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1 Introduction

In standard quantum mechanics, the Hamiltonian or observable of energy is
assumed to be given by a self-adjoint operator i.e. a Hilbert space operator H
such that H and H† act in the same way and such that the domains of definition
of H and H† coincide. Somewhat more vaguely, one can say that an observable is
a Hermitian operator whose (generalized) eigenvectors define a (generalized) basis
of Hilbert space, e.g. see [1]. The spectrum of a self-adjoint operator is real and
describes the possible outcome for the measurement of the observable.

For the simplest quantum mechanical system, i.e. a 2–level system, the Hamil-
tonian is a self-adjoint operator on C2, i.e. a Hermitian (2×2)–matrix. Since there
exist non-Hermitian matrices admitting real eigenvalues, such operators, as well as
their generalization on infinite dimensional Hilbert space, are potential candidates
for an attempt to extend standard quantum mechanics. In fact, various operators
which act on the Hilbert space L2(Rn) or on Cn, which admit a real spectrum and
are not Hermitian, have recently been put forward by Bender et al. [2] and have
been largely discussed ever since. Many of these operators are PT -invariant, where
P and T denote the operations of parity and time reversal, respectively. On the
Hilbert space H = L2(Rn), the parity operator acts according to (Pϕ)(~x) = ϕ(−~x)
and on H = C2 it acts as P =

[
0 1
1 0

]
. Time reversal acts as complex conjugation

and thus represents an antilinear operator1). As a matter of fact, non-Hermitian
Hamiltonians admit physical applications in such diverse areas as ionization optics,
transitions in superconductors, dissipative quantum systems, nuclear potentials,
quantum cosmology, population biology, . . . — see the cited papers for precise
references.

In our presentation of the described extension of quantum mechanics, we closely

∗) These notes represent an expanded version of the talk presented by F. Gieres at the XI–th
International Conference “Symmetry Methods in Physics” in Prague (June 2004).

1) The adjoint of an antilinear operator T on H is defined by 〈ϕ, T ψ〉 = 〈T †ϕ,ψ〉∗ for ϕ,ψ ∈ H.
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follow the approach of Mostafazadeh [3] – [8] dealing with ‘pseudo–Hermitian’ op-
erators, while taking into account the mathematical and physical amendments put
forward in references [9, 10]. The idea is to introduce a generalized adjoint opera-
tor defined in terms of some metric operator on the Hilbert space and to consider
the operators which are Hermitian with respect to this generalized adjoint. The
relationship with operators admitting an antilinear symmetry like PT –symmetry
is made in a second stage.

2 Pseudo−Hermitian operators

As in ordinary quantum mechanics, we consider a complex separable Hilbert
space H with a scalar product 〈·, ·〉 to which we refer as the defining scalar product
of our Hilbert space. Let η be an operator on H which is defined on the entire
space H, which is bounded, Hermitian and invertible2). This operator is referred
to as metric since it can be used to define the so-called η−scalar product on H:

〈〈ϕ, ψ〉〉η ≡ 〈ϕ, ηψ〉 for all ϕ, ψ ∈ H . (1)

In general, this only represents a pseudo–scalar product since it is not necessarily
positive–definite, but only non-degenerate: if 〈〈ϕ, ψ〉〉η = 0 for all ϕ ∈ H, then ψ = 0
since η is invertible and thus ker η = {0}. (In this context, it is worth recalling that
the Minkowski metric operator appearing in special relativity, which is also denoted
by η in general, represents a pseudo–scalar product on the real vector space R4.)

Two Hilbert space vectors ϕ and ψ satisfying 〈〈ϕ, ψ〉〉η = 0 are said to be η–
orthogonal. In Dirac’s terminology, the bra associated to the ket |ψ〉 ∈ H with
respect to the η–bracket (1) is given by 〈ηψ|.

The η–scalar product is positive definite if the operator η is strictly positive (i.e.
〈ϕ, ηϕ〉 > 0 for all ϕ 6= 0 [12]) and thus of the form

η = O†O , (2)

where O is an everywhere defined, bounded and invertible operator on H. The
simplest example is given by η = 1l, in which case the η–scalar product reduces to
the defining scalar product 〈·, ·〉 of H.

In these notes, we have in mind Hamiltonian operators and therefore we gener-
ically denote Hilbert space operators by H . The η−pseudo−adjoint of H (or
pseudo-adjoint of H with respect to η) is defined by

H] = η−1H†η . (3)

A short calculation shows that H] can be viewed as the adjoint of H with respect
to the η–scalar product:

〈〈ϕ,Hψ〉〉η = 〈〈H]ϕ, ψ〉〉η for ϕ, ψ ∈ H .

2) Here and in the following, invertible means bijective, i.e. one-to-one and onto. Henceforth,
the operator η−1 has the same properties as η. Concerning these properties, it is useful to recall
the fundamental theorem of Hellinger and Toeplitz which states that an everywhere defined,
Hermitian operator on Hilbert space is bounded [11].

2



(Non-)Hermitian supersymmetric quantum mechanics

We note that the metrics η and η′ = λη (with λ ∈ R−{0, 1}), which define different
pseudo–scalar products, determine the same operation ].

The operator H is said to be η−pseudo−Hermitian (or pseudo–Hermitian
with respect to η) if H] = H (i.e. H† = ηHη−1 or H†η = ηH , which means
that the metric operator η intertwines between H and its adjoint). More generally,
H is called pseudo−Hermitian if there exists a metric η on H with respect to
which H is pseudo–Hermitian3). In particular, a pseudo−Hermitian quantum
mechanical system (H, H) is given by a pseudo–Hermitian Hamiltonian H acting
on the Hilbert space H. In the case where η is strictly positive, a η–pseudo–
Hermitian operator is said to be η−quasi−Hermitian [10].

The operation ] satisfies (H])] = H and shares other characteristic properties
of the operation †. Thus, the passage from standard to pseudo–Hermitian quan-
tum mechanics consists of replacing H† by H], which leads to different spectral
properties for the operators H that are invariant under the operations † and ],
respectively. In section 5, we will summarize the main results concerning the spec-
trum of pseudo–Hermitian and quasi–Hermitian operators. Here, we only make
some related comments.

Remarks: (1) An operator which is pseudo–Hermitian with respect to η = 1l is

Hermitian.

(2) If an operator H is pseudo–Hermitian with respect to the metric η, i.e.
satisfies H = η−1H†η, then it is also pseudo–Hermitian with respect to the metric

η′ = S†ηS , (4)

where S is an everywhere defined, bounded and invertible operator commuting with
H . From these properties of S, it follows that the metric η′ is strictly positive if
and only if η is strictly positive. Thus, there is a whole class of metrics associated
with a given pseudo–Hermitian operator, all of which metrics are strictly positive
if one of them is. Actually, one can consider more general changes of the metric
which leave the pseudo–Hermicity condition for H invariant and which modify the
positivity properties of η, see section 4. In that section, we will also see that, for
a diagonalizable pseudo–Hermitian operator H , the eigenvectors of H and H † can
be used to obtain a simple explicit expression for a metric operator with respect to
which H is pseudo–Hermitian.

3 Quasi−Hermitian operators on a finite dimensional space

Let us discuss the spectral theory of quasi–Hermitian operators while assuming
that the Hilbert space H is of finite dimension so as to avoid technical complications.
It is worthwhile recalling that the spectra of the operators H and H † are mirror
images of each other with respect to the real axis. More precisely, the eigenvalues

3) Here, we do not discuss the domains of definition of the involved operators — see reference [13]
for some related considerations.
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of H† are the complex conjugate of the eigenvalues of H , with the same algebraic
and geometric multiplicities [14].

According to the definition given above, an operator H is quasi–Hermitian if
it is Hermitian with respect to a positive–definite η–scalar product: 〈〈ϕ,Hψ〉〉η =
〈〈Hϕ,ψ〉〉η for all ϕ, ψ ∈ H. Thus, these operators have spectral properties that are
analogous to the standard Hermitian operators which satisfy 〈ϕ,Hψ〉 = 〈Hϕ,ψ〉
for all ϕ, ψ ∈ H. Indeed, by applying the standard arguments to the η–scalar
product rather than the scalar product 〈·, ·〉, one concludes that the eigenvalues of
a quasi–Hermitian operator H are real, that the eigenvectors associated to different
eigenvalues are mutually η–orthogonal and that the eigenvectors provide an η–
orthonormal basis4):

H |ψn,a〉 = En |ψn,a〉 ,
〈〈ψn,a, ψm,b〉〉η = δnmδab , (5)

∑

n

dn∑

a=1

|ψn,a〉〈ηψn,a| = 1l =
∑

n

dn∑

a=1

|ηψn,a〉〈ψn,a| .

Here, n labels the eigenvalues En of H and a ∈ {1, . . . , dn} their degeneracy
(dn being the multiplicity of the eigenvalue En). The given decomposition of
unity follows from the fact that the eigenvectors of an operator which is Hermi-
tian with respect to some positive–definite scalar product form a complete sys-
tem, hence any vector |ψ〉 ∈ H can be expanded with respect to this system:

|ψ〉 =
∑

n

∑dn

a=1 cn,a|ψn,a〉. By multiplying this expansion to the left by ηψm,b, we
get cn,a = 〈ηψn,a, ψ〉 = 〈〈ψn,a, ψ〉〉η which is precisely the first resolution of identity.
The second follows from the first one by writing 1l = η1lη−1 and using the Hermicity
of η−1. From H = 1lH1l and equations (5), we get the spectral decomposition of H :

H =
∑

n

dn∑

a=1

En |ψn,a〉〈ηψn,a| . (6)

For η 6= 1l, the basis {|ψn,a〉} is not orthonormal (with respect to the defining
scalar product 〈·, ·〉). Equations (5) and (6) involve the vectors

|φn,a〉 ≡ η|ψn,a〉 , (7)

which also form a basis of H since the operator η is invertible. For η 6= 1l, this basis
is not orthonormal either. From H† = ηHη−1 it follows that H†|φn,a〉 = En |φn,a〉
so that the spectral decompositions of H and H† read as

H =
∑

n

dn∑

a=1

En |ψn,a〉〈φn,a| , H† =
∑

n

dn∑

a=1

En |φn,a〉〈ψn,a| . (8)

4) Here and in the following, it is convenient to use Dirac’s bra and ket notation.
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The expansion of H involves the projection operators Pn,a ≡ |ψn,a〉〈φn,a| which
are not Hermitian in general: P †

n,a = |φn,a〉〈ψn,a|. The η–orthonormality and η–
completeness relations (5) now take the form

〈φn,a, ψm,b〉 = δnmδab ,

∑

n

dn∑

a=1

|ψn,a〉〈φn,a| = 1l =
∑

n

dn∑

a=1

|φn,a〉〈ψn,a| , (9)

i.e. the eigenvectors of H and H† form a complete biorthogonal system in
H [15]. The decomposition of unity (9) means that any vector |ψ〉 ∈ H can be
decomposed either with respect to the basis {|ψn,a〉} or with respect to the basis
{|φn,a〉}. We remark that biorthogonal systems play an important role in the theory
of nonharmonic Fourier series and for wavelet expansions [15, 16, 17].

For the biorthogonal system constructed above, we have relation (7), i.e. the
basis {|ψn,a〉} and the basis {|φn,a〉} are related by the invertible Hermitian operator
η. From this relationship, we can deduce an explicit expression for the metric η in
terms of the eigenvectors of H†: by writing η = η1l and using relations (9), we find

η =
∑

n

dn∑

a=1

|φn,a〉〈φn,a| . (10)

This expression is referred to as the canonical representation of the (strictly posi-
tive) metric operator η.

To summarize: a η–quasi–Hermitian operator H is diagonalizable with real
eigenvalues (see next subsection for a further discussion), i.e. its eigenvalues are
real and the set of eigenvectors {|ψn,a〉, |φn,a〉} of H and H†,

H |ψn,a〉 = En |ψn,a〉 , H†|φn,a〉 = En |φn,a〉 , (11)

forms a complete biorthogonal system in H (for which the relation (7) holds due
to the η–quasi–Hermiticity of H). Conversely, an operator H with the eigenvalue
equations (11), that involve real eigenvalues En and eigenvectors which form a
complete biorthogonal system in H, is quasi–Hermitian with respect to the metric
(10). Indeed, the operator η defined by (10) is Hermitian, strictly positive and

invertible with inverse η−1 =
∑

n

∑dn

a=1 |ψn,a〉〈ψn,a|. Furthermore, equations (10)
and (9) imply relation (7), while the spectral decompositions of H and H† im-
ply η−1H†η = H , i.e. the η–quasi–Hermiticity of H . Thus, for an operator H
on a complex Hilbert space of finite dimension, we have established the equiva-
lence between quasi–Hermitian and diagonalizable with real eigenvalues. Another
characterization of quasi-Hermitian operators will be presented in section 5.

4 Diagonalizable operators, metrics and symmetries

At the beginning of this section, we recall some facts concerning the diagonal-
ization and spectral decomposition of non-Hermitian operators in Hilbert space
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without any reference to the notion of pseudo–Hermiticity. Thereafter, we provide
an explicit expression for the metric for a given pseudo–Hermitian operator H and
we explain how one can find antilinear symmetries for such an operator [3, 4, 5].
To start with, we avoid the mathematical technicalities by considering the case of
a finite dimensional Hilbert space.

4.1 Finite dimensional case

Spectral decompositions:

For a non-Hermitian operator, the eigenvectors associated to different eigenval-
ues are not necessarily orthogonal to each other and in general the eigenvectors do
not provide a basis. Yet, the eigenvectors associated to different eigenvalues are
always linearly independent. We recall once more that the spectra of the operators
H and H† are related by complex conjugation.

Interestingly enough, the spectral theorem for Hermitian operators admits a
generalization which holds for arbitrary operators: the canonical or singular value
decomposition [18] of a generic operator H reads as

H =
∑

k

σk|vk〉〈wk | , where

{
H†H |wk〉 = σ2

k |wk〉 ,
HH†|vk〉 = σ2

k|vk〉 .
(12)

Here, the σk are the singular values of H (i.e. the non-negative square roots of the
eigenvalues of the positive operatorH†H) and the expansion (12) of H involves two
orthonormal basis’ consisting, respectively, of the eigenvectors of H †H and HH†.
Since the canonical decomposition of the operator H does not directly involve its
eigenvalues, it is of limited interest for the physical interpretation of quantum me-
chanics, though it may be exploited in the mathematical study of pseudo–Hermitian
Hamiltonians within the framework of perturbation theory [19].

Hermitian operators belong to the class of normal operators, i.e. Hilbert space
operators H0 satisfying [H0, H

†
0 ] = 0. Although these operators are not Hermi-

tian in general, they admit exactly the same spectral decomposition as Hermitian
operators, but involving complex eigenvalues. A normal operator can also be char-
acterized by the property that there exists a Hilbert space basis consisting of or-
thonormal eigenvectors of H0. Equivalently, the operator H0 admits the spectral
decomposition

H0 =
∑

n

dn∑

a=1

En |n, a〉〈n, a| , (13)

where the labels n, a and dn have the same meaning as in equation (5), where En

is complex in general and where the set {|n, a〉} represents an orthonormal basis
consisting of eigenvectors of H0. For obvious reasons, these operators are also
referred to as diagonal operators.

Relation (13) implies H†
0 =

∑
n

∑dn

a=1E
∗
n |n, a〉〈n, a|, henceforth a normal oper-

ator with real eigenvalues is Hermitian. Thus, non-Hermitian operators with real
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eigenvalues, i.e. the central objects of our investigation, necessarily belong to a
larger class of operators than the normal ones.

For our purposes, the latter class has to be constrained by physical require-
ments. Indeed [3], in quantum mechanics, one is interested in operators H which
are diagonalizable, i.e. there exists an invertible operator S and a diagonal op-
erator H0 such that H = S−1H0S (or, equivalently, there exists a Hilbert space
basis consisting of eigenvectors of H). The condition that H is diagonalizable is
also equivalent to the fact that the eigenvectors of H and H†, as given by equations

H |ψn,a〉 = En |ψn,a〉 , H†|φn,a〉 = E∗
n |φn,a〉 , (14)

form a complete biorthogonal system in H, i.e. satisfy the set of relations (9). In
fact [4], let us assume that H = S−1H0S with H0 of the form (13) and let us define

|ψn,a〉 := S−1|n, a〉 , |φn,a〉 := S†|n, a〉 .
Then, relations (14) and (9) hold. Conversely, let us assume that (14) and (9)
are satisfied and let us define S−1 :=

∑
n,a |ψn,a〉〈n, a| where {|n, a〉} denotes an

orthonormal basis. Then, S =
∑

n,a |n, a〉〈φn,a| and SHS−1 = H0 with H0 of the
form (13).

From equations (9) and (14), we get the spectral decomposition of a diagonaliz-
able operator H :

H =
∑

n

dn∑

a=1

En |ψn,a〉〈φn,a| , H† =
∑

n

dn∑

a=1

E∗
n |φn,a〉〈ψn,a| . (15)

If H is normal, then {|ψn,a〉 = |φn,a〉} represents an orthornormal basis of H and
the expansion (15) of H reduces to the expansion (13). If H is Hermitian, the
eigenvalues are, in addition, real.

Finally, let us recall that there exists a simple criterion for the diagonaliz-
ability of an operator H on a complex Hilbert space H of finite dimension. Since
the field of complex numbers is algebraically complete, the characteristic polynomial
of an operator H on H can always be decomposed into linear factors, henceforth a
necessary and sufficient condition for the diagonalizability of H is that the algebraic
and geometric multiplicities coincide for each of its eigenvalues.

In section 3, we have shown that quasi–Hermitian is equivalent to diagonalizable
with real eigenvalues. We will see in section 5 that, for a diagonalizable Hamiltonian
H , the property pseudo–Hermitian is equivalent to the property that the eigenvalues
of H are real or that they represent complex conjugate pairs of non-real numbers.

A non-diagonalizable operator H on a complex Hilbert space H is block−dia-
gonalizable, i.e. H admits a basis with respect to which the operator H is rep-
resented by a block–diagonal matrix involving Jordan blocks [20]. In this case,
the spectral decomposition of H [8] involves higher order eigenvectors (correspond-
ing to the Jordan blocks): by definition, an eigenvector or root vector of order
m ∈ {1, 2, . . .} associated to the eigenvalue En is a nonzero vector |ψn〉 ∈ H such
that

(H −En1l)m|ψn〉 = 0 , (H −En1l)m−1|ψn〉 6= 0 .
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Thus, for m = 1, |ψn〉 is an ordinary eigenvector. For m > 1, the geometric
and algebraic multiplicities of En do not coincide. Block–diagonalizable Hamil-
tonians manifest themselves in quantum mechanics in the description of energy
level–crossings — see section 5.

Pseudo−Hermitian operators and associated metrics:

Suppose the operator H is diagonalizable, i.e. there exists a biorthogonal basis
of eigenvectors {|ψn,a〉, |φn,a〉}. If H is, in addition, pseudo–Hermitian, then one
can use the latter biorthogonal basis to give an explicit expression for a metric
operator η with respect to which H is pseudo–Hermitian [6]. In fact, the metric
can be brought into the canonical form

η =
∑

n0

dn0∑

a=1

σn0,a|φn0,a〉〈φn0,a| +
∑

ν

dν∑

a=1

(
|φν,a〉〈φ−ν,a| + |φ−ν,a〉〈φν,a|

)
. (16)

Here, the index n0 labels real eigenvalues, the index ±ν labels the non-real eigen-
values which come in complex conjugate pairs (E−ν = E∗

ν ) and σn0,a ∈ {−1,+1}
represents a collection of signs. If the spectrum of H is real, only the first double
sum is present in expression (16) and one recovers the expansion (10) up to the
signs.

If the biorthogonal basis is changed by an invertible operator S, the metric
transforms according to (4).

Antilinear operators and symmetries:

The following definitions are formulated in such a way that they also apply in
the case of an infinite dimensional Hilbert space.

Suppose the Hamiltonian H admits an antilinear symmetry, i.e. there exists an
antilinear, everywhere defined, bounded operator χ which commutes with H . By
applying χ to the eigenvalue equation H |ψn,a〉 = En|ψn,a〉, we conclude that

H(χ|ψn,a〉) = E∗
n χ|ψn,a〉 .

Thus, the eigenvalues of H are real or they come in pairs of complex conjugate
non-real numbers [2, 3].

Let us now consider an operator τ which has the same properties as a metric
operator except that it is anti-Hermitian rather than Hermitian, i.e. it is antilin-
ear and satisfies 〈ϕ, τψ〉 = 〈τϕ, ψ〉∗ for all ϕ, ψ ∈ H. The Hamiltonian is said to
be pseudo−anti−Hermitian with respect to τ if H† = τHτ−1. One can prove
that every diagonalizable Hamiltonian is pseudo–anti–Hermitian with respect to
an operator τ which is unique up to basis transformations [4, 6]. Furthermore, a
short calculation shows that, if the Hamiltonian H is pseudo–Hermitian with re-
spect to the metric η and pseudo–anti–Hermitian with respect to τ , the operator
χ ≡ η−1τ represents an antilinear symmetry of H (which, in addition, is anti–
Hermitian and invertible). By combining the previous results, one concludes that
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every diagonalizable pseudo–Hermitian Hamiltonian H admits an antilinear sym-
metry. If {|ψn,a〉, |φn,a〉} represents a biorthogonal basis of eigenvectors associated
to such an operator, a canonical expression for the antilinear symmetry can be
given in terms of this basis [4, 5]:

χ =
∑

n0

dn0∑

a=1

σn0,a |ψn0,a〉? 〈φn0,a|+
∑

ν

dν∑

a=1

(
|ψν,a〉? 〈φ−ν,a|+ |ψ−ν,a〉? 〈φν,a|

)
. (17)

Here, the symbol ? denotes the operator of complex conjugation: ?〈φn,a|ψ〉 =
〈φn,a|ψ〉∗ for all |ψ〉 ∈ H.

4.2 Infinite dimensional case

For operators on an infinite dimensional Hilbert space, there are two well known
technical complications, e.g. see reference [1]. First, the spectrum of an operator
is defined to be the set of all spectral values and this set contains the subset of
all eigenvalues (associated to eigenvectors belonging to the Hilbert space) and the
subset of all generalized eigenvalues (associated to generalized eigenvectors which
do not belong to the Hilbert space), these subsets corresponding to the discrete
and continuous spectrum, respectively5). Second, for an unbounded operator, one
has to deal with its domain of definition whose choice reflects in general a specific
physical situation. These technical complications imply that functional analysis is
much more harder and richer than linear algebra. In the appendix, we address the
question to which extent the results of the previous subsection can be generalized
to an infinite dimensional Hilbert space. Here, we only note two things. First,
the formulae involving eigenvalues and eigenvectors which have been given above
for operators acting on a finite dimensional Hilbert space, can be generalized to
an operator with a continuous and/or discrete spectrum by considering spectral
values, generalized eigenvectors, integrals and/or infinite sums [21]. Second, we
remark that, for a given Hamiltonian on L2(Rn), it is in general not possible to
determine explicitly the spectrum and (generalized) eigenfunctions and it is difficult
to determine whether or not such a Hamiltonian is diagonalizable, i.e. establish
the completeness of the system of eigenfunctions.

5 Spectral theory for diagonalizable pseudo−Hermitian operators

5.1 General results

Theorem 5.1 (Spectral characterization of pseudo−Hermitian operators)
Let H be diagonalizable. Then, the following statements are equivalent:

(P1) H is pseudo–Hermitian.
(P2) The spectral values of H are real or they come in complex conjugate pairs

of non-real numbers with the same multiplicities.

5) Actually, there exists a third subset, the so-called residual spectrum which is empty for self-
adjoint operators, but not for generic operators [14].
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(P3) There exists an antilinear symmetry of H, i.e. an antilinear, everywhere
defined, bounded and invertible operator which commutes with H.

Theorem 5.2 (Spectral characterization of quasi−Hermitian operators)
The following statements are equivalent:

(Q1) H is quasi–Hermitian, i.e. pseudo–Hermitian with respect to a metric of
the form η = O†O, see equation (2).

(Q2) H is diagonalizable and admits real spectral values.

(Q3) There exists a self-adjoint operator Ĥ and a bounded invertible operator
O such that

H = O−1ĤO . (18)

(This operator is then quasi–Hermitian with respect to the metric η = O†O.)

Remarks:

(1) Since the operation T of time reversal (complex conjugation) in quantum
mechanics is antilinear, every PT –invariant, diagonalizable Hamiltonian is pseudo–
Hermitian by virtue of the first theorem.

(2) Consider a continuous, pseudo–Hermiticity–preserving perturbation of a
pseudo–Hermitian diagonalizable Hamiltonian. Under such a perturbation, a pair
of non-degenerate complex conjugate eigenvalues may merge into a real eigenvalue.
At such an energy level–crossing, the Hamiltonian generally looses its diagonal-
izability [8]. At this point, one therefore has to refer to the theory of pseudo-
Hermitian block–diagonalizable operators for which a spectral characterization has
also been given [8].

(3) The equivalence between (Q1) and (Q3) can readily be checked by writing
out the expressions in terms of the operator O. The equivalence between (Q1) and
(Q2) was established in section 3. The results presented here concerning quasi–
Hermitian operators are slightly stronger than those obtained by Mostafazadeh [3,
4, 6] in that we do not assume the operator H to be diagonalizable to start with
(as one does in the first theorem).

(4) According to the second theorem, every diagonalizable Hamiltonian with
real spectral values can be related to a self-adjoint Hamiltonian by a similarity
transformation. In this sense, quasi–Hermitian Hamiltonians are equivalent to self-
adjoint ones [7] — see next subsection for a simple example.

Let us now present some prototype examples for operators on the Hilbert space
C2 (following reference [6]) and for operators on the Hilbert space L2(R), respec-
tively.

5.2 Example of operators on C2

The most general two–level system in quantum mechanics is described by a complex
2 × 2 matrix of the form

H =

[
a b

c −a

]
, (a, b, c ∈ C) .
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For generic values a, b and c, the operator H is not Hermitian, nor normal, nor
PT –symmetric. However, in the case where its determinant is real and non-
vanishing, the operator H is pseudo–Hermitian and diagonalizable. For such a
pseudo–Hermitian Hamiltonian, we now consider the special case

H1 =

[
0 i

−iω2 0

]
, (19)

where the real parameter ω satisfies ω > 0, ω 6= 1 and may be assumed to be time–
dependent. The operator H1 represents the matrix associated to the system of two
first order differential equations which is equivalent to the second order differential
equation ẍ(t) + ω2x(t) = 0 (i.e. the classical equation of motion of the harmonic
oscillator).

Let us now display the relevant quantities associated to the operator H1. This
operator is not Hermitian, but it is quasi–Hermitian since it admits the real eigen-
values E1 = −ω and E2 = ω. A biorthogonal basis of eigenvectors and associated
metric (in the canonical form (10)) are given by6)

|ψ1〉 =

[
−i
ω

]
, |ψ2〉 =

[
ω

−iω2

]
, |φ1〉 =

1

2

[
−i
ω−1

]
, |φ2〉 =

1

2

[
ω−1

−iω−2

]
,

η ≡ |φ1〉〈φ1| + |φ2〉〈φ2| =
1

4ω2

[
1 + ω2 −iω(1− ω−2)

iω(1 − ω−2) 1 + ω−2

]
. (20)

Since the metric operator η is strictly positive, it can be decomposed as

η = O†O , with O =
1

2ω

[
i −ω−1

ω −i

]
.

Thereby, the Hermitian operator associated to the quasi–Hermitian operator H1

by virtue of equation (18), i.e. Ĥ1 ≡ OH1O−1 reads as

Ĥ1 = H2 , with H2 ≡
[
ω 0
0 −ω

]
= ωσ3 . (21)

The latter Hamiltonian describes the interaction of the magnetic moment of a spin–
1
2 particle with a constant magnetic field.

The Hamiltonian H1 admits the antilinear symmetry (17) which can presently
be rewritten as

χ =

2∑

n=1

|ψn〉〈φ̃n| T , with 〈φ̃| ≡ (|φ〉)t (transpose of |φ〉 ∈ C2) . (22)

It is explicitly given by

χ = −i

[
0 ω−1

ω 0

]
T . (23)

6) The explicit expressions for the metrics given within reference [6] in equation (67) and in the
lines that follow appear to be incorrect and inconsistent with the definitions given earlier in [6] in
eqs. (56), (57).
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Since [H,χ] = 0, the operator χ̂ ≡ OχO−1 = −T represents an antilinear symmetry

of the Hermitian operator Ĥ1 = H2. We note that for ω = 1, the operator H1 is
Hermitian and the symmetry (23) then becomes χ = −iPT .

In summary, in quantum mechanics, the coupling of the spin– 1
2 particle to a

constant magnetic field can either be described by the self-adjoint and T –invariant
operator H2 (and the standard scalar product of C2) or by the non-Hermitian
operator H1 which is quasi–Hermitian with respect to the metric (20) (this metric
depending on the parameter ω which defines the Hamiltonian).

5.3 Example of operators on L2(R) with a discrete spectrum

Consider the particular class of non-Hermitian Hamiltonians

H = −∂2
x + βx2 + i(αx3 + γx) , with α, β, γ ∈ R , α 6= 0 , αγ ≥ 0 , (24)

as acting on smooth functions which tend to zero exponentially as |x| → ∞. The
spectrum of H is purely discrete and consists of an infinite number of simple eigen-
values. Quite remarkably, all of these eigenvalues are real positive numbers (as
proven in reference [22] following an earlier conjecture of Bessis and Zinn–Justin
which has been supported by numerical calculations [2]).

The Hamiltonian (24) is PT –symmetric. It is also PT –symmetric if α > 0
and γ < 0, but in this case non-real eigenvalues appear [22]. This illustrates the
fact that the mere presence of PT –invariance does not ensure the reality of the
spectrum for non-Hermitian Hamiltonians [3].

A special case of the family of Hamiltonians (24) is the harmonic oscillator with
an imaginary cubic potential:

Hα = −∂2
x + ω2x2 + iαx3 , (ω > 0 , α ∈ R− {0}) . (25)

This Hamiltonian (acting on smooth functions with compact support) is an operator
with compact resolvent [19]. This accounts for the discreteness of the spectrum (see
appendix), but not for its reality. Since the eigenfunctions of Hα are not known,
one cannot apply the given theorem concerning quasi–Hermitian operators. One
readily verifies that Hα is pseudo–Hermitian with respect to the metric operator
η = P (which is not strictly positive).

5.4 Example of operators on L2(R) with a continuous spectrum

Consider the Hamiltonian

H = −∂2
x + V , with V (x) = aeix (a ∈ C) (26)

and a dense domain of definition for H (given by an appropriate Sobolev subspace
of L2(R)). Thus, we have a potential which is complex–valued, bounded, continuous
and periodic with period 2π. More generally, one can consider

V (x) =

∞∑

n=1

aneinx with complex coefficients a1, a2, . . . satisfying

∞∑

n=1

|an| <∞ .

(27)
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A remarkable result proven by Gasymov in 1980 [23] is that the spectrum of the
Hamiltonian (26) involving the potential V (x) = aeix (or more generally the po-
tential (27)) is given by the real half–line [0,∞[ (see also reference [24] for an
alternative and elementary proof). Hence, for V 6= 0 we have a non-Hermitian
Hamiltonian with a real, non-negative, purely continuous spectrum. It is worth
noting that this spectrum coincides with the spectrum of the self-adjoint Hamilto-
nian which describes a free particle (V = 0) and that there exists a whole family of
complex–valued potentials yielding the same spectrum. If one restricts the study of
the given 2π–periodic potentials to the basic interval [0, 2π] and imposes Dirichlet
or Neumann boundary conditions, the spectrum of the Hamiltonian becomes purely
discrete [25].

5.5 Factorization and isospectrality of pseudo−Hermitian operators

As is well known, an operator H which is self-adjoint and positive can be factorized
according to H = L†L, where L is a linear operator. By replacing L† by L] (where
the operation ] is defined using a metric operator that is not necessarily strictly
positive), the given factorization can be generalized to operators H which are only
pseudo–Hermitian and not necessarily positive. In particular, it then applies to
generic self-adjoint operators. For more details concerning the following results,
see reference [6].

Theorem 5.3 (Factorization of pseudo−Hermitian operators) Suppose the
operator H is pseudo–Hermitian and diagonalizable. Then, there exists a linear op-
erator L on H (whose pseudo–adjoint L] ≡ η−1

1 L†η2 is defined in terms of a pair
of metrics η1, η2 on H with respect to which H is pseudo–Hermitian) such that

H = L]L . (28)

Example:

The Hamiltonian H1 introduced in equation (19) is quasi–Hermitian, because
it is pseudo–Hermitian with respect to the strictly positive metric (20). It is also
pseudo–Hermitian with respect to the following metric (see the comments made in
the last footnote)

η′ = −|φ1〉〈φ1| + |φ2〉〈φ2| =
1

4ω2

[
1 − ω2 iω−1(1 + ω2)

−iω−1(1 + ω2) −1 + ω−2

]
,

which is not positive (e.g. 〈ψ1, η
′ψ1〉 = −1) and whose inverse is given by (η′)−1 =

−|ψ1〉〈ψ1| + |ψ2〉〈ψ2|. The operator H1 (which is neither Hermitian nor positive)
decomposes as

H1 = L
]
1L1 with




L1 =

√
ω

(
|ψ1〉〈φ1| + |ψ2〉〈φ2|

)
=

√
ω 1l

L
]
1 ≡ (η′)−1L

†
1η =

√
ω

(
−|ψ1〉〈φ1| + |ψ2〉〈φ2|

)
=

1√
ω
H1 .

Since L1 ∝ 1l, the operator H1 can also be written as H1 = L1L
]
1.
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The previous theorem is a corollary of the following result.
Theorem 5.4 (Characterization of isospectrality for pseudo−Hermitian
operators) Consider two operators H1 and H2 acting on Hilbert spaces H1 and
H2, respectively. Suppose H1 and H2 are pseudo–Hermitian and diagonalizable.
Then the operators H1 and H2 are isospectral (except possibly for the eigenvalue
zero) and have the same degeneracy structure for the non-vanishing eigenvalues if
and only if there exists a linear operator L : H1 → H2 and metrics ηi : Hi → Hi

(for i ∈ {1, 2}) such that

H1 = L]L and H2 = LL] , (29)

where L] ≡ η−1
1 L†η2.

Note that the operators H1 and H2 as given by the expressions (29) are pseudo–
Hermitian with respect to the metrics η1 and η2, respectively. Moreover, they are
related by the intertwining relation

LH1 = H2L (30)

and its pseudo–adjoint, L]H2 = H1L
].

Example:

Consider the pair of HamiltoniansH1, H2 introduced in equations (19) and (21),
respectively. Since the operatorH2 is Hermitian, it is quasi–Hermitian with respect
to the metric η2 = 1l. Moreover, as a diagonal matrix, it admits the canonical basis
of C2 as biorthogonal basis of eigenvectors associated to its eigenvalues E1 = −ω
and E2 = ω:

|ψ(2)
1 〉 = |φ(2)

1 〉 =

[
0
1

]
, |ψ(2)

2 〉 = |φ(2)
2 〉 =

[
1
0

]
.

The operator H1 is quasi–Hermitian with respect to the metric η1 = η introduced
in equation (20). We now have (29) with

L =
√
ω

(
|ψ(2)

1 〉〈φ1| + |ψ(2)
2 〉〈φ2|

)
=

√
ω

2

[
ω−1 iω−2

i ω−1

]
, (31)

L] ≡ η−1
1 L†η2 =

√
ω

(
−|ψ1〉〈ψ(2)

1 | + |ψ2〉〈ψ(2)
2 |

)
=

√
ω

[
ω i

−iω2 −ω

]
.

6 Pseudo−supersymmetry

From the previous discussion, it follows that standard supersymmetric quantum
mechanics (SUSYQM) can be generalized by replacing † by ] and, in particular, by
considering pseudo–Hermitian operators rather than self-adjoint ones [3, 6]. Thus,
the formulation and study of SUSYQM as presented for instance in reference [26]
can immediately be transcribed. Here, we only spell out the basic definition and a
simple example [6].
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Definition: Let (H, H) be a pseudo–Hermitian quantum mechanical system
with a given metric η. This system is called pseudo−supersymmetric if
there exists a bounded self-adjoint operator K (called involution) and a fi-
nite number of η–pseudo–Hermitian operators Q1, . . . , Qn (called real pseu-

do−supercharges), all of which operators act on H and satisfy K2 = 1l,
[K, η] = 0 and

{K,Qi} = 0 for i ∈ {1, . . . , n} ,
{Qi, Qj} = 2δijH for i, j ∈ {1, . . . , n} .

(32)

As in standard SUSYQM [26], the involutionK induces a direct sum decomposition
of the Hilbert space H:

H = Hb ⊕Hf with

{
Hb = {ϕ ∈ H | Kϕ = +ϕ} ,
Hf = {ϕ ∈ H | Kϕ = −ϕ} . (33)

The vectors belonging to Hb and Hf are called, respectively, bosonic (or even) and
fermionic (or odd) vectors.

It is convenient to introduce a matrix notation for the vectors ϕ belonging to

the direct sum (33): ϕ =

[
ϕb

ϕf

]
. With this notation for the vectors, the operator

K reads as

K =

[
1lb 0
0 −1lf

]
, (34)

where 1lb denotes the restriction of the identity operator to the subspace Hb of H,
and analogously for 1lf . Since the metric operator η commutes with the involution,
it has the diagonal format

η =

[
η+ 0
0 η−

]
,

where η+ : Hb → Hb and η− : Hf → Hf are operators which are everywhere
defined, bounded, Hermitian and invertible. The supercharges Qi have the form

Qi =

[
0 A

]
i

Ai 0

]
, (35)

where Ai is a linear operator and A
]
i ≡ η−1

+ A
†
iη− represents the restriction of the

operation ] to operators mapping Hb to Hf . The resulting Hamiltonian is given by

H ≡
[
H+ 0
0 H−

]
=

[
A

]
1A1 0

0 A1A
]
1

]
= . . . =

[
A]

nAn 0
0 AnA

]
n

]
, (36)

where A1, . . . , An further satisfy

A
]
iAj +A

]
jAi = 0

AiA
]
j +AjA

]
i = 0

}
for i 6= j . (37)
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The pseudo−superpartner Hamiltonians H+ and H− are pseudo–Hermitian
with respect to the metrics η+ and η−, respectively.

According to theorem 3.3, the partner operators H+ and H− are isospectral
(except possibly for the eigenvalue zero). However, by contrast to ordinary super-
symmetry (i.e. self-adjoint Hamiltonians), the energy spectrum is not necessarily
positive in the case of pseudo–supersymmetry. Indeed,

〈ϕ,Hϕ〉 = 〈ϕ,Q2
iϕ〉 = 〈Q†

iϕ,Qiϕ〉

and since Qi is a priori not self-adjoint, one cannot conclude that the operator H
is positive.

Example:

If we consider A1 = L where L is the operator defined in equation (31), the
pseudo–superpartner Hamiltonians are given by expressions (19) and (21):

H+ ≡ L]L = H1 , H− ≡ LL] = H2 .

They are completely isospectral, but not positive.

If n is even, say n = 2m, we can combine the real supercharges Q1, . . . , Qn into
complex supercharges q1, . . . , qm given by operators which are not pseudo–
Hermitian:

qi =
1√
2

(Q2i−1 + iQ2i) for i ∈ {1, . . . ,m} .

The cases n = 2 and n = 1 are equivalent by virtue of the relation Q2 = ±iKQ1

(see reference [26]), and the associated complex supercharge q ≡ 1√
2

(Q1 + iQ2)

reads as

q =
1√
2

[
0 A]

0 0

]
or q =

1√
2

[
0 0
A 0

]
,

where A is a generic linear operator. The latter can eventually be decomposed into
its real and imaginary pseudo–Hermitian parts:

A = a1 + ia2 , with

{
a1 = 1

2 (A+A]) , a
]
1 = a1 ,

a2 = − i
2 (A−A]) , a

]
2 = a2 .

(38)

7 Concluding comments

The formalism of diagonalizable pseudo–Hermitian operators is certainly well
adapted to the investigation of the spectrum of non-Hermitian Hamiltonians act-
ing on a Hilbert space of finite dimension. Although the basic definitions and
general results can be formulated for Hilbert spaces of infinite dimension, their
practical value for concrete examples seems to be limited as long as the basic prop-
erties cannot be re-expressed in terms of simple criteria which can be checked in a
straightforward way (very much like von Neumann’s theory of deficiency indices for
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studying the self-adjointness of Hermitian operators). We note that some criteria
for the existence or for the non-existence of complex eigenvalues of non-Hermitian
Hamiltonians which admit a particular linear symmetry have quite recently been
put forward [27].

Whatever the physical reality of non-Hermitian Hamiltonians and whatever their
relevance for quantum mechanics or quantum field theory, there is no doubt that
the raised questions are natural, puzzling and challenging.

Appendix: Operators on an infinite dimensional Hilbert space

In the following, we gather some general results concerning operators with a
discrete spectrum and concerning spectral decompositions of operators. These facts
should prove useful for investigating to which extent the results of subsection 4.1
can be generalized to an infinite dimensional Hilbert space.

For a closed operator H , the spectra of H and H† related by complex conjuga-
tion [14]. In particular, the complex conjugate of an isolated eigenvalue En with
finite multiplicity of the operator H is an eigenvalue of H† with the same algebraic
and geometric multiplicities.

The largest class of bounded operators which behave like matrices representing
operators on a finite dimensional Hilbert space are the so-called compact or com-
pletely continuous operators [28]. By definition, an operator H on the Hilbert
space H is compact if the image {Hϕn}n∈N of any bounded sequence {ϕn}n∈N in
H contains a convergent subsequence. These operators are necessarily bounded and
they admit the canonical decomposition (12), e.g. see reference [11]. In fact, in the
case of an infinite dimensional Hilbert space, the spectrum of a compact operator
consists of the point 0 and at most countable many nonzero eigenvalues of finite
multiplicity (with the only possible accumulation point at zero).

For a bounded or unbounded self-adjoint operator, one has a spectral decom-
position of the form (13) involving real spectral values and involving an integral if
the spectrum of the operator contains a continuous part.

Just like the self-adjoint operators, the normal ones only have point and con-
tinuous spectra, but no residual spectrum. They admit a spectral decomposition
which is quite analogous to the one of self-adjoint operators, the only difference
being that the spectral values and the spectral measure are complex [29, 30]. For
normal operators which are compact, one recovers relation (13) involving an infinite
sum. A normal operator admitting a real spectrum is necessarily self-adjoint [30].

A class of unbounded operators which have spectra that are analogous to the
spectra of operators on a finite dimensional space is provided by the operators with
compact resolvent [14, 31]. By definition, a closed Hilbert space operator H is said
to be an operator with compact resolvent if the associated resolvent operator
RH(E) = (H − E1l)−1 exists and is compact for some value E ∈ C (and thereby
for all E ∈ C). The spectrum of such an operator consists entirely of eigenvalues
En of finite multiplicity, accumulating only at ∞ in the E–plane (i.e. a purely
discrete spectrum). On an infinite dimensional Hilbert space, an operator with
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compact resolvent is necessarily unbounded. (Actually, many differential operators
appearing in physics, in particular in connection with classical boundary problems,
are of this type.) For a non-self-adjoint operator with compact resolvent, a complete
set of eigenvectors can be obtained if the following two conditions are satisfied [31].
First, the operator H has to have certain further properties, e.g. its eigenvalues En

become more and more widely separated as n→ ∞, or its eigenvalues lie near the
real axis so that H resembles a self-adjoint operator, whose eigenvalues are real.
Second, one has to include higher order eigenvectors corresponding to the Jordan
blocks for non-diagonalizable matrices.

Finally, we note that a typical non-Hermitian Schrödinger operator (acting on
L2(Rn)) is given by H = 1

2m
~p 2 + V (~x) where the complex–valued potential V ≡

V0 + iV1 is locally integrable on Rn. If

V0(~x) ≥ c > 0 and |V1(~x)| ≤ q + bV0(~x) (q ≥ 0 , b ≥ 0) ,

a natural domain of definition can be given for the operator H . If, in addition,
V0(~x) tends infinity as |~x| goes to infinity, the spectrum of H is discrete — see §20
of reference [32] and references given therein for further discussion and in particular
for some results concerning the completeness of systems of generalized eigenvectors.
We only mention that various completeness criteria exist for non-self-adjoint
operators that are close to self-adjoint ones [32, 33] and thereby fit into the
framework of perturbation theory [19].
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