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We present two different quantum deformations for the (anti)de Sitter algebras and
groups. The former is a non-standard (triangular) deformation of SO(4, 2) realized as the
conformal group of the (3+1)D Minkowskian spacetime, while the latter is a standard
(quasitriangular) deformation of both SO(2, 2) and SO(3, 1) expressed as the kinemati-
cal groups of the (2+1)D anti-de Sitter and de Sitter spacetimes, respectively. The Hopf
structure of the quantum algebra and a study of the dual quantum group are presented for
each deformation. These results enable us to propose new non-commutative spacetimes
that can be interpreted as generalizations of the κ–Minkowski space, either by considering
a variable deformation parameter (depending on the boost coordinates) in the conformal
deformation, or by introducing an explicit curvature/cosmological constant in the kine-
matical one; κ–Minkowski turns out to be the common first–order structure for all of these
quantum spaces. Some properties provided by these deformations, such as dimensions of
the deformation parameter (related with the Planck length), space isotropy, deformed
boost transformations, etc., are also commented.
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1 Introduction

Quantum groups have been applied, from the beginning of their development,
in the construction of deformed symmetries of spacetimes [1, 2, 3, 4, 5, 6, 7, 8, 9]
that generalize classical kinematics beyond Lie algebras. The deformation deepest
studied is the well known κ–Poincaré [1, 5, 6] which, more recently, has been applied
in the construction of the so called “doubly special relativity” (DSR) theories the-
ories [10, 11, 12, 13, 14] that make use of two fundamental scales. One is the usual
observer–independent velocity scale c, while the other is an observer–independent
length scale lp (Planck length) which is assumed to be related with the deforma-
tion parameter. In this way, DSR theories have established a relationship between
quantum groups and quantum gravity [15, 16].

From the dual quantum group, when the non-commutative spacetime coordi-
nates x̂µ conjugated to the κ–Poincaré translations (momenta) are considered, the
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non-commutative κ–Minkowski spacetime is found [17, 18, 19, 20, 21]:

[x̂0, x̂i] = −
1

κ
x̂i , [x̂i, x̂j ] = 0 . (1)

More general structures for quantum Minkowskian spacetimes have been proposed
to be [22]:

[x̂µ, x̂ν ] =
1

κ
(aµx̂ν − aν x̂µ) , (2)

where aµ is a constant four–vector in the Minkowskian space.

However, in spite of the great activity followed in this field, as far as we know,
there is no an explicit proposal for a quantum spacetime with a non-zero cos-
mological constant, or even, some structure generalizing (2). In other words, if
Lorentz symmetry has to be modified at the Planck scale and a non-zero curva-
ture/cosmological constant seems to be physically relevant, it is necessary to study
the quantum deformations of the (anti)de Sitter groups. These deformations may
provide some deformed relativistic symmetries, for which the deformed Poincaré
ones should be recovered through a flat limit/contraction or zero cosmological con-
stant.

The aim of this contribution is to present an overview of some recent results
concerning quantum (anti)de Sitter algebras and their dual quantum groups from
two different deformations; these moreover lead to generalized κ–Minkowski spaces.
The structure of the contribution has two different parts, each of them deals with
one specific deformation.

In section 2, we present a non-standard quantum deformation of so(4, 2) written
as the conformal algebra of the (3+1)D Minkowskian spacetime [23, 24]. The Weyl–
Poincaré algebra (isometries plus dilations) remains as a Hopf subalgebra after
deformation, and this structure is then used to obtain a quantum group which,
in turn, provides a non-commutative Minkowskian spacetime. Such a structure
involves the quantum boost parameters in the commutation rules; alternatively
this can also be interpreted as generalization of (1) with a variable deformation
parameter.

In section 3 we study a standard deformation (of Drinfeld–Jimbo type) for
so(2, 2) and so(3, 1) realized as kinematical algebras of the (2+1)D anti-de Sitter
(AdS) and de Sitter (dS) spacetimes [25]. We remark that we deal with 2+1
dimensions as these deformations are not completely constructed yet in the proper
(3+1)D case. We introduce the quantum algebras and construct the quantum
group through a Weyl quantization of a Poisson–Lie structure on the (anti)de Sitter
groups. When the non-commutative (anti)de Sitter spacetimes are obtained, it is
shown that they can be interpreted as a generalization of κ–Minkowski with a
non-zero constant curvature (or cosmological constant).

For both types of deformations the deformation parameter is shown to be related
with the Planck length and isotropy of the space is preserved. Some comments on
Lorenzt invariance and deformed boost transformations are also given.
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2 A non-standard deformation of SO(4, 2) in conformal basis

The Lie algebra so(4, 2) of the group of conformal transformations of the (3+1)D
Minkowskian spacetime M3+1 is spanned by the generators of rotations Ji, time
P0 and space Pi translations, boosts Ki, special conformal transformations Cµ and
dilations D. The non-vanishing commutation relations of so(4, 2) are given by

[Ji, Jj ] = εijkJk , [Ji, Kj ] = εijkKk , [Ji, Pj ] = εijkPk ,

[Ji, Cj ] = εijkCk , [Ki, Kj ] = −εijkJk , [Ki, Pi] = P0 ,

[Ki, P0] = Pi , [Ki, C0] = Ci , [Ki, Ci] = C0 ,

[P0, C0] = −2D , [P0, Ci] = 2Ki , [C0, Pi] = 2Ki ,

[Pi, Cj ] = 2(δijD − εijkJk) , [D, Pµ] = Pµ , [D, Cµ] = −Cµ ,

(3)

where throughout this section we will assume sum over repeated indices, latin
indices i, j, k = 1, 2, 3, greek indices µ, ν = 0, 1, 2, 3, and a system of units such that
c = ~ = 1; a generator with three components will be denoted X = (X1, X2, X3).

As is well known, so(4, 2) has two remarkable Lie subalgebras:
• {J,K,P, P0} that generate the Poincaré subalgebra P , that is, the algebra of
isometries of the spacetime M3+1.
• {J,K,P, P0, D} that span the Weyl–Poincaré subalgebraWP which is the simil-
itude algebra of M3+1.

Hence we have the Lie algebra embedding P ⊂ WP ⊂ so(4, 2).
Alternatively, SO(4, 2) can also be interpreted as the kinematical group of the

(4+1)D AdS spacetime AdS4+1. Explicitly let us denote by LAB (A < B) and TA

(A, B = 0, 1 . . . , 4) the Lorentz and translations generators satisfying

[LAB , LCD] = ηACLBD − ηADLBC − ηBCLAD + ηBDLAC ,

[LAB , TC ] = ηACTB − ηBCTA , [TA, TB ] = −
1

R2
LAB ,

(4)

such that η = (ηAB) = diag (−1, 1, 1, 1, 1) is the Lorentz metric associated to
so(4, 1), L0B are the four boosts in AdS4+1 and R is the AdS radius related with
the cosmological constant by Λ = 6/R2. Then the change of basis defined by
(i = 1, 2, 3):

T0 = −
1

2R
(C0 + P0) , T1 =

1

R
D , Ti+1 =

1

2R
(Ci + Pi) ,

L01 =
1

2
(C0 − P0) , L0,i+1 = Ki , L1,i+1 =

1

2
(Ci − Pi) ,

L23 = J3 , L24 = −J2 , L34 = J1 ,

(5)

identify the commutation relations (3) with (4).

2.1 Conformal Lie bialgebra

Now we proceed to introduce a quantum deformation of so(4, 2) in the conformal
basis (3). The cornerstone of our construction is the non-standard or triangular
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Hopf algebra that deforms the Lie algebra with generators J3, J+ verifying

[J3, J+] = J+ , (6)

and with classical r–matrix [26, 27] (fulfilling the classical Yang–Baxter equa-
tion [28])

r = zJ3 ∧ J+ = z(J3 ⊗ J+ − J+ ⊗ J3) , (7)

where z is the deformation parameter. The corresponding deformed commutator,
coproduct and universal quantum R–matrix are given by:

[J3, J+] =
ezJ+ − 1

z
,

∆(J+) = 1⊗ J+ + J+ ⊗ 1 , (8)

∆(J3) = 1⊗ J3 + J3 ⊗ ezJ+ ,

R = exp{−zJ+ ⊗ J3} exp{zJ3 ⊗ J+} . (9)

This structure is, in fact, a Hopf subalgebra of many known non-standard quantum
deformations that cover: sl(2, R) ' so(2, 1) [29, 30, 31, 32, 33, 34, 35, 36]; iso(1, 1),
gl(2) and h4 [37]; the Schrödinger algebra [38]; as well as so(2, 2), so(3, 1) and
iso(2, 1) [39]. The quantum algebra (8) also underlies the approach to physics at the
Planck scale early introduced in [40, 41]. We recall that the quantum algebra (8) is
also known as the Jordanian deformation which is supported by a twist operator [33]
which relates the (classical) cocommutative coproduct with the (deformed) non-
cocommutative one while keeping non-deformed commutation rules [27].

The remarkable point is that all of the aforementioned quantum algebras share
the same formal classical r–matrix (7), Hopf subalgebra (8), twisting element and
universal R–matrix (9). In the following we proceed to construct a quantum so(4, 2)
algebra starting again from (7) and (8).

Let us consider the non-standard classical r–matrix (7) written in the conformal
basis through the identification

D ≡ J3 , P0 ≡ J+ , τ ≡ −z , (10)

where τ is now the deformation parameter related to the usual κ and q deformation
parameters through τ = 1/κ = ln q. Next if we assume that

r = −τD ∧ P0 , (11)

is the classical r–matrix for the whole so(4, 2) algebra (3), the corresponding co-
commutator δ of a generic generator Yi (that defines the associated Lie bialgebra)
is obtained as δ(Yi) = [1⊗ Yi + Yi ⊗ 1, r], namely,

δ(P0) = 0 , δ(Pi) = τPi ∧ P0 ,

δ(Ji) = 0 , δ(D) = −τD ∧ P0 ,

δ(Ki) = −τD ∧ Pi , δ(C0) = −τC0 ∧ P0 ,

δ(Ci) = −τCi ∧ P0 + 2τD ∧Ki .

(12)
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The Lie bialgebra (so(4, 2), δ(r)) is then formed by the commutation rules (3)
and cocommutators (12) and determines the structure of both the quantum alge-
bra and its dual quantum group at the first–order in the deformation parameter,
generators and their dual non-commutative group coordinates. In other words, the
cocommutator (12) characterizes the first–order quantum group by means of the
Lie bialgebra duality [41, 42], that is,

δ(Yi) = f jk
i Yj ∧ Yk ⇒ [ŷj , ŷk] = f jk

i ŷi , (13)

where ŷi is the quantum group coordinate dual to Yi such that 〈ŷi|Yj〉 = δi
j . The

resulting relations provide the underlying first–order non-commutative spacetime
by considering the commutation rules involving the quantum coordinates dual to
the translation generators (momenta).

In our case, we denote by {x̂µ, θ̂i, ξ̂i, d̂, ĉµ} the dual non-commutative coordi-
nates of the generators {Pµ, Ji, Ki, D, Cµ}, respectively. Hence from (12) we obtain
the following non-vanishing first–order quantum group commutation rules:

[x̂0, x̂i] = −τ x̂i , [x̂0, d̂] = τ d̂ , [x̂0, ĉµ] = τ ĉµ ,

[d̂, x̂i] = −τ ξ̂i , [d̂, ξ̂i] = 2τ ĉi .
(14)

Therefore the first–order quantum Minkowskian spacetime, M3+1
τ , is given by

[x̂0, x̂i] = −τ x̂i , [x̂i, x̂j ] = 0 , (15)

which coincides exactly with the κ–Minkowski space (1) provided that τ = 1/κ.
Nevertheless, we shall compute in section 2.3 below the full (all orders) dual quan-
tum group, thus showing in section 2.4 that the complete non-commutative space-
time generalizes the κ–Minkowski space.

On the other hand, the dual map to (5), which relates (14) with a first–order
quantum (4+1)D AdS group in the kinematical basis, is given by

t̂0 = −R(ĉ0 + x̂0) , t̂1 = Rd̂ , t̂i+1 = R(ĉi + x̂i) ,

l̂01 = ĉ0 − x̂0 , l̂0,i+1 = ξ̂i , l̂1,i+1 = ĉi − x̂i ,

l̂23 = θ̂3 , l̂24 = −θ̂2 , l̂34 = θ̂1 ,

(16)

where l̂AB and t̂A are, in this order, the non-commutative Lorentz and spacetime
coordinates dual to LAB and TA. Hence the first–order non-vanishing commutation
rules for the non-commutative AdS spacetime, AdS4+1

τ , turn out to be

[t̂0, t̂1] = −τR t̂1 , [t̂0, t̂i+1] = −τR2 l̂1,i+1 , [t̂1, t̂i+1] = −τR2 l̂0,i+1 . (17)

Therefore, the maps (5) and (16) (or some kind of non-linear generalization
if higher orders in τ and in the coordinates were considered) would allow one to
express the same quantum deformation of so(4, 2) within two physically different
frameworks, thus relating deformed conformal Minkowskian and kinematical AdS

5



F.J. Herranz, A. Ballesteros and N.R. Bruno

symmetries. Such a quantum group relationship might further be applied in order
to analyze the role that quantum deformations of so(4, 2) could play in relation
with the “AdS–CFT correspondence” that relates local QFT on AdSd+1 with a
conformal QFT on the compactified Minkowskian spacetime CM(d−1)+1 [43, 44,
45]. We remark that the connection for d = 3 corresponding to a three–parameter
quantum o(3, 2) algebra has been studied in [46].

2.2 Quantum conformal algebra

The Hopf structure of the quantum so(4, 2) algebra, Uτ (so(4, 2)), can be obtained
by applying a direct construction [39]. Firstly, we deduce the coproduct ∆ as
follows.

• Require that (8) remains as a Hopf subalgebra of Uτ (so(4, 2)).

• Take into account that the cocommutator δ (12) corresponds to the skewsym-
metric part of the first–order deformation of the complete coproduct ∆:

∆ =

∞
∑

k=0

∆(k) =

∞
∑

k=0

τkδ(k) , δ = δ(1) − σ ◦ δ(1) , (18)

where σ(X ⊗ Y ) = Y ⊗X .

• And solve the coassociativity condition (1⊗∆)∆ = (∆⊗ 1)∆.

The resulting coproduct turns out to be [23]

∆(P0) = 1⊗ P0 + P0 ⊗ 1 ,

∆(Pi) = 1⊗ Pi + Pi ⊗ eτP0 ,

∆(Ji) = 1⊗ Ji + Ji ⊗ 1 ,

∆(Ki) = 1⊗Ki + Ki ⊗ 1− τD ⊗ e−τP0Pi ,

∆(D) = 1⊗D + D ⊗ e−τP0 ,

∆(C0) = 1⊗ C0 + C0 ⊗ e−τP0 ,

∆(Ci) = 1⊗ Ci + Ci ⊗ e−τP0 + 2τD ⊗ e−τP0Ki−

−τ2(D2 + D)⊗ e−2τP0Pi .

(19)

Secondly, the deformed commutation rules are deduced by imposing ∆ to be
an algebra homomorphism, that is, ∆([X, Y ]) = [∆(X), ∆(Y )]; these are written
in two sets [23]:

• Commutation relations which close a Weyl–Poincaré Hopf subalgebra Uτ (WP) ⊂
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Uτ (so(4, 2)):

[Ji, Jj ] = εijkJk , [Ji, Kj ] = εijkKk , [Ji, P0] = 0 ,

[Ji, Pj ] = εijkPk , [Ki, Kj ] = −εijkJk , [Pµ, Pν ] = 0 ,

[Ki, P0] = e−τP0Pi , [Ki, Pj ] = δij
eτP0 − 1

τ
, [D, Ki] = 0 ,

[D, Pi] = Pi , [D, P0] =
1− e−τP0

τ
, [D, Ji] = 0 .

(20)

• Commutation relations that involve the special conformal transformations Cµ:

[Ji, Cj ] = εijkCk , [Ji, C0] = 0 ,

[Ci, Cj ] = 0 , [C0, Ci] = −τ(DCi + CiD) ,

[Ki, C0] = Ci , [Ki, Cj ] = δij(C0 − τD2) ,

[Pi, Cj ] = 2δijD − 2εijkJk , [C0, Pi] = 2Ki + τ(DPi + PiD) ,

[P0, C0] = −2D , [P0, Ci] = e−τP0Ki + Kie
−τP0 ,

[D, Ci] = −Ci , [D, C0] = −C0 + τD2 .

(21)

Finally, the counit and antipode maps can directly be derived from the Hopf
algebra axioms and we omit them.

By construction, some relevant Lie subalgebras of so(4, 2) are promoted to Hopf
subalgebras of Uτ (so(4, 2)) after deformation. In particular, we find the following
so(p, q) and Weyl–Poincaré Hopf subalgebras, all of them containing the generators
P0 and D, and sharing the same classical r–matrix (11):

Uτ (sl(2, R)) ' Uτ (so(2, 1)) {D, P0, C0}
∩ ∩

Uτ (WP1+1) ⊂ Uτ (so(2, 2)) {D, P0, P1, K1; C0, C1}
∩ ∩ ∩

Uτ (WP2+1) ⊂ Uτ (so(3, 2)) {D, P0, P1, P2, K1, K2, J3; C0, C1, C2}
∩ ∩ ∩

Uτ (WP3+1) ⊂ Uτ (so(4, 2)) {D, P0,K,J; C0,C}

(22)

However, the Poincaré subalgebras do not remain as Hopf subalgebras after this
deformation; this is a consequence of the presence of the dilation generator in
the coproduct of the boosts (19). A similar fact was also pointed out for some
(standard) Drinfeld–Jimbo deformations in [47].

The chain of embeddings (22) ensures that properties previously known for a
given low dimensional deformation can directly be extended to higher dimensional
deformations. In this respect, let us consider the universal R–matrix (9) written in
the conformal basis by applying the map (10):

R = exp{τP0 ⊗D} exp{−τD ⊗ P0} . (23)

7



F.J. Herranz, A. Ballesteros and N.R. Bruno

This element has been shown to be a universal R–matrix for Uτ (sl(2, R)) [34], that
is, this fulfils the quantum Yang–Baxter equation and the property

R∆(X)R−1 = σ ◦∆(X) for X ∈ {D, P0, C0} . (24)

For the remaining generators of Uτ (so(4, 2)), X ∈ {J,P,K,C}, it can be proven
that

exp{−τD ⊗ P0}∆(X) exp{τD ⊗ P0} = 1⊗X + X ⊗ 1 ≡ ∆0(X) ,

exp{τP0 ⊗D}∆0(X) exp{−τP0 ⊗D} = σ ◦∆(X) ,
(25)

so that the element (23) is also the universal R–matrix for Uτ (so(4, 2)) as well as
for all the quantum algebras arising in the embeddings (22).

Another application conveyed by (22) is the extension of the time discretiza-
tion of the (1+1)D massless Klein–Gordon (or wave) equation [39] associated to
Uτ (so(2, 2)) to (2+1)D with Uτ (so(3, 2)) [48] and to (3+1)D with Uτ (so(4, 2)) [23].
The generators of all of these quantum algebras have been realized as differential–
difference operators acting on a uniform Minkowskian spacetime lattice discretized
along the time direction (the space coordinates remain continuous) and with the
deformation parameter τ playing the role of the time lattice constant.

2.3 Quantum Weyl−Poincaré group

The existence of the universal R–matrix (23) enables, in principle, to deduce the
quantum group dual to any of the quantum algebras appearing in (22) by apply-
ing the Faddeev–Reshetikhin–Takhtajan (FRT) procedure [49]. Such an approach
requires a matrix representation of the chosen quantum algebra as well as a matrix
element T̂ of the quantum group with non-commutative entries.

In what follows we shall restrict ourselves to deal with the quantum group dual
to Uτ (WP) instead of that dual to the complete Uτ (so(4, 2)) since for the latter
it is not possible to identify properly the quantum space and time coordinates but
only formal non-commutative matrix entries.

The change of basis (5) allows us to deduce a 6× 6 deformed matrix represen-
tation of Uτ (so(4, 2)) in the conformal basis (fulfilling (20) and (21)) by starting
from the vector representation of the (4+1)D quantum AdS algebra; namely

P0 =
τ

2

(

e00 − e01 + e10 − e11

)

− e02 − e12 + e20 − e21 ,

Pi = e0,i+2 + e1,i+2 + ei+2,0 − ei+2,1 , D = e01 + e10 ,

Ji = −εijkej+2,k+2 , Ki = e2,i+2 + ei+2,2 ,

C0 = τ
(

e00 + e11

)

− e02 + e12 + e20 + e21 ,

Ci = e0,i+2 − e1,i+2 + ei+2,0 + ei+2,1 ,

(26)

where eab (a, b = 0, . . . , 5) is the 6× 6 matrix with entries (eab)ij = δaiδbj . Hence
a 6 × 6 matrix representation for the quantum Weyl–Poincaré algebra (20) arises
within (26).
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Under this representation P 3
0 vanishes, so that the quantum R–matrix (23)

reduces to the 36× 36 matrix given by

R =
(

1⊗ 1 + τP0 ⊗D + 1
2 τ2P 2

0 ⊗D2
) (

1⊗ 1− τD ⊗ P0 + 1
2 τ2D2 ⊗ P 2

0

)

, (27)

where 1 is the 6× 6 unit matrix.
Next we construct the quantum Weyl–Poincaré group element T̂ by considering

the following matrix product that depends on the matrix generators (26) and their
dual non-commutative coordinates:

T̂ = ed̂D ex̂0P0

(

ex̂1P1 ex̂2P2 ex̂3P3

)(

eθ̂1J1 eθ̂2J2 eθ̂3J3

) (

eξ̂1K1 eξ̂2K2 eξ̂3K3

)

=

=



















α̂+ β̂− γ̂0 γ̂1 γ̂2 γ̂3

β̂+ α̂− γ̂0 γ̂1 γ̂2 γ̂3

x̂0 −x̂0 Λ̂0
0 Λ̂0

1 Λ̂0
2 Λ̂0

3

x̂1 −x̂1 Λ̂1
0 Λ̂1

1 Λ̂1
2 Λ̂1

3

x̂2 −x̂2 Λ̂2
0 Λ̂2

1 Λ̂2
2 Λ̂2

3

x̂3 −x̂3 Λ̂3
0 Λ̂3

1 Λ̂3
2 Λ̂3

3



















. (28)

The non-commutative entries are just the quantum Minkowskian coordinates x̂µ,
the formal Lorentz entries Λ̂µ

ν = Λ̂µ
ν (θ̂i, ξ̂i), which involve quantum rotation and

boost coordinates, verifying

Λ̂µ
ν Λ̂ρ

σgνσ = gµρ , x̂µ = gµν x̂ν , (gµρ) = diag (−1, 1, 1, 1) , (29)

as well some functions α̂, β̂ and γ̂ of the quantum coordinates which are defined by

α̂± = cosh d̂± 1
2 ed̂

(

x̂µx̂µ + τ x̂0
)

, γ̂ν = ed̂x̂µΛ̂µ
ν ,

β̂± = sinh d̂± 1
2 ed̂

(

x̂µx̂µ + τ x̂0
)

.
(30)

Notice that if the complete quantum SO(4, 2) group were considered by adding
the remaining exponentials of the conformal transformations (26) to the product
(28), the non-commutative coordinates x̂µ will no longer appear as themselves, thus
precluding a further and direct identification of the associated non-commutative
spacetime as usually happens when dealing with quantum deformations of semisim-
ple groups (see, e.g., [50] for the construction of a standard q–SO(3, 2)).

Now the FRT approach gives rise to the commutation rules, coproduct, counit
and antipode by means of the relations

RT̂1T̂2 = T̂2T̂1R , ∆(T̂ ) = T̂ ⊗̇T̂ , ε(T̂ ) = 1 , S(T̂ ) = T̂ −1 , (31)

respectively, and where T̂1 = T̂ ⊗ 1 and T̂2 = 1 ⊗ T̂ . The resulting commutation
rules and coproduct initially depend on all the entries of T̂ , but they can be further
and consistently reduced, with the aid of (30), to expressions that only depend on

{d̂, x̂µ, Λ̂µ
ν}; these are [24]

∆(x̂µ) = x̂µ ⊗ e−d̂ + Λ̂µ
η ⊗ x̂η ,

∆(d̂) = d̂⊗ 1 + 1⊗ d̂ ,

∆(Λ̂µ
ν ) = Λ̂µ

η ⊗ Λ̂η
ν ,

(32)
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[d̂, Λ̂µ
ν ] = 0 , [x̂α, Λ̂µ

ν ] = 0 , [Λ̂α
β , Λ̂µ

ν ] = 0 ,

[d̂, x̂µ] = τ
(

δµ
0 e−d̂ − Λ̂µ

0

)

, [x̂µ, x̂ν ] = τ
(

Λ̂ν
0 x̂µ − Λ̂µ

0 x̂ν
)

,
(33)

where the quantum Lorentz entries Λ̂µ
0 are given by

Λ̂0
0 = cosh ξ̂1 cosh ξ̂2 cosh ξ̂3 , Λ̂2

0 = sinh ξ̂2 cosh ξ̂3 ,

Λ̂1
0 = sinh ξ̂1 cosh ξ̂2 cosh ξ̂3 , Λ̂3

0 = sinh ξ̂3 .
(34)

The commutation relations (33) show that the functions Λ̂µ
ν are indeed com-

muting quantities, so that there are no ordering problems in any of the above
expressions; this, in turn, implies that [ξ̂i, ξ̂j ] = 0.

Notice also that if we take in (33) the first–order in all the quantum coordinates

(in this case Λ̂0
0 → 1 and Λ̂i

0 → ξ̂i), we recover the relations defining the Weyl–
Poincaré bialgebra in its dual form as

[x̂0, x̂i] = −τ x̂i , [d̂, x̂0] = −τ d̂ , [d̂, x̂i] = −τ ξ̂i , (35)

which coincide with (14) provided that ĉµ ≡ 0.

2.4 Non-commutative Minkowskian spacetime

The non-commutative Minkowskian spacetime M3+1
τ with quantum Weyl–Poincaré

group symmetry is identified within the set of commutation rules (33) by consider-
ing those involving the quantum coordinates x̂µ [24]:

[x̂µ, x̂ν ] = τ
(

Λ̂ν
0(ξ̂)x̂µ − Λ̂µ

0 (ξ̂)x̂ν
)

. (36)

This can be interpreted as a generalization of (2) through the map aµ → Λ̂µ
0 (ξ̂),

where the Lorentz entries involved only depend on the quantum boost coordinates
as given in (34).

The commutativity character of Λ̂µ
0 (ξ̂) shown in (33) suggests that these can

be regarded as structure constants in (36). As a byproduct, the quantum boost

coordinates ξ̂i are commutative coordinates (so scalars) within the quantum Weyl–
Poincaré group. We would also like to mentioning that if the quantum conformal
transformations Cµ and parameters ĉµ were taken into account and the correspond-

ing quantum SO(4, 2) group were constructed, then ξ̂i and Λ̂µ
0 no longer would com-

mute with the dilation parameter d̂, as follows from the first–order relations (14), in
such a manner that (36) would define a quadratic non-commutative Minkowskian
spacetime.

An alternative form to express (36), formally closer to κ–Minkowski, is achieved
by introducing new quantum space coordinates X̂ i defined by

x̂0 → x̂0 , x̂i → X̂ i = x̂iΛ̂0
0(ξ̂)− x̂0Λ̂i

0(ξ̂) . (37)

10
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The transformed M3+1
τ reads

[X̂ i, x̂0] = τ Λ̂0
0(ξ̂)X̂

i , [X̂ i, X̂j ] = 0 , (38)

which shows a generalization of the κ–Minkowski space (1) with a “variable” de-

formation parameter τ ′(ξ̂) = τ cosh ξ̂1 cosh ξ̂2 cosh ξ̂3.
Now we shall comment on some of the properties derived from the above results.

2.4.1 Dimensions of the deformation parameter

Dimensional analysis of this deformation (see, e.g., expressions (11) or (35))
shows that the deformation parameter τ is endowed with the same dimensions as
the Planck length lP (recall that we consider units with c = ~ = 1), so inverse to
the parameter κ; these are inherited either from P0 or from x̂0:

[τ ] = [P0]
−1 = [x̂0] , [τ ] =

1

[κ]
. (39)

Therefore τ is a dimensionful deformation parameter that can be considered to be
related with the Planck length, thus playing the role of an observer–independent
(fundamental) scale. In this respect, we remark that Uτ (WP) has allowed us to
construct a DSR theory, different from the proposals coming from κ–Poincaré,
which can be found in [51].

2.4.2 Space isotropy

The explicit form of M3+1
τ (36) (also (38)) shows that the quantum rotation

coordinates θ̂i are absent; these only appear as arguments of the quantum Lorentz
entries Λ̂µ

i = Λ̂µ
i (θ̂, ξ̂). In this sense we can say that the isotropy of the space is

preserved.
The same property follows from the Hopf structure of Uτ (WP). The coprod-

uct (19) exhibits non-deformed (cocommutative) rotation generators (this a direct
consequence of the bialgebra (12) since δ(Ji) = 0), while the deformed commuta-
tion relations (20) show that P and K are transformed as classical vectors under
rotations. In fact, J close a non-deformed so(3) algebra.

2.4.3 Lorentz invariance

The explicit dependence of Λ̂µ
0 on the quantum boost coordinates ξ̂ in M3+1

τ

indicates that different observers in relative motion with respect to quantum group
transformations have a different perception of the spacetime non-commutativity
which, in turn, implies that Lorentz invariance is lost.

Nevertheless, from our point of view, the required property in the context of
quantum groups should be Lorentz coinvariance rather than Lorentz invariance.
This means that the commutation rules (36) that define M3+1

τ should be coinvariant
under quantum group transformations, that is, under the transformation laws for
the quantum coordinates which are provided by the coproduct (32). Covariance of

11
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(36) under such quantum group transformations is ensured by construction and we
refer to [24] for more details.

2.4.4 Boost transformations

The deformed finite boost transformations have been obtained within the DSR
theory developed in [51] by working with the quantum algebra Uτ (WP). Such
transformations close a group as in the non-deformed case and moreover the addi-
tivity of the boost parameter (rapidity) for two deformed transformations along a
same direction is preserved. In this respect, we remark that these properties are
in full agreement with the commutation rule [ξ̂i, ξ̂j ] = 0 provided by the quantum
group.

Finally, we also recall that the range of boost parameters, energy P0 and mo-
menta P deeply depend on the sign of the deformation parameter τ , so that two
different scenarios appear [51].

3 A standard deformation of SO(2, 2) and SO(3, 1) in kinematical
basis

The Lie algebras of the isometry groups of the three (2+1)D relativistic space-
times of constant curvature ω can be described in a unified way by means of the
curvature itself, which plays the role of a graded contraction parameter [7]; we
denote this family of Lie algebras by soω(2, 2). If {J, P0, Pi, Ki} are, in this order,
the generators of rotations, time translations, space translations and boosts, the
commutation relations of soω(2, 2) read

[J, Pi] = εijPj , [J, Ki] = εijKj , [J, P0] = 0 ,

[Pi, Kj ] = −δijP0 , [P0, Ki] = −Pi , [K1, K2] = −J ,

[P0, Pi] = ωKi , [P1, P2] = −ωJ ,

(40)

where, in contrast with section 2, we now assume that Latin indices i, j = 1, 2,
Greek ones µ, ν = 0, 1, 2, and εij is a skewsymmetric tensor such that ε12 = 1.

According to the sign of ω we find that the Lie brackets (40) reproduce:
• The AdS algebra, so(2, 2), when ω = +1/R2 > 0 and where R is the AdS radius.
• The dS algebra, so(3, 1), when ω = −1/R2 < 0 and where R is the dS radius.
• And the Poincaré algebra, iso(2, 1), when ω = 0; this case also corresponds to
the flat limit/contraction R→∞ such that so(2, 2)→ iso(2, 1)← so(3, 1).

3.1 (Anti)de Sitter Lie bialgebras

The quantum deformation we are going to deal with in this section is based in the
Drinfeld–Jimbo deformation of sl(2, R) ' so(2, 1) [26], Uz(sl(2, R)), whose classical
r–matrix, deformed commutation rules and coproduct in the basis {J3, J±} are
given by

r = zJ+ ∧ J− , (41)

12
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[J3, J±] = ±J± , [J+, J−] =
sinh(2zJ3)

z
,

∆(J3) = 1⊗ J3 + J3 ⊗ 1 ,

∆(J±) = e−zJ3 ⊗ J± + J± ⊗ ezJ3 .

(42)

The r–matrix (41) is a solution of the modified classical Yang–Baxter equation, so
that Uz(sl(2, R)) is a deformation of standard or quasitriangular type.

The well known Lie algebra isomorphism so(2, 1) ⊕ so(2, 1) ' so(2, 2) can be
implemented in the quantum group framework. As far as the classical r–matrix is
concerned, the difference of two copies of (41) with the same deformation parameter
gives rise to a classical r–matrix of so(2, 2) [52], here written in the kinematical basis

r = z(K1 ∧ P1 + K2 ∧ P2) . (43)

This element is again a solution of the modified classical Yang–Baxter equation,
not only for so(2, 2) but also for so(3, 1) and iso(2, 1), no matter of the curvature
ω. In fact, this is exactly the r–matrix underlying the (2+1)D κ–Poincaré algebra
provided that z = 1/κ. Hence we can take (43) as the r–matrix for the whole
family soω(2, 2).

By following the same procedure of section 2.1 we obtain that the cocommutator
coming from (43) reads

δ(P0) = 0 , δ(J) = 0 ,

δ(Pi) = z(Pi ∧ P0 − ωεijKj ∧ J) , (44)

δ(Ki) = z(Ki ∧ P0 + εijPj ∧ J) .

Meanwhile the dual non-vanishing commutation rules turn out to be

[θ̂, x̂i] = zεij ξ̂
j , [x̂0, x̂i] = −zx̂i ,

[θ̂, ξ̂i] = −zωεijx̂
j , [x̂0, ξ̂i] = −zξ̂i ,

(45)

where {θ̂, x̂µ, ξ̂i} are the non-commutative group coordinates dual to the generators
{J, Pµ, Ki}, respectively.

Consequently, from (45) we find that the first–order non-commutative AdS,
Minkowskian and dS spacetimes are simultaneously defined by the (2+1)D κ–
Minkowski space (similarly to the previous deformation):

[x̂0, x̂i] = −zx̂i , [x̂1, x̂2] = 0 . (46)

As it can be expected, when higher orders in the quantum coordinates are consid-
ered the resulting non-commutative spaces generalize the κ–Minkowski one since
corrections depending on the curvature appear; thus we shall present in section
3.4 below three different quantum spaces, all of them sharing the same first–order
relations (46).

13
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3.2 Quantum (anti)de Sitter algebras

Let us consider two copies of the quantum algebra (42) such that the two de-
formation parameters only differ by the sign. Then the direct sum of quantum
algebras [3, 52, 53]

Uz(so(2, 1))⊕ U−z(so(2, 1)) ' Uz(so(2, 2)) , (47)

together with a contraction analysis lead to the Hopf structure of the standard
quantum deformation of (40) and (44) denoted Uz(soω(2, 2)) [7]:

∆(P0) = 1⊗ P0 + P0 ⊗ 1 , ∆(J) = 1⊗ J + J ⊗ 1 ,

∆(Pi) = e−zP0/2 cosh( z
2 ρJ)⊗ Pi + Pi ⊗ ezP0/2 cosh( z

2 ρJ)+

+ρe−zP0/2 sinh( z
2 ρJ)⊗ εijKj − ρεijKj ⊗ ezP0/2 sinh( z

2 ρJ) ,

∆(Ki) = e−zP0/2 cosh( z
2 ρJ)⊗Ki + Ki ⊗ ezP0/2 cosh( z

2 ρJ)−

−e−zP0/2 sinh( z
2 ρJ)

ρ
⊗ εijPj + εijPj ⊗ ezP0/2 sinh( z

2 ρJ)

ρ
,

(48)

[J, Pi] = εijPj , [J, Ki] = εijKj , [J, P0] = 0 ,

[Pi, Kj ] = −δij
sinh(zP0)

z
cosh(zρJ) , [P0, Ki] = −Pi ,

[K1, K2] = − cosh(zP0)
sinh(zρJ)

zρ
, [P0, Pi] = ωKi ,

[P1, P2] = −ω cosh(zP0)
sinh(zρJ)

zρ
,

(49)

where hereafter we also express the curvature as ω = ρ2. Therefore ρ = 1/R
for Uz(so(2, 2)), ρ = i/R for Uz(so(3, 1)), and the contraction ω = 0 to κ–Poincaré
Uz(iso(2, 1)) corresponds to the flat limit ρ→ 0. We remark that such a contraction
is always well defined in any of the expressions presented in this section, so that it
is not necessary to perform any kind of quantum Inönü–Wigner contractions [54] as
we deal with a built-in scheme of contractions [7]. In particular, the limit ρ→ 0 of
Uz(soω(2, 2)) directly gives rise to the coproduct and deformed commutation rules
of κ–Poincaré as

∆(P0) = 1⊗ P0 + P0 ⊗ 1 , ∆(J) = 1⊗ J + J ⊗ 1 ,

∆(Pi) = e−zP0/2 ⊗ Pi + Pi ⊗ ezP0/2 ,

∆(Ki) = e−zP0/2 ⊗Ki + Ki ⊗ ezP0/2−

−
z

2
εij

(

e−zP0/2J ⊗ Pj − Pj ⊗ ezP0/2J
)

,

(50)

[J, Pi] = εijPj , [J, Ki] = εijKj , [J, P0] = 0 ,

[Pi, Kj ] = −δij
sinh(zP0)

z
, [P0, Ki] = −Pi ,

[K1, K2] = −J cosh(zP0) , [Pµ, Pν ] = 0 .

(51)
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3.3 Quantum (anti)de Sitter groups: a Poisson−Lie structure

As we have already commented in the section 2.3 for Uτ (so(4, 2)), to obtain the
complete quantum group dual to a quantum deformation of a semisimple Lie algebra
is, in general, a cumbersome task that requires to know a matrix representation
of both the quantum group element T̂ and the quantum R–matrix R; the FRT
procedure can then be applied. However, even if these objects are known, the
quantum spacetime and boost coordinates would appear “hidden” as arguments of
some formal non-commutative entries of the matrix T̂ .

Another way to get an insight into the non-commutative structures associated
to the quantum group is to compute the Poisson–Lie brackets provided by the
classical r–matrix for the commutative coordinates, and next to analyzing their
possible non-commutative version. The steps of this procedure are as follows.

• Obtain a matrix element T of the Lie group (so with commutative coordi-
nates) by means of a matrix representation of the algebra.

• From T , compute left Y L
i and right Y R

i invariant vector fields for each algebra
generator Yi.

• Construct the Poisson–Lie structure on the group that comes from the clas-
sical r–matrix r = rijYi ⊗ Yj through the Sklyanin bracket defined by [28]:

{f, g} = rij(Y L
i f Y L

j g − Y R
i f Y R

j g) , (52)

where f, g are smooth functions of the Lie group coordinates yi. In this way
the Poisson–Lie brackets for yi can be obtained, say

{yi, yj} = zF (yk) , (53)

where F (yk) is a smooth function depending on some set of coordinates yk.

• Finally, apply the Weyl substitution of the initial Poisson brackets between
commutative coordinates (53) by commutators between non-commutative co-
ordinates [28, 55].

[ŷi, ŷj ] = zF (ŷk) + o(z2) . (54)

Obviously, there is no guarantee that the Weyl quantization gives the complete
quantum group dual to the initial quantum algebra, specially when dealing with
semisimple groups, since ordering problems often appear during the quantization
procedure. However, this approach provides, at least, the non-commutative struc-
ture up to second–order in the deformation parameter and in all orders in the
quantum coordinates; note that the o(z2) term in (54) comes from the reordering
of the quantum coordinates ŷk within the function F . Recall that the κ–Poincaré
group [17, 18, 19, 20] (in any dimension) has been constructed by applying the
above procedure. In fact, for this deformation there does not exist a universal
R–matrix except for the (2+1)D case [17, 53, 56].
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In our case, we start with the following 4D real matrix representation of soω(2, 2)
(verifying (40)):

P0 = −ωe01 + e10 , Pi = ωe0 i+1 + ei+1,0 ,

J = −e23 + e32 , Ki = e1 i+1 + ei+1,1 ,
(55)

where eab (a, b = 0, . . . , 3) is the 4× 4 matrix with entries (eab)ij = δaiδbj . Under
this representation, any generator Y ∈ soω(2, 2) fulfils

Y T
I + I Y = 0 , I = diag (1, ω,−ω,−ω) , (56)

where Y T is the transpose matrix of Y . Next we construct a 4×4 matrix element of
the group SOω(2, 2), under the representation (55), through the following product:

T = exp(x0P0) exp(x1P1) exp(x2P2) exp(ξ1K1) exp(ξ2K2) exp(θJ) . (57)

Left and right invariant vector fields, Y L and Y R, of SOω(2, 2) and the Poisson–
Lie structure associated to the r–matrix (43) can then be computed and they can
explicitly be found in [25]. We only present here the Poisson–Lie brackets involving
group spacetime xµ and boost ξi coordinates:

{x0, x1} = −z
tanh ρx1

ρ cosh2 ρx2
, {x0, x2} = −z

tanh ρx2

ρ
, {x1, x2} = 0 , (58)

{ξ1, ξ2} = zρ
sinh ρx1

cosh ρx2

(

sinh ρx1 tanh ρx2 sinh ξ1 + cosh ξ1 sinh ξ2

cosh ρx1
−

tanh ξ2

cosh ρx2

)

,

(59)
and the remaining {xi, ξj} 6= 0 for any value of ω ≡ ρ2.

We stress that the order of the matrix product (57) is not arbitrary but this
is chosen in such a manner that x0 and xi correspond, in this order, to geodesic
distances measured along time–like and space–like geodesics [25]. These quantities
are called “geodesic parallel coordinates” and they can be interpreted as Carte-
sian coordinates on curved spacetimes. In particular, the metric on the (2+1)D
spacetimes reads

dσ2 = cosh2(ρx1) cosh2(ρx2)(dx0)2 − cosh2(ρx2)(dx1)2 − (dx2)2 , (60)

which under the limit ρ → 0 reduces to the Minkowskian metric in flat Cartesian
coordinates dσ2 = (dx0)2 − (dx1)2 − (dx2)2.

3.4 Non-commutative (anti)de Sitter spacetimes

The Poisson bracket {x1, x2} = 0 allows us to propose (but not to prove!) that
the defining commutation relations of the (2+1)D non-commutative AdS and dS
spacetimes are a direct Weyl quantization of the Poisson–Lie brackets (58), as no
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ordering problems appear in the commutation rules. By expanding them in power
series in the curvature we find that

[x̂0, x̂1] = −z
tanh ρx̂1

ρ cosh2 ρx̂2
= −zx̂1 +

z

3
ω(x̂1)3 + zωx̂1(x̂2)2 + o(ω2) ,

[x̂0, x̂2] = −z
tanh ρx̂2

ρ
= −zx̂2 +

z

3
ω(x̂2)3 + o(ω2) , (61)

[x̂1, x̂2] = 0 .

Hence the linear relations in x̂i correspond to the common “seed”, κ–Minkowski,
while corrections on the curvature start to arising in the third–order. Now three
different quantum spacetimes are found; when ω 6= 0 these can be interpreted
as generalizations of κ–Minkowski with a non-zero cosmological constant. Notice
that the “asymmetric” form of (61) could be expected from the beginning, as for
instance the classical metric (60) shows. This is a consequence of dealing with
intrinsic coordinates xi of the spacetime. However it is possible to express (61) in
a complete symmetric form by introducing non-commutative analogues of the 4D
ambient space coordinates, where the (2+1)D spaces can be embedded [25].

To end with, we briefly comment on some properties of this deformation as well
as on some open problems.

• Similarly to the previous τ (39), the deformation parameter z is a dimensionful
one such that [z] = [P0]

−1 = [x̂0] = 1/[κ], so that this can also be related
with the Planck length lP .

• Space isotropy is preserved at both the quantum algebra and group levels: θ̂
is absent from (61), the rotation J remains primitive in (48), and P,K are
transformed as classical vectors under J (49).

• Since the coproduct for the quantum SOω(2, 2) group is still unknown, we
have no quantum group transformations, under which, the quantum space-
times should be coinvariant.

• The geometrical/physical role of the quantum coordinates x̂i deserves a fur-
ther study; their classical counterpart suggests that they may be interpreted
as some kind of “geodesic operators”.

• In κ–Poincaré with ω = 0, the bracket (59) vanishes, so in the quantum case

[ξ̂i, ξ̂j ] = 0. This is consistent with the study developed in [57, 58] showing
that κ–Poincaré boost transformations close a group and also that additivity
of rapidity is preserved. Nevertheless, this is no longer true when a non-zero
curvature is considered as [ξ̂i, ξ̂j ] 6= 0, so that these properties may be either
lost or somewhat modified for the quantum (anti)de Sitter algebras.
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