 8, 6) supermultiplet. In Subsection
2.1 we construct the most general action for this supermultiplet with all possi-
ble FI terms included. We also explicitly demonstrate that the action possesses
duality symmetry extended to the fermionic sector of the theory. In Subsection
2.2 we demonstrate that our SQM contains the the second-class constraints. We
then introduce the Dirac brackets for the canonical variables, and construct the
supercharges and Hamiltonian which form N = 8 super Poincare algebra with cen-
tral charges. Finally, in Subsection 2.3 we explicitly present the generalization of
our two-dimensional N = 8 SQM to a 2k-dimensional case with a special Kahler
geometry in the target space.
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2 2k-dimensional N=8 supersymmetric quantum mechanics

In this section we describe a general superfield formalism of 2k-dimensional
N = 8 supersymmetric quantum mechanics [11]. We start with the formulation of
SQM in N = 8 superspace and conclude with the component form of the Lagrangian
and Hamiltonian. Due to an almost evident generalization of the 2-dimensional case
to the 2k-dimensional one and to avoid unneeded complications, we will describe
in detail only the former case, explicitly presenting just the final results for the
2k-dimensional SQM.

2.1 Two-dimensional N=8 SQM: Lagrangian

The convenient point of departure is the N = 8, d = 1 superspace R(18)

ROAB) — (¢, gia, gioy | (Hia)T — 0, (ﬁm)T = e

where i, a, « = 1, 2 are doublet indices of three SU(2) subgroups of the automor-
phism group of N = 8 superspacel). In this superspace we define the covariant
spinor derivatives

DT =g, POV gy OO
[D¥, DIV} = 2ichicaby, | {vie, DIP) = 9i¢ii By, (1)
{D**, vi*} =0.

To construct a supermultiplet with two physical bosonic, eight fermionic and six
auxiliary bosonic components, i.e., the (2, 8, 6) supermultiplet, we, adhering to
[11], introduce a complex N = 8 superfield Z, Z subjected to the following con-
straints . -

D"z =vl*z=0,  D*¥Z=V*Z=0, (a) )
anDQaZ+v1aD1a§: iMaa, (b) ( )
where M2 are arbitrary constants obeying the reality condition (M “a)T = Muq-
The constraints (2a) represent the twisted version of the standard chirality condi-
tions, while (2b) are recognized as modified reality constraints [8]. As we will see
below, the presence of these arbitrary parameters M *® gives rise to potential terms
in the component action and opens a possibility for a partial breaking of N = 8
supersymmetry.

The constraints (2) leave the following components in the N = 8 superfields Z, Z:

Z=Z|, 2:§|7 ¢a:D2aZ|a &a:_Dclzgh

€ =v*z|, ¢, =-VLZ|, A=-iD*D?Z|, A=-iD“D!Z,

B =-iv?**V%z|, B=-iv'*V!Z|, Yo = p*vez|, (3)
Yo = —DVIOZ| = Yoo £ iMoe,

1) We use the following convention for the skew-symmetric tensor e: €55 eIk = 6?, €12 =€l =1.
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where | means restriction to §¢ = ¥ = 0. The bosonic fields A and B are
subjected, in virtue of (2), to the additional constraints

9
ot

o , -

(A-B)=0, 5 (A-B)=0. (4)

To deal with these constraints we have two options

— to solve these constraints as

m

m —
= —_— f— —
A C’+2, B=C 5 (5)

where C' is a new independent complex auxiliary field and m is a complex
constant parameter. The resulting supermultiplet will be just (2, 8, 6) one.

— to insert the constraints (4) with Lagrangian multipliers in the proper action.
This option gives rise to a (4, 8, 4) supermultiplet and will be considered in
the forthcoming paper [18].

Now one can write down the most general N = 8 supersymmetric Lagrangian in
the N = 8 superspace?):

) .
§—— / AtP03020; | F (2) ~ 502002 N"Z — < (103620 + ni5030) Z | -

. 6)
S _ I
/dtd291d2’l91 F (Z) + 591a191aNaaZ — % (Tl Olllola + ﬁ’ﬂ?’&la) Z|.

Here F(Z) and F(Z) are arbitrary holomorphic functions of the superfields Z
and Z, respectively, and two terms with a constant real matrix parameter N
(N “a)T = Nuo) and a complex constant parameter n represent one-dimensional
versions of two Fayet-Iliopoulos terms [8].

After integration over the Grassmann variables one obtains the component form
of the action (6)3):

S = /dt{(F”JrF”) 25+ & (vb - v+ €6 - &)] -
—1 (FO: - FOz) (v +€6) +
+5 [F7 (2¥2 + AB) + T (272 + AB) — FWye? - FWy2¢2| -
— & [FO) (1A€ +1By? — 4°€°Ya0) + FO (A +1BY? + 496V oa) | +

+35 7 (A+B) + & (A+B) + LNY + LNV |, (7)

2) We use the convention [ dtd202d?9 = & [dt D?**D2 v22Vv2, ~ ~
3) All implicit summations go from “up-left” to “down-right”, e.g., ¥ = %)q, V2 = h®ha,
M? = M®* Myq, etc.
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Here the holomorphic function F(z) is defined as a bosonic limit of F(Z)
F(z)=F(2).

Now following the first option (5), one may express the auxiliary fields in terms of
the physical ones using their equations of motion

i (F(3)¢2 +F(3)52) + % (F// _ F”) _a

C = _: ,
F" 4+ "
L (FOS 4 TOR) - (' F) ®
C= o+ il ’
F(B) 7a 701 - F(B) aSoa T .F”Maa - Naa X7
Yaa: wé. wg—l ) Yaa:Yaa+iMaa-
F" 4+ "

Substituting these expressions back into Eq.(7) we will get the action in terms of
the physical components

S:/dt[IC—V], ()
where the kinetic K and potential V terms read as
K= (F"+ ") [35 4+ & (v — b+ 66— &8) | = 5 (F""2 = F"2) (v + €6) (10)

and

1 3 F/// F/// _ 3?///?/// o
—_ 4 =25 = 242 4) _ 2¢2
V= 16 [(F F//_'_F//>Q/J5 +<F F//+F//)w§

F///F///

T (*? + €267 — 4pyel) +
N2 —i (F// _ F//) NM + F//F//MQ
+2 F _|_F// +
. F/I/Q/Jafa (F//Maa _ iNaa) + F///,Jjaga (F/IMaa + iNaa)
+41 — +
" 4+ Fr
nn+ 5 (mn —mn) (F" — F") + mmF"F"
+ F +F1/ +
 FOE (F'm —n) — FOp? (F'm +n)
+1 F _’_F// +
F(C)’) F2 (Tl =) 79 _
) E(F'm—n)—F ¢ (F'm+n) 1
T F" + F// : ( )
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The action (9) is invariant with respect to the N = 8 supersymmetry which is
realized on the physical component fields as follows:

0z = €2a¢a + 62a§a, 0z = —€1alza — Elaga,

Sihg = %ega (C + %) + 5 Yaa + 2i€142, (12)
(Sé-a = %Ega <6 — %) - ngaa + 2i51a2}7

with €;4, £;o being the parameters of two N = 4 supersymmetries acting on 6°* and
Vi@, respectively, and with the auxiliary fields C' and Y ** defined in (8).

Using the Noether theorem one can find classical expressions for the conserved
supercharges corresponding to the supersymmetry transformations (12)

Qzlz _ (F// _|_F//) waé _ iF(S)L/’)aEQ + % (iF//Maa + Naa) ga _ (T?’LF” _ ﬁ) ,lr/’)a,
S% = (" + F") g5 — AFWERG? _ | (Mo 4 No) §, + 1 (mF" + ) &,
Q2 =(QD), 82 = (D). (13)

Let us note that our variant of N =8 SQM is a direct reduction of the N = 2,
d =4 SYM. So it is not unexpected that the metric of bosonic manifold is restricted
to be the special Kdhler one (of rigid type) (see, e.g., [15])

9(2,2) = F"(2) + F"(2). (14)

Secondly, one may immediately check that the action (9) exhibits the famous
Seiberg-Witten duality [3]. Indeed, after passing to new variables defined as

zZ= F/(Z), "r/)a = F//¢a, "r/)a = F”’J}av ga = iF”fav goz = _iF”gou
e 1 \Tac ax rac aq ~ — ~ —
F'(z) = ) N = M®*, M*=-N* m=m, n=m, (15)

the action (9) keeps its form being rewritten in the new tilded variables. Let us note
that in the dual formulation the constants M *® and m, which have appeared in the
constraints (2) and (5), are interchanged with the constants N%* and n, which have
shown up in the Fl-terms. This is just a simplified version of the electric-magnetic
duality [3] for our N = 8 SQM case. Thus, our N = 8 SQM possesses the most

interesting peculiarities of the N = 2, d = 4 SYM theory and can be used for a
simplified analysis of some subtle properties of its ancestor.

2.2 Two—dimensional N = 8 SQM: Hamiltonian

To find the classical Hamiltonian, we follow the standard procedure of quantizing
a system with bosonic and fermionic degrees of freedom [16]. From the action (9)

we define the momenta p, p, %), 7, 7(8 7©a conjugated to z, 2, ¥, P, £

6
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and &, respectively, as

p=g§—iazg(1/ﬂﬁ+§5), ﬁ=gi+i5zg Y+ £€) (a)

_ - (16)
9a, ﬁ(f)a = _iggaa (b)

W) _ 1 o _wa_ 1 a0 (6 _ _
ﬂ—a 4g¢a,ﬂ' 4g¢7 7Ta

| =

with the metric g(z, Z) defined in (14) and introduce the canonical Poisson brackets
pr=1, Zpr=1,  {eon?}=-g {ex}=-5
[sn) =t {08} = 58 a7

From the explicit form of the fermionic momenta (16 b,c) it follows that the system
possesses the second—class constraints

i A = a — a 1 a
X =70+ L gda, X =74 gyt

©_ ©_ 1 ¢ © ©a 1 (18)
on5 :ﬂ—ag)—'_zgé-aa Xéa:’frfa"’_zg&aﬂ
since ) )
_ 1 _ 1
{Xfﬂ’),x(”’)b} = —5 9%, {Xff),x(f)ﬂ} = =599 (19)

Therefore, we should pass to the Dirac brackets defined for arbitrary functions V
and W as

pwh, = o= | {vad}) m [x0r wht

{ij(w)a} W {Xl(:b)’w} + (X(w) — X(g)) - (20)
' Xb

As a result, we get the following Dirac?) brackets for the canonical variables:

(ih =1 {2ph =1 {55} =52 i+ €6).

{ye, ib}z—%ég, {56“,56}:—%6;';, (21)
A~ . 0.9 A _ 0.9

(p, ba)} = G {h. €4} e

2 7 _ azg T ol _ @ -

(v} = 200 (&)= 22E.

4) From now on the symbol {,} stands for the Dirac bracket.
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where the “improved” bosonic momenta have been defined as

p=pt 109D +ED), P=p— i (Wi +Ed). (22

Now one can check that the supercharges Qiq, Sia (13), being rewritten through
the momenta as

1{, :ﬁ,wa _i zgd;a?_’_ % (iF//Maa+Naa) (mF/l —ﬁ) ’JJG,

(MF" +n) &>, (23)

ga -
Six :ﬁga _i zggaqu -1 (iF/lMaa +Naa) ’J]a+
Qa0 = (@D, Sz = (5D,

and the Hamiltonian
H=g'pp+V (24)

form the following N = 8 superalgebra

{Qm, ij} = —Qieijeab (H — % (’er + ﬁm)) — %Gij (NgMab + N;Maa) ,
{Sm, Sjﬁ} = —Qieijeag (H + % (nm + ﬁm)) — %eij (NaaMaﬁ + NgMaa) ,
{Qla; SQa} = _mNaa - iﬁMaa ) {QQa; Sla} = _mNaa + inMaa . (25)

By these we complete the classical description of the two dimensional N = 8
SQM. Before closing this subsection and going on to generalize our SQM to the
2k-dimensional case, let us briefly discuss the main peculiarity of the model.

Firstly, as has already been mentioned, the N = 8 supersymmetry strictly fixes
the metric of the target space to be the special Kdhler one.

Secondly, one can see that the Dirac brackets between the canonical variables
are defined in terms of the metric g(z,%) only. This fact has already been noted
in [17]. However, if we are going to include the potential terms in the Hamiltonian
(by adding the Fayet-Iliopoulos terms together with admitting the constant parts
in the auxiliary fields) the modified supercharges will contain nonmetric pieces (the
terms with explicit F”(z) or F”(2) in (13), (23)). The way to keep the metric
structure of the supercharges and to have the potential terms in the Hamiltonian
is to add only the Fayet-Iliopoulos terms keeping M,, = m = 0. Alternatively,
one may put all constant parts of the auxiliary fields equal to zero Ny, = n = 0.
However, in these cases our N = 8 superalgebra (25) does not contain any central
charges and the dual symmetry (15) is broken.

The presence of the central charges in the superalgebra (25), like in the N =4
SQM case [13], is the most exciting feature of the model. The central charges
appear only when the Fayet-Tliopoulos terms are added (with the constants N, or
n) and the auxiliary fields contain the constant parts (M, or m). The existence
of the nonzero central charges in the superalgebra (25) opens up a possibility of
realizing a partial spontaneous breaking of N = 8 supersymmetry.

Finally, it is amusing that the bosonic potential terms which appear in the
Hamiltonian explicitly break at least one of the SU(2) automorphism groups. This
is again very similar to the N =4 SQM [13].

8
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2.3 2k—dimensional N = 8 SQM

The generalization of the N = 8 two-dimensional SQM to the 2k-dimensional case
is straightforward. The simplest is the superfield generalization. It goes as follows:

— We introduce k complex N = 8 superfields Z4, Z8 (A,B =1,...,k) each of
them obeying the same constraints (2) with different constants M4 **:

DlazA _ vlazA _ 07 D2a§A _ v2o¢§A _ 0’ (a) (26)
vQOLDQ(le + vlaDlagA — IMA aa (b)
— The components of each superfield can be defined as in (3) and k different

constants m* may be introduced similarly to (5)
A — A
AA:cA+m7, BAzﬁA—mT. (27)

— The most general N = 8 supersymmetric action reads

Sor = —/dtd292d2192 F(2',... 2% - %9211192«12]\73“2’4—

A

% 3" (14 05020 + 14 95922) 24| + coc. (28)
A

where F(Z',...,2%), F(Z',..., Z") are arbitrary holomorphic functions of
the k-superfields Z4 and Z4, respectively, and all possible Fayet-Iliopoulos
terms with the constants N4 and n4 were included.

The rest of the calculations goes in the same way as it is done in the previous
subsections. For completeness, we present here the explicit structure of the Dirac
brackets between the canonical variables

{z* b} =05, {#* s} =05

{pas P} = =59 OhopF Fhon T (6205 +629E7 ).

(v, of} = —2ig"Psp,  {¢h, &F} = —2ig" P53,

{pa, vF} = 9P 0% cpF Y, {pa, €8} = 9P cpF EE,

{Pa, ¥2} = 9P 0% F Vs, {pa. 2} =9 0%cF &L, (29)
where the metric g4p is defined as

82
+ 0z40z8

82

gAB = WF(Zl,...,Zk)

F(z,..., 2%, d*Pgpc =64, (30)

9
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Finally, the supercharges
Qf = pap™® — 105 g FpAEPES + & (103 g FM A + Nig~) €8
—1 (9% pFm* —np) P,
S = Pah™ — 105 pc FEAUPYE — § (105 ,FM A + Nge) 9 (31)
+31 (945 Fm” + np) £8P,
Qa0 = (@1, Saa=(57)

and the Hamiltinian

Hop = g*Ppapp +

+16 (8jBCDF — 9" R ppF Rpp F - QQEE,aiCEFagDE’F) PpAopleCael +

+1L6 (gi‘xBCDF - gEEléilBE Fég)DE’F - 29EE/5§&CEF g%DE’F) ¢Aa¢fgcagg -

~15 97 BppF 0t pp F (WA IOy + EAENENER — 4 e D) +

+59%7 [NE*Npaa =1 (00 F — 05 F) N5 Mo + 040 F OppF MM ] +

+1 9P [0hop PP (0h 5 F M, +iNao ) +

+0%epF PP (0 g F My, — iNea )] +

+4 g [nAﬁB + 1 (nam® — aam®) (05 F — 08¢ F) + mmP O3 F 0% pF +

HOL e p FECYED (03 5 FmP — np) —i0%cp Py )Y (05 s FmY + np) +

103cpFECE] (O5pFmMT —np) —i04cpFo 0y (OppFm® + ﬁB)} (32)
form the superalgebra

{Qm, ij} = _QiEijGab (H — % (nAmA + ﬁAmA)) — %eij (NXGMO’?b + Nf{bea) R

(Sine S0} = ~2icyseas (H + 35 (nam? + nam)) — L ey (NG, M + N3 pML) .

a,

{Qlaa SQa} = _mANA ac _iﬁAMfa 3 {QZa; Sloz} = _WANA aa+inAM,;4a . (33)

3 Summary and conclusions

In this paper we presented a new version of N = 8 SQM with (2, 8, 6) compo-
nents. This supermultiplet is obtained by a direct reduction from the N =2, d =4
vector supermultiplet. We constructed the most general action with all possible FI
terms and explicitly showed that the geometry of the target space is restricted to
be the special Kahler one. Apart from the N = 8 superfield formulation, we pre-
sented the component action with all auxiliary fields, as well as with the physical
fields only. As a nice feature, the constructed action possesses duality which acts
not only in the bosonic sector, but also in the fermionic one. We performed the

10
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Hamiltonian analysis and found the Dirac brackets between the canonical variables.
The supercharges and Hamiltonian form the N = 8 super Poincare algebra with
the central charges. These central charges are proportional to a product of two
constants — one that comes from the FI terms, and the other that appears in the
superfield constraints (or in their solution) and coincides with the constant part
of the auxiliary fields. These constants are directly related to the appearance of
the potential terms in the Hamiltonian. Finally, we presented the extension of the
N = 8 two-dimensional SQM to the 2k-dimensional case.

These results should be regarded as preparatory for more detailed study of 2k-
dimensional SQM with N = 8 supersymmetry. In particular, it would be interesting
to construct the full quantum version with some specific Kéahler potential. Generally
speaking, we believe that just this version of SQM could be rather useful for a
simplified analysis of subtle problems which appear in the N = 2, d = 4 SYM.
For example, one may try to fully analyse the effects of non-anti-commutativity in
superspace [20], including the modifications of spectra, etc.

Another obvious project for a future study is to construct a one-dimensional
analog of the c-map [19]. It should relate the 2k-dimensional N = 8 SQM to the
4k-dimensional one with some special restriction on the geometry of the latter. The
preliminary results in this direction will appear in a forthcoming paper [18].

Finally, due to the appearance of the central charges in the N = 8 Poincare
superalgebra one may expect the existence of different patterns of partial super-
symmetry breaking, like in the N =4 SQM case [13, 14].
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