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1 Introduction

Integrable models consist of a very peculiar class of physical systems described
by non linear differential equations. In two dimensional space time they present an
infinite number of conservation laws and admit soliton solutions. Well known ex-
amples such the sine–Gordon or mKdV equations have been shown to be connected
to many applications in several branches of physics.

Integrable hierarchies can be constructed and classified in terms of an affine Lie
algebraic structure. Equations of motion for relativistic integrable models can be
derived from the Leznov–Saveliev’s approach [1], which was latter discovered to be
connected to reductions of the Wess–Zumino–Witten model [2]. For non relativistic
integrable hierarchies, the Lax formulation proved to be an important framework
which also relies in the algebraic decomposition of an affine Lie algebra.

The aim of this paper is to discuss a universal formulation were both relativistic
and non relativistic integrable models can be viewed. The main ingredient is the
zero curvature condition which employs, in a natural manner, Lie algebra valued
functionals of the physical fields.

We first discuss the Leznov–Saveliev construction of relativistic integrable mod-
els in terms of a decomposition of an affine Lie algebra. The models are shown to be
classified according to some algebraic data, namely (Q, ε±,G0

0), where Q specifies
the space of physical fields, ε±, the interaction and G0

0 = K = Ker(adε+) containing
the internal soliton symmetries. Next, we discuss the Lax formulation for the non-
relativistic integrable models in terms of certain positive grade elements in K, each
of them is assigned to a time evolution. The precise correspondence between those
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two formulations is explained in Sect. 3 where we introduce negative grade time
evolution and show that the relativistic formulation of Leznov and Saveliev corre-
sponds to the grade −1 generator in K. In Sect. 4 we extend both formulations
to accommodate affine decompositions with integer and half integer gradings. This
leads to the construction of supersymmetric integrable hierarchies. Finally as an
example, we construct the N = 2 super MKdV and N = 2 super sinh–Gordon mod-
els associated to ŜL(2, 2) showing that they indeed belong to the same integrable
hierarchy.

2 General construction of relativistic integrable hierarchies

A general construction of relativistic integrable hierarchies in terms of an affine
Lie algebra Ĝ can be established from the Leznov–Saveliev equations of motion [1],

∂̄(B−1∂B) + [ε−, B
−1ε+B] = 0 , ∂(∂̄BB−1) − [ε+, Bε−B

−1] = 0 , (1)

where the space time is represented by of the light cone coordinate z = t + x,
z̄ = t − x and a decomposition of Ĝ into graded subspaces Ĝ = ⊕aGa, a ∈ Z
according to a grading operator Q such that [Q,Ga] = aGa is assumed. Here B
represents an element of the zero grade subgroup B ∈ G0 and is parametrized by
the physical fields (Toda fields) of the theory. ε± are constant generators of grade
±1 which characterize the non linear interaction. The classical integrability of these
models follows from their zero curvature (Lax) representation:

∂Ā − ∂̄A + [A, Ā] = 0 , A, Ā ∈ ⊕i=0,±1Gi , (2)

with
A = Bε−B

−1 , Ā = −ε+ − ∂̄BB−1 . (3)

The existence of an infinite set (of commuting) conserved charges Pm, m = 0, 1, · · ·
is a direct consequence of eqn. (2), namely,

Pm(t) = Tr
(
T (t)

)m
, ∂tPm = 0 , T (t) = lim

L→∞
P exp

(∫ L

−L

Ax(t, x)dx

)
,

where Ax = A+ Ā. Well known examples of integrable models fall into the general
construction as we shall now detail.

Consider Ĝ = ŜL(2) with the principal gradation, i.e. Q = 2d + 1
2H and d is

the derivation operator. The zero grade subalgebra is then G0 = {H(0)} and hence

B = eφH
(0)

. If we now choose ε+ = E
(0)
α + E

(1)
−α, ε− = ε†+ we find from (2) the

sinh–Gordon equation

∂Ā − ∂̄A + [A, Ā] =
(
∂̄∂φ+ e2φ − e−2φ

)
H = 0 . (4)

Another decomposition of ŜL(2) can be obtained from the homogeneous gradation
where Q = d. The zero grade subalgebra acquires a nonabelian structure, i.e. G0 =
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{H(0), E
(0)
±α} and B = eRH

(0)/2eχE
(0)
−αeψE

(0)
α eRH

(0)/2. If we now choose ε± = H(±) we
find from eqns. (1) the existence of two chiral currents associated to the subalgebra
G0

0 ⊂ G0 namely, ∂̄JH = ∂̄ Tr(H(0)B−1∂B) = 0 and ∂J̄H = ∂ Tr(H(0)∂̄BB−1) = 0,
since G0

0 = U(1) = {H(0)}, [G0
0 , ε±] = 0. This fact allows the implementation of the

following subsidiary constraints

JH = ∂R− ψ∂χ

∆
= 0 , J̄H = ∂̄R − χ∂̄ψ

∆
= 0 , ∆ = 1 + ψχ , (5)

which eliminates the nonlocal field R. The equations of motion for this case are
then given by the zero curvature condition (2) or, equivalently by eqns. (1),
when the subsidiary constraints (5) are taken into consideration (i.e. for the coset
G0/G

0
0 = SL(2)/U(1)), yielding the equations of motion of Lund–Regge (complex

sine–Gordon) model,

∂̄

(
∂χ

∆

)
+
χ∂χ∂̄ψ

∆2
+ 2χ = 0 , ∂

(
∂̄ψ

∆

)
+
ψ∂χ∂̄ψ

∆2
+ 2ψ = 0 . (6)

The gauged G0
0 = U(1) factor arisen from the constraints (5) is responsible for the

global U(1) symmetry ψ → ψeα, χ→ χe−α and henceforth for the conservation of
the electric charge

Qel =

∫ +∞

−∞

(∂xR) dx . (7)

The above examples can be extended to higher rank affine algebras with gra-
dations which are intermediate between the principal and homogeneous ones. Let
us consider G = ŜL(n + 1). In general, we can construct integrable hierarchies
according to the following algebraic structures:

1. G0
0 = ∅ characterizes the choices of

Q = (N + 1)d +

N∑

l=1

λl ·H , G0 = U(1)N = {h1, · · · , hN} ,

ε± =
N∑

l=1

E
(0)
±αl

+E
(±1)
∓(α1+···+αN ) ,

which gives rise to the well known abelian affine Toda model (see for instance
[2], [1]).

2. (a) G0
0 = U(1) = {λ1 ·H}

Q = Nd +

N∑

l=2

λl ·H , G0 = SL(2)⊗ U(1)N−1 = {E±α1 , h1, · · · , hN} ,

ε± =

N∑

l=2

E
(0)
±αl

+ E
(±1)
∓(α2+···+αN )
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corresponds to the simplest non abelian affine Toda model of dyonic
type, admitting electrically charged topological solitons (see for instance
[3]).

(b) G0
0 = U(1) ⊗ U(1) = {λ1 ·H,λN ·H}

Q = (n− 1)d +

N−1∑

l=2

λl ·H , ε± =

N−1∑

l=2

E
(0)
±αl

+E
(±1)
∓(α2+···+αN−1)

,

G0 = SL(2) ⊗ SL(2) ⊗ U(1)N−2 = {E±α1 , E±αN
, h1, · · · , hN} ,

is of the same class of U(1)⊗k dyonic type IM’s, but now yielding mul-
ticharged solitons ([4]).

3. G0
0 = SL(2) ⊗ U(1) = {E±α1 , λ1 ·H,λ2 ·H}

Q = (N − 1)d +
N∑

l=3

λl ·H , ε± =
N∑

l=3

E
(0)
±αl

+E
(±1)
∓(α3+···+αN ) ,

G0 = SL(3) ⊗ U(1)N−2 = {E±α1 , E±α2 , E±(α1+α2), h1, · · · , hN} ,

leads to dyonic models with non abelian global symmetries (see [5]).

In fact the integrable hierarchies are classified in terms of the gradation Q, the con-
stant operators ε± and by the global symmetry group described by the subalgebra
G0

0 = Ker(adE) = K.

3 Non relativistic construction of integrable hierarchies

We will follow the approach given in ref. [6] which associates to every positive

grade n element E(n) ∈ C(K) (C(K) = {x, y,∈ K, [x, y] = 0}) a time evolution tn

∂tnΘ(t) = (ΘE(n)Θ−1)−Θ(t) , (8)

for the dressing matrix Θ = exp
(∑

i<0 θ
(i)

)
being an exponential in G< and ( )−

represents the projection on strictly negative grades. By construction such flows
commute, i.e. [∂tm , ∂tn ]Θ(t) = 0. In particular for n = 1, ∂t1 ≡ ∂x, ε+ = E we find

∂x(Θ) = (ΘEΘ−1)−Θ =
[
ΘEΘ−1 − (ΘEΘ−1)+

]
Θ =

= ΘE −
(
E +

[
θ(−1), E

])
Θ =

= ΘE − (E +A0)Θ , (9)

where ( )+ represents the projection on positive and zero grades and A0 =[
θ(−1), E

]
. Clearly A0 is in M (the Image of the adjoint operation ad (E)X =

[E,X ]) and has grade zero. This leads to the dressing expression

Θ−1(∂x +E +A0)Θ = ∂x +E (10)
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for the Lax operator L = ∂x +E +A0. Similarly, for higher flows we obtain

Θ−1

(
∂tn +E(n) +

n−1∑

i=0

D(i)
n

)
Θ = ∂tn +E(n) , (11)

where

(ΘE(n)Θ−1)+ = E(n) +

n−1∑

i=0

D(i)
n .

These dressing relations give rise to the zero–curvature conditions

[
∂x +E +A0, ∂tn +E(n) +

n−1∑

i=0

D(i)
n

]
= Θ

[
∂x +E, ∂tn +E(n)

]
Θ−1 = 0 , (12)

where D
(j)
n = D

(j)
nK +D

(j)
nM ∈ Gj . We therefore find

[E,D
(n−1)
n ] + [A0, E

(n)] = 0 ,

[E,D
(n−2)
n ] + [A0, D

(n−1)
n ] + ∂xD

(n−1)
n = 0 ,

...

[A0, D
(0)
n ] − ∂tnA0 + ∂xD

(0)
n = 0 .

(13)

Each equation can be decomposed into K and M components. It is clear that a local

solution for D
(i)
n , i = 0, · · · , n can be found recursively starting from the highest

grade eqn. in (13) until we reach the last. In particular the eqn. corresponding to
the zero grade component also gives rise to the time evolution of the physical fields.

Let us reconsider the examples given in the previous section in connection with
Ĝ = ŜL(2). With Q given in the principal gradation, Q = 2d + 1

2H and ε+ =

E
(0)
α + E

(1)
−α we parametrize A0 = uH(0) ∈ M and solve eqn. (2) for t = t3. After

solving for D
(3)
3 , D

(2)
3 , D

(1)
3 and D

(0)
3 we obtain the equation of motion for the

mKdV model,
∂t3u = uxxx + 6u2ux . (14)

The decomposition of Ĝ = ŜL(2) according to the homogeneous gradation Q = d

leads to A0 = qE
(0)
a + rE

(0)
−a ∈ M and eqn. (2) yields for t = t2 the nonlinear

Schroedinger equation (NLS),

∂t2q + qxx − 2rq2 = 0 ,

∂t2r + rxx + 2qr2 = 0 .
(15)

Notice that, the sinh–Gordon and the mKdV equations as well as, the Lund–Regge
and the NLS equations, are constructed from the same algebraic structure, i.e.,
same Ĝ = ŜL(2), Q and same choice of E = ε+. This indicates that they belong
to the same integrable hierarchy. In fact we shall prove such statement in a more
precise manner, but before that, let us discuss the positive hierarchies associated
to the Ĝ = ŜL(n+1) generalized models of the previous section. To each algebraic
structure 1. to 3. we associate the following Lax operators:
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1. G0
0 = K = ∅

A0 =
n∑

i=1

uih
(0)
i ,

2. (a) K = U(1) = {λ1 ·H(0)}

A0 = qE(0)
α1

+ rE
(0)
−α1

+

n∑

i=2

uih
(0)
i ,

(b) K = U(1) ⊗ U(1) = {λ1 ·H(0), λn ·H(0)}

A0 = q1E
(0)
α1

+ qnE
(0)
αn

+ r1E
(0)
−α1

+ rnE
(0)
−αn

+

n−1∑

i=2

uih
(0)
i ,

3. K = SL(2)⊗ U(1) = {E±α1 , λ1 ·H,λ2 ·H}

A0 = q1E
(0)
α1+α2

+ q2E
(0)
α2

+ r1E
(0)
−α1−α2

+ r2E
(0)
−α2

+

n∑

i=3

uih
(0)
i , (16)

they give rise to the generalized mKdV, multicomponent AKNS and constrained
KP (cKP) hierarchies [7], [8], [9] respectively.

4 Negative grade time evolution

The time evolution associated to negative grade elements in C(K) can be in-
corporated within the general construction of integrable hierarchies following the
Riemann–Hilbert problem and its connection with the dressing formulation [10].
As in eqn. (8) to each element E(−n) ∈ K we define the associated time evolution
by

∂Θ(t)

∂t−n
= −(BME(−n)M−1B−1)−Θ(t) , (17)

where M = exp
(∑

i>0 m
(i)

)
and B ∈ G0, i.e., an element of the zero grade sub-

group. It therefore follows that

Θ
∂Θ−1

∂t−n
=

∂

∂t
−n

+ (BME(−n)M−1B−1)− . (18)

By construction [∂t
−n
, ∂tm ] = 0 and henceforth

[
∂x +E +A0, ∂t

−n
+

n∑

i=1

D(−i)

]
= Θ [∂x +E, ∂t−n] Θ

−1 = 0 . (19)
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Decomposing the zero curvature condition (19) into graded components we find

∂xD
(−n)
n + [A0, D

(−n)
n ] = 0 ,

∂xD
(−n+1)
n [E,D

(−n)
n ] + [A0, D

(−n+1)
n ] = 0 ,

...

∂xD
(−1)
n [E,D

(−2)
n ] + [A0, D

(−1)
n ] = 0 ,

∂t
−n
A0 − [E,D

(−1)
n ] = 0 .

(20)

Eqns. (20) can be solved recursively, however notice that in general, contrary to
D(i) in eqns. (13), the D(−i) are nonlocal functionals of the fields A0. There is one
particular case, for t = t−1, in which we obtain a closed local solution. Let n = 1
in eqn. (19) [

∂x +E +A0, ∂t
−1 + (BE(−1)B−1)

]
= 0 . (21)

If we now compare eqn. (21) with (2) and (3) identifying z̄ = −x, z = t−1 and
E(±1) = ε± we find,

D
(−1)
1 = Bε−B

−1 , A0 = ∂̄BB−1 = −∂xBB−1 . (22)

With the space time identified as above, it becomes clear that the Leznov–Saveliev
eqns. (1) can be put within the general construction for integrable hierarchies
associated to negative grade time evolution (19). This explains the relationship
between the sinh–Gordon (4) and the mKdV (14) equations as well as, the Lund–
Regge (6) and the AKNS (15) equations.

5 Supersymmetric integrable hierarchies

In this section we shall consider how the structure of the Lax operators changes
when terms with half–integer grades appear in Ĝ = ⊕n∈Z Gn/2. As a consequence
of such terms being present in the exponent of the dressing matrices

Θ = exp

(∑

i<0

θ(i)
)

= exp
(
θ(−1/2) + θ(−1) + θ(−3/2) + . . .

)
,

M = exp

(∑

i>0

m(i)

)
= exp

(
m(1/2) +m(1) +m(3/2) + . . .

) (23)

the form of the Lax operator is changed as follows (compare with (9)):

∂t1(Θ) = (ΘEΘ−1)−Θ =
[
ΘEΘ−1 − (ΘEΘ−1)+

]
Θ =

= ΘE + (E +
[
θ(−1), E

]
+

[
θ(−1/2), E

]
+

1

2

[
θ(−1/2),

[
θ(−1/2), E

]]
)Θ =

= ΘE + (E +A0 +A1/2 + k0)Θ . (24)
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Here

A0 =
[
θ(−1), E

]
+

1

2

[
θ(−1/2),

[
θ(−1/2), E

]] ∣∣∣
M

∈ M , (25)

A1/2 =
[
θ(−1/2), E

]
∈ M , (26)

k0 =
1

2

[
θ(−1/2),

[
θ(−1/2), E

]] ∣∣∣
K

∈ K , (27)

where
∣∣∣
K

and
∣∣∣
M

denote projections on the kernel K and image M, respectively.

This shows that, in case of a half-integer grading, a general expression for the Lax
operator is

L = ∂x +E +A0 +A1/2 + k0 . (28)

The unconventional grade zero term k0 residing in K appears here due to the half–
integer grading (encountered in case of sl(2|1) with principal gradation [11]).

Following the procedure explained in Sect. 2 with Θ given in (23) we generalize
the zero curvature form of eqn. (12),i.e.

[
∂x +E +A0 +A1/2 + k0, ∂tn +E(n) +

2n−1∑

i=0

D(i/2)
n

]
=

= Θ
[
∂x +E, ∂tn +E(n)

]
Θ−1 = 0 ,

(29)

which can be solved recursively for D
(i)
n and D

(i+1/2)
n , i = 1, · · · , n − 1. This also

leads to the equations of motion (time evolution ) for the fields A0.
The negative grade sector (19) can also be extended. From Sect. 3 we also find

[
∂x +E +A0 +A1/2 + k0, ∂t

−n
+

2n∑

i=1

D(−i/2)
n

]
=

= Θ
[
∂x +E, ∂t

−n

]
Θ−1 = 0 .

(30)

In particular for n = 1 we find
[
∂x +E +A0 +A1/2 + k0, ∂t

−1 +D
(−1)
1 +D

(−1/2)
1

]
= 0 , (31)

where from (18)

D
(−1)
1 = BE(−1)B−1 , D

(−1/2)
1 = Bj−1/2B

−1 , j−1/2 =
[
m(1/2), E(−1)

]
.

Taking the grade −1 of eqn. (31) we find

∂x(BE
(−1)B−1) + [A0, BE

(−1)B−1] = 0 ,

which has solution A0 = −∂xBB−1. Take now the grade − 1
2 of eqn. (31) to obtain

respectively
∂x

(
j−1/2

)
= [E(−1), B−1A1/2B] . (32)
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From grades 1
2 and zero, we obtain

∂−1 (A1/2) =
[
E,Bj−1/2B

−1
]
, (33)

∂−1(∂xBB
−1) =

[
BE(−1)B−1, E

]
+

[
Bj−1/2B

−1, A1/2

]
. (34)

Eqns. (32) – (34) correspond to the equations of motion of the associated relativistic
integrable model.

6 The N = 2 super MKdV and sinh−Gordon equations

As an application consider the loop algebra ŜL(2, 2) described in the appendix.
In parametrizing the Lax components A1/2 and A0 in (30) we determine from (26)
and (25) the first two terms of Θ in (23), namely θ−1/2 and θ−1. The lowest grade
θ−1/2, in turn, determines the quantity k0 from eqn. (27). From [11] we found that
the existence of nontrivial k0 gives rise to nonlocal supersymmetry transformation.
In order to provide a simple example of local N = 2 supersymmetric integrable
model we shall consider a subalgebra of the loop algebra ŜL(2, 2) whose generators
are given by (59). Within such subalgebra we make sure that k0 = 0. Let the Lax
operator

L = ∂x +E +A0 +A1/2 (35)

be specified by

E = K
(1)
1 +K

(1)
2 +I(1), A0 = u1M

(0)
1 +u3M

(0)
3 , A1/2 = ψ̄1G

(1/2)
1 +ψ̄3G

(1/2)
3 . (36)

We now solve the zero–curvature equation (12) for n = 3. It is explicitly given by

[
∂x +E +A0 +A1/2, ∂3 + D +E(3)

]
= 0 ,

D = D
(0)
3 +D

(1/2)
3 +D

(1)
3 +D

(3/2)
3 +D

(2)
3 +D

(5/2)
3 ,

(37)

where E(3) = K
(3)
1 +K

(3)
2 + I(3). We then obtain the following equations of motion

for the N = 2 super MKdV,

4∂3ψ1 = ∂3
xψ1 − 3

2ψ1∂x(u
2
1 + u2

3) − 3∂x(ψ1)(u
2
1 + u2

3) − 3ψ3∂x(u1u3) , (38)

4∂3ψ3 = ∂3
xψ3 − 3

2ψ3∂x(u
2
1 + u2

3) − 3∂x(ψ3)(u
2
1 + u2

3) − 3ψ1∂x(u1u3) (39)

and

4∂3u1 = ∂x

[
∂2
xu1 − 2u3

1 + 3u1(ψ1∂xψ1 − ψ3∂xψ3) + 3u3(−ψ1∂xψ3 + ψ3∂xψ1)
]
,

4∂3u3 = ∂x

[
∂2
xu3 − 2u3

3 − 3u3(ψ1∂xψ1 − ψ3∂xψ3) − 3u1(−ψ1∂xψ3 + ψ3∂xψ1)
]
. (40)

These equations are invariant under the following supersymmetry transformations

δu1 = 2∂x(−ψ1ε2 + ψ3ε4) , δu2 = 2∂x(−ψ1ε4 + ψ3ε2) (41)
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and
δψ1 = u1ε2 − u3ε4 , δψ3 = u1ε4 − u3ε2 , (42)

with ε2, ε4 constant grassmanian parameters.
For the relativistic case we parametrize B = eφ1M1+φ3M3 and

A0 = −∂xBB−1 = −∂xφ1M1 − ∂xφ3M3 , (43)

A1/2 = ψ1G
(1/2)
1 + ψ3G

(1/2)
3 , (44)

−1/2 = ψ2G
(−1/2)
2 + ψ4G

(−1/2)
4 , (45)

E(−1) = K
(−1)
1 +K

(−1)
2 + I(−1) . (46)

With notation

ψ̄± = ψ2 ± ψ4 , ψ± = ψ1 ± ψ3 , φ± = φ1 ± φ3 (47)

the eqns. of motion (32) – (34) become

∂−1ψ± = −2ψ̄∓ coshφ± , (48)

∂xψ̄± = −2ψ∓ coshφ± , (49)

∂−1∂xφ+ = −4 sinhφ+ coshφ− + 4ψ+ψ̄+ sinhφ− , (50)

∂−1∂xφ− = −4 coshφ+ sinhφ− + 4ψ−ψ̄− sinhφ+, . (51)

These equations are invariant under the supersymmetry transformations:

δφ± = 2ψ∓ε± , δψ± = −∂xφ∓ε± , δψ̄± = 2 sinhφ±ε∓ , (52)

where ε± = ε2 ± ε4. The above N = 2 Sine–Gordon equations correspond to the
ones proposed by Kobayashi and Uematsu [12] and written in the above form by
Nepomechie [13]. The construction of integrable models with higher supersymme-
tries such as N = 4, 8 involves higher rank subalgebras of ŜL(4, 4), ŜL(8, 8) [14].

Acknowledgments. We thank Prof. G.M. Sotkov for numerous discussions and sugges-

tions. We are grateful to CNPq and FAPESP for financial support.

Appendix: Algebra SL(2, 2)

The super Lie algebra SL(2, 2) is a rank 3 algebra with simple roots

α1 = e1 − e2 , α2 = e2 − f1 , α3 = f1 − f2, ei · ej = −fi · fj = δij . (53)

The affine (loop) algebra ŜL(2, 2) is given by
[
h̃

(n)
i , E

(m)
αj

]
= (αi · αj)E(n+m)

αj ,[
E

(n)
αi , E

(m)
−αi

]
= Str (Eαi

, E−αi
)h̃

(n+m)
i , i, j = 1, 2, 3 ,[

E
(n)
α , E

(m)
β

]
= ε(α, β)E

(n+m)
α+β , α+ β is root ,[

E
(n)
α , E

(m)
β

]
= 0 , otherwise ,

[
d, T (m)

]
= mT (m), T (m) = E

(m)
α orh

(m)
i ,

(54)
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where n,m ∈ Z or n,m ∈ Z + 1
2 according to the bosonic or fermionic character of

the generator respectively. Define now

Q = d+ 1
2 (h̃

(0)
1 + h̃

(0)
3 ) ,

E = (E
(0)
α1 +E

(2)
−α1

) + (E
(2)
α3 +E

(0)
−α3

) + I(1) .

The fermionic and bosonic components of the Kernel K are generated by

f
(n+1/2)
1,η =

(
ηE

(n−1/2)
α1+α2

+E
(n+3/2)
−α1−α2

)
+

(
ηE

(n+33/2)
α2+α3

+E
(n−1/2)
−α2−α3

)
,

f
(n+1/2)
2,η =

(
ηE

(n+1/2)
α1+α2+α3

+E
(n+1/2)
−α1−α2−α3

) + (ηE(n+1/2)
α2

+E
(n+1/2)
−α2

)
,

(55)

η = ±1 and

K
(n)
1 = E(n−1)

α1
+E

(n+1)
−α1

,

K
(n)
2 = E(n+1)

α3
+E

(n−1)
−α3

, (56)

I(n) = h̃
(n)
1 + 2h̃

(n)
2 − h̃

(n)
3 .

The image M by

g
(n+1/2)
1,η =

(
ηE

(n−1/2)
α1+α2

+E
(n+3/2)
−α1−α2

)
−

(
ηE

(n+3/2)
α2+α3

+E
(n−1/2)
−α2−α3

)
,

g
(n+1/2)
2,η =

(
ηE

(n+1/2)
α1+α2+α3

+E
(n+1/2)
−α1−α2−α3

)
−

(
ηE(n+1/2)

α2
+E

(n+1/2)
−α2

)
,

(57)

η = ±1 and

M
(n)
1 = h̃

(n)
1 , M

(n)
2 = −E(n−1)

α1 +E
(n+1)
−α1

,

M
(n)
3 = −h̃(n)

3 , M
(n)
4 = −E(n−1)

α3 +E
(n+1)
−α3

(58)

respectively. Define now

F
(n+1/2)
1 =

1√
2

(
f

(n+1/2)
1,+ + f

(n+1/2)
2,+

)
, F

(n+1/2)
2 =

1√
2

(
f

(n+1/2)
1,− + f

(n+1/2)
2,−

)
,

F
(n+1/2)
3 =

1√
2

(
f

(n+1/2)
1,+ − f

(n+1/2)
2,+

)
, F

(n+1/2)
4 =

1√
2

(
f

(n+1/2)
1,− − f

(n+1/2)
2,−

)

and

G
(n+1/2)
1 =

1√
2

(
g
(n+1/2)
1,+ + g

(n+1/2)
2,+

)
, G

(n+1/2)
2 =

1√
2

(
g
(n+1/2)
1,− + g

(n+1/2)
2,−

)
,

G
(n+1/2)
3 =

1√
2

(
g
(n+1/2)
1,+ − g

(n+1/2)
2,+

)
, G

(n+1/2)
4 =

1√
2

(
g
(n+1/2)
1,− − g

(n+1/2)
2,−

)
.

We now define a consistent subalgebra of the affine ŜL(2, 2) loop algebra by select-
ing the following generators,

M
(2n)
1 , M

(2n)
3 , M

(2n+1)
2 , M

(2n+1)
4 , K

(2n+1)
1 , K

(2n+1)
2 , I(2n+1),

G
(2n+1/2)
1 , G

(2n+1/2)
3 , F

(2n+1/2)
2 , F

(2n+1/2)
4 ,

G
(2n+3/2)
2 , G

(2n+3/2)
4 , F

(2n+3/2)
1 , F

(2n+3/2)
3 for n ∈ Z.

(59)
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