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We report on the existence of symmetry plane–groups for quasiperiodic point-sets
named beta–lattices. Like lattices are vector superpositions of integers, beta–lattices are
vector superpositions of beta–integers. When β > 1 is a quadratic Pisot–Vijayaraghavan
(PV) algebraic unit, the set of beta–integers can be equipped with an abelian group struc-
ture and an internal multiplicative law. When β = (1+

√
5)/2, 1+

√
2 and 2+

√
3, we show

that these arithmetic and algebraic structures lead to freely generated symmetry plane–
groups for beta–lattices. These plane–groups are based on repetitions of discrete adapted
rotations and translations we shall refer to as “beta–rotations” and “beta–translations”.
Hence beta–lattices, endowed with beta–rotations and beta–translations, can be viewed
like lattices. We also show that, at large distances, beta–lattices and their symmetries
behave asymptotically like lattices and lattice symmetries respectively.
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1 Introduction: Lattices versus beta−lattices

After the discovery of modulated phases and of quasicrystals, Crystallography
has been divided in two categories: periodic Crystallography, and aperiodic Crys-
tallography [1]. Let us recall here the essential of the former.

– A crystallographic group in R
d, or a space–group in R

d, is a discrete group of
isometries whose maximal translation subgroup is of rank d, hence isomorphic
to Z

d.

– A periodic crystal is the orbit under the action of a crystallographic group of
a finite number of points of R

d.

As an example, let us just consider the familiar square lattice of Figure 1 math-
ematically described by

Λ = Z + Zeiπ/2. (1)
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Fig. 1. Elementary square lattice.

This set presents a 4–fold rotational symmetry. Its symmetry space–group G is the
semi–direct product of the translation–group of Λ by its rotation–group,

G = Λ o {1,−1, eiπ/2, e−iπ/2} . (2)

The internal law is given by:

(λ, R)(λ′, R′) = (λ + Rλ′, RR′) , (3)

with λ, λ′ ∈ Λ and R, R′ ∈ {1,−1, eiπ/2, e−iπ/2}.
Aperiodicity of quasicrystals implies the absence of such space–group structure

based on the integers. On the other hand, experimentally observed quasicrystals
show self-similarity (e.g. in their diffraction pattern). Those observed self-similarity
factors are the quadratic Pisot–Vijayaraghavan (PV) units:

β = τ =
1 +

√
5

2
, β = δ = 1 +

√
2 , β = θ = 2 +

√
3 . (4)

Each such β determines a discrete set of the line, Zβ , the set of “beta–integers”,
aimed to play the role of integers. The first tau–integers around the origin are
displayed in Fig. 2.

u u u u u u

S L L S L

−τ −1 0 1 τ τ2

Fig. 2. First elements of Zτ (tau–integers) around the origin and associated tiling.

Beta–lattices are precisely aimed to replace lattices in the context of quasicrys-
tals. They are based on beta–integers, like lattices are based on integers:

Γ =

d∑

i=1

Zβei , (5)
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with (ei) a base of R
d.

In Fig. 3 we show the tau–lattice Γ1(τ) = Zτ + eiπ/5
Zτ in R

2.

Fig. 3. τ–lattice Γ1(τ ) = Zτ + eiπ/5
Zτ in R

2.

Beta–lattices are eligible frames in which one could think of the properties of
quasiperiodic point–sets and tilings, thus generalizing the notion of lattice in periodic
cases.

As a matter of fact, it has become like a paradigm that geometrical supports
of quasi–crystalline structures should be Delaunay sets obtained through “Cut-
and-Projection” from higher–dimensional lattices. We show in Fig. 4 a “Cut-and-
Project” 2D decagonal set and its embedding into the tau-lattice of Fig. 3 is shown
in Fig. 5.

Therefore, within the context of aperiodic Crystallography it is natural to con-
cede a place to what we can call beta–periodic Crystallography. Mimicking periodic
Crystallography, we propose the following definitions.

– A beta–crystallographic group in R
d is a discrete group of beta–isometries

(to be defined!) whose maximal translation subgroup is isomorphic to (Zβ)d.

– A beta–lattice or beta–periodic crystal is the orbit under the action of a
beta–crystallographic group of a finite number of points of R

d.

Of course, one could ask whether the domain of application of those definitions
is empty or not. The content of this article, mainly based on the recent publication
[2], yields specific examples illustrating this new concept of beta–crystallographic
group.
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Fig. 4. A decagonal Cut-and-Project set

2 Beta−integers in place of integers

Let us define now in a precise way the beta–integers and give their fundamental
arithmetic properties. More details and proofs are found in [3] and [4].

2.1 Counting with irrational basis

We first start with the notion of beta–expansions of real numbers [5, 6].

– Let β > 1.

– For a real number x ≥ 0 there exists k ∈ Z such that βk ≤ x < βk+1. Let
xk = bx/βkc (integer part) and rk = {x/βk} (fractional part).

– For i < k, put xi = bβri+1c, and ri = {βri+1}.

– The beta–expansion of a real number x ≥ 0 then reads as:

x = xkβk + xk−1β
k−1 + · · · + x1β + x0 +

x−1

β
+

x−2

β2
· · · ≡

≡ xkxk−1 · · ·x1x0 · x−1x−2 · · · . (6)

– The digits xi obtained by this greedy algorithm are integers from the set
A = {0, . . . , dβe − 1} (dβe: smallest integer larger than β).
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Fig. 5. Embedding of a Cut-and-Project set into the τ–lattice of Fig. 3.

Within this context, the set Zβ of beta–integers is made up of all real numbers
whose beta–expansions are polynomial,

Zβ = {x ∈ R | |x| = xk · · ·x0} =

= Z
+
β ∪ (−Z

+
β ) .

(7)

Set Zβ is self-similar and symmetrical with respect to the origin:

βZβ ⊂ Zβ , Zβ = −Zβ . (8)

If β is a PV number then Zβ is a Meyer set [3]. This means that there exists a
finite set F such that Zβ + Zβ ⊂ Zβ + F . This set F has to be characterized in
order to see to what extent beta–integers differ from ordinary integers with respect
to additive and multiplicative structures. This problem is solved for all quadratic
Pisot–Vijayaraghavan (PV) units and for a few higher–degree cases [3].

The quadratic PV units fall into the two following classes:

– Case 1: β is solution of X2 = aX + 1, a ≥ 1.

∗ Define the 2–letter substitution σβ by

σβ :

{
L 7→ LaS ,
S 7→ L .
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∗ The fixed point of the substitution, denoted by σ∞
β (L), is associated

with a tiling of the positive real line, made with two tiles L and S, with
respective lengths `(L) = 1, `(S) = β − a = 1/β.

∗ The nodes of this tiling are the positive beta–integers.

– Case 2: β is solution of X2 = aX − 1, a ≥ 3.

∗ Define the substitution σβ by

σβ :

{
L 7→ La−1S ,
S 7→ La−2S .

∗ The fixed point of the substitution is denoted by σ∞
β (L) and is the tiling

of the positive real line, made with two tiles L and S with respective
lengths `(L) = 1, `(S) = β − (a − 1) = 1 − 1/β.

∗ The nodes of this tiling are the positive beta–integers.

The additive and multiplicative properties of beta–integers with β a PV are then
given by:

– In Case 1 we have

Zβ + Zβ ⊂ Zβ +

{
0,±

(
1 − 1

β

)}
⊂ Zβ/β2, (9)

Zβ × Zβ ⊂ Zβ +

{
0,± 1

β
, . . . ,± a

β

}
⊂ Zβ/β2. (10)

For instance, for β = τ , 1 + 1 = 2 = τ + (1 − 1/τ), and (τ 2 + 1)(τ2 + 1) =
τ5 + τ2 − 1/τ .

– In Case 2 we have

Zβ + Zβ ⊂ Zβ +

{
0,± 1

β

}
≡ Z̃β , (11)

Z
+
β + Z

+
β ⊂ Z

+
β /β, (12)

Zβ × Zβ ⊂ Zβ +

{
0,± 1

β
, . . . ,±a− 1

β

}
⊂ Zβ/β . (13)

(Z̃β : set of “decorated” beta–integers)

For instance, for β = θ, 2 + 2 = θ + 1/θ = 2 × 2.

2.2 Beta−integers as an additive group [3, 4]

Let bm and bn be the mth and nth beta–integers. Beta–addition is the internal
additive law on the set of beta–integers

bm ⊕ bn = bm+n . (14)

We then list some remarkable consequences of this definition.
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– Zβ is an abelian group for ⊕.

– Beta–addition is compatible with addition if β is a quadratic PV unit: for
all (m, n) ∈ Z

2, bm + bn ∈ Zβ implies bm + bn = bm ⊕ bn.

– beta–addition has the following minimal distortion property with respect to
addition: for all (bm, bn) ∈ Z

2
β with β a quadratic PV unit,

bm + bn − (bm ⊕ bn) ∈






{
0,±

(
1 − 1

β

)}
in Case 1,

{
0,± 1

β

}
in Case 2 .

(15)

– For instance, if β = τ , then 1⊕ 1 = τ and 2− τ = 1− τ−1, and if β = θ, then
2 ⊕ 2 = θ and 4 − θ = θ−1.

2.3 Quasi−multiplication on beta−integers [4]

We could try to play the same game with multiplication by defining

bm“ × ”bn
def
= bmn , (16)

for all (bm, bn) ∈ Z
2
β .

Actually we follow the wrong way in choosing (16) because it is not compatible
with multiplication in R. For instance, for β = τ , b2 × b2 = τ × τ = τ2 = b3 6= b4.

So we define the quasi–multiplication

bm ⊗ bn =

{
b(mn−aρS(m)ρS(n)) in Case 1,

b(mn−ρS(m)ρS(n)) in Case 2,

where, for n ≥ 0, ρS(n) denotes the number of tiles S between b0 = 0 and bn.

ρS(n) =
1

1 − 1/β
(n − bn) , Case 1 ,

ρS(n) = β(n − bn) , Case 2

for n < 0, ρS(n) = −ρS(−n).
Let us list the properties of this quasi–multiplication

– Quasi–multiplication is compatible with multiplication of real numbers if β
is a quadratic PV unit.

– Quasi–multiplication has minimal distortion property with respect to multi-
plication: for all (bm, bn) ∈ Z

2
β with β quadratic PV unit,

bmbn − (bm ⊗ bn) ∈





{
(0,±1, . . . ,±a)

(
1 − 1

β

)}
, Case 1,

{
(0, 1, . . . , a − 1)

sgn(bmbn)

β

}
, Case 2.

7



Jean Pierre Gazeau et al.

3 Beta−lattices in the plane

It is well known that the condition 2 cos(2π/N) ∈ Z, i.e. N = 1, 2, 3, 4 and
6, characterizes N–fold Bravais lattices in R

2 (and in R
3). Now, what can we do

when N is quasicrystallographic i.e. N = 5, 10, 8 and 12, respectively associated
with one of the cyclotomic Pisot units τ = 2 cos(2π/10), δ = 1 + 2 cos(2π/8) and
θ = 2 + 2 cos(2π/12) ? Possible answers are provided by beta–lattices in the plane.
We recall that they are point sets of the form

Γq(β) = Zβ + Zβζq , (17)

with ζ = ei2π/N , for 1 ≤ q ≤ N − 1. Examples of beta–lattices for β = τ , δ, and θ
are shown in Figs. 6, 7, and 8. Note the following important features.

– They are lattices for the law ⊕: Γq(β) ⊕ Γq(β) = Γq(β).

– They are self-similar: βΓq(β) ⊂ Γq(β).

– They satisfy a more general “quasi” self-similarity: Zβ ⊗ Γ ⊂ Γ.

– However, they are not rotationally invariant.

– A large class of interesting aperiodic sets can be embedded in these beta–
lattices Γq(β) or in some “decorated” version of them.

Fig. 6. Tau–lattice in the plane: Γ1(τ ) = Zτ + Zτζ, ζ = eiπ/5. The particular point
z2,3 = b2 + b3ζ ≡ (2, 3) is indicated in the figure
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Fig. 7. The δ–lattice Γ1(δ) with points, and its trivial tiling obtained by joining points
along the horizontal axis, and along the direction defined by ζ.

Fig. 8. The decorated θ–lattice eΓ1(θ) with points, and its trivial tiling obtained by joining
points along the horizontal axis, and along the direction defined by ζ.

4 Rotational and translational properties of the beta−lattices Γ1(β)

4.1 Rotational properties

Beta–lattices are not rotationally invariant. The action of rotations on Γ1(β) (the
rotational properties of Γq(β) can always be reexpressed in terms of the rotational
properties of Γ1(β)).
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– When β = τ = ζ + ζ̄, ζ = e2πi/10,

ζqΓ1(τ) ⊂ Γ1(τ) +
({

0,±(1− 1
τ )

}
+

{
0,±(1 − 1

τ )
}
ζ
)
⊂

⊂ Γ1(τ)

τ2
.

– When β = δ = ζ + ζ̄ + 1, ζ = e2πi/8,

ζqΓ1(δ) ⊂ Γ1(δ) +
({

0,±(1− 1
δ ),±2(1 − 1

δ )
}

+

+
{
0,±(1− 1

δ ),±2(1− 1
δ )

}
ζ
)
⊂ Γ1(δ)

δ3
.

– When β = θ = ζ + ζ̄ + 2, ζ = e2πi/12,

ζqΓ1(θ) ⊂ Γ1(θ) +
({

0,±1

θ
,± 2

θ

}
+

{
0,± 1

θ ,± 2
θ

}
ζ
)
⊂

⊂ ˜̃
Γ1(θ) ≡ ˜̃

Zθ +
˜̃
Zθζ ,

where
˜̃
Zθ = Zθ +

{
0,±1/θ,±2/θ

}
.

4.2 Translational properties

– In Case 1:
Γq(β) + Γq(β) ⊂ Γq(β)/β2 ,

– In Case 2:
Γq(β) + Γq(β) ⊂ Γ̃q(β) .

5 A plane−group for beta−lattices

5.1 A point group first

Since beta–lattices of the type Γq(β) are not rotationally either translationally
invariant, we shall enforce invariance by replacing the usual additive and multi-
plicative laws by the beta–addition and the quasi–multiplication. Note that since
the quasi–multiplication is not distributive with respect to beta–addition, we find
several candidates for internal rotational operators on Γ1(β). The choice for the
beta–rotations presented here is driven by compatibility property. Other internal
rotational operator are not compatible with Euclidean rotations !

Before stating the main result concerning the existence of a symmetry point
group, let us describe in detail those necessary “modified” rotations.

– When β = τ , the following 10 operators rq , q = 0, 1, . . . , 9, leave Γ1(τ) invari-
ant:

rq � (bm + bnζ) = ηqbm 	 νqbn +
(
νqbm ⊕ (ηq + τνq)bn

)
ζ . (18)
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where
q = 0 1 2 3 4

(ηq , νq) = (1, 0) (0, 1) (−1, τ) (−τ, τ) (−τ, 1)
ηq + νqτ = 1 τ τ 1 0

together with (ηq+5, νq+5) = (−ηq ,−νq).

– When β = δ, the following operators leave Γ1(δ) invariant:

r1 � (bm + bnζ) = −bn + bm+2n−2ρS(n)ζ ,

r2 � (bm + bnζ) = −bm+2n−2ρS(n) + b2m+n−2ρS(m)ζ ,

r3 � (bm + bnζ) = −b2m+n−2ρS(m) + bmζ .

– When β = θ, the following operators leave Γ1(θ) invariant:

r1 � (bm + bnζ) = −bn + bm+2n−ρS(n)ζ ,

r2 � (bm + bnζ) = −bm+2n−ρS(n) + b2m+2n−ρS(m)ζ ,

r3 � (bm + bnζ) = −b2m+2n−ρS(m) + b2m+2n−ρS(n)ζ ,

r4 � (bm + bnζ) = −b2m+2n−ρS(m) + b2m+n−ρS(n)ζ ,

r5 � (bm + bnζ) = −bn+2m−ρS(m) + bmζ .

For β = τ , δ or θ, let the composition rule of these operators on Γ1(β) be defined
by (rr′)�z = r�(r′�z), and denote by Id the identity and by ι the space inversion
ι � z = −z. Then:

– the composition rule (r, r′) → rr′ is associative and the following identities
hold: r0 = Id and rq+N/2 = ιrq = rqι for q = 0, 1, . . . , N/2 − 1, where N is
the symmetry order of β,

– those beta–rotations are compatible with rotations when β assumes one of the
specified values τ , δ and θ,

– for β = τ , δ and θ and for N = 10, 8 and 12 respectively, let <N = <N (β) de-
note the semi–group freely generated by all rq , q ∈ {0, 1, . . . , N − 1}. Among
all beta–rotations, only r0, r1, rN/2−1, rN/2+1, rN−1, ι have their inverse in
<N .

All these results lead to the following statement concerning the existence of
point group for the considered beta–lattices.

Theorem 1 [2] For β = τ , δ and θ, the group RN = RN (β), freely generated by
the four element set

{r0, ι, r1, rN/2−1} ,

is a symmetry group for the beta–lattice Γ1(β). It is called the symmetry point–
group of Γ1(β).
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5.2 Eventually a plane group for beta−lattices Γ1(β)

Combining translational properties of beta–lattices with the beta–rotations de-
scribed in the previous subsection allow us to enunciate our central result.

Theorem 2 [2] For β = τ , δ and θ, and for N = 10, 8 and 12 respectively, the
group SN = SN (β) freely generated by the five-element set {r0, ι, r1, rN/2−1, t1},
with t1(z) = 1 ⊕ z, is a symmetry group for the beta–lattice Γ1(β). This group is
the semi–direct product of Γ1(β) and RN

Sn = Γ1(β) o RN ,

with the composition rule

(b, R)(b′, R′) = (b ⊕ (R � b′), RR′) .

In the present context, SN is called the symmetry plane–group of Γ1(β).
The action of an element of SN on Γ1(β) is thus defined as

(b, R) � z = b ⊕ (R � z) = tb(R � z) ∈ Γ1(β) .

5.3 Tile transformations using internal operations on Γ1(τ)

In order to illustrate the beta–rotations, we consider again a tiling associated to
the simplest beta–lattice, namely Γ1(τ). This tiling is shown in Fig. 9. We display
in Fig. 10 the (deforming) action of the “beta–rotation” r1 on the four different
types of tiles appearing in Fig. 9.

6 Asymptotic properties

Let us end this article with some considerations on the behavior of beta–lattices
at large distances.

Let β be a quadratic PV unit number. Then the following asymptotic behaviour
of beta–integers holds true

bn ≈
|n|→∞

γn ,

bm ⊗ bn ≈
|m|,|n|→∞

γ2mn .

where

γ =






1 − 1

a

(
1 − 1

β

)2

=
(a + 2)β − a2 − a − 2

a
(Case 1) ,

1 − 1

β2
= a(β − a) + 2 (Case 2) ,

Hence, the multiplication ⊗ is asymptotically associative and distributive with
respect to the addition ⊕. In this sense we can say that Zβ is asymptotically a
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Fig. 9. The trivial tiling associated to Γ1(τ ) and its four tiles. From left to right: LL,
LS, SL, SS.

ring:

bm ⊗ (bn ⊕ bp) − (bm ⊗ bn) ⊕ (bm ⊗ bp) ≈ 0 ,

bm ⊗ (bn ⊗ bp) − (bm ⊗ bn) ⊗ bp ≈ 0

for |m|, |n|, |p|, |m ± n|, |m ± p| → ∞.

Consequently we compute the asymptotic behavior of rotational internal laws
of beta–lattices, as defined in the studied cases.

• When β = τ , we have for invertible operators

r1 � (bm + bnζ) ≈
|m|,|n|→∞

γ(−n + (m + τn)ζ) ,

r4 � (bm + bnζ) ≈
|m|,|n|→∞

γ(−τm − n − mζ) .
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Fig. 10. Rotation operator r1 applied to elementary tiles of Γ1(τ ): tiles are deformed in
order for the vertices to remain in Γ1(τ ). Arrows indicate the vertices of the new tile in

which are mapped the vertices of the original tile.

• When β = δ, we have for invertible operators

r1 � (bm + bnζ) ≈
|m|,|n|→∞

γ(−n + (m + (δ − 1)n)ζ) ,

r3 � (bm + bnζ) ≈
|m|,|n|→∞

γ(−(δ − 1)m − n + mζ) .

• When β = θ, we have for invertible operators

r1 � (bm + bnζ) ≈
|m|,|n|→∞

γ(−n + (m + (θ − 2)n)ζ) ,

r5 � (bm + bnζ) ≈
|m|,|n|→∞

γ(−(θ − 2)m − n + mζ) .

At this point one should be aware that these asymptotic beta–rotations are equiv-
alent to rotations for large |m| and |n|, and an easy computation shows that for
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zm,n ∈ Γ1(β)

ζzm,n − r1 � zm,n ≈
|m|,|n|→∞

0 ,

ζN/2−1zm,n − rN/2−1 � zm,n ≈
|m|,|n|→∞

0 ,

with N = 10, 8 and 12.

References

[1] International Union of Crystallography: Acta Cryst. A 48 (1992) 922.

[2] A. Elkharrat, Ch. Frougny, J.P. Gazeau and J.L. Verger-Gaugry: Theor. Comp. Sci.
319 (2004) 281.

[3] C. Burd́ık, Ch. Frougny, J.P. Gazeau and R. Krejcar: J. of Physics A: Math. Gen. 31
(1998) 6449.

[4] Ch. Frougny, J.P. Gazeau and R. Krejcar: Theor. Comp. Sci. 303 (2003) 491.
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