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1 Introduction

In the present contribution we report on the Scherk–Schwarz (SS) dimensional
reduction [1] on S1 of D = 6 ungauged supergravity theories with eight supercharges
[2]. The reduction gives supergravities in five dimensions with a flat gauge group.
Such flat gaugings appear in four dimensions in the context of both, SS [3, 4, 5]
and flux compactifications [6].

The Scherk–Schwarz mechanism relies on the presence of a global symmetry
group of the higher dimensional theory. The class of no-scale supergravities at
D = 5 that we obtain depend then on the global symmetry of the D = 6 theory
[7].

In the (2,0) (minimal) theories [7, 8, 9] there are three kinds of matter multiplets:
the vector multiplet which has no scalars, the tensor multiplet with 1 scalar and
the hypermultiplet with four scalars. If we have nT tensor multiplets and nH

hypermultiplets, the scalar manifold is a product

SO(1, nT )

SO(nT )
×MQ , (1)

where MQ is a quaternionic manifold of quaternionic dimension nH [10]. The SS
phase is, in general, a combination of isometries of both manifolds.

The graviton multiplet contains a self dual tensor field, while the tensors from
the tensor multiplets are anti-self dual. We denote the set of tensor fields as Br,
r = 0, . . . , nT , with B0 pertaining to the graviton multiplet.

When vector multiplets are present, the vectors (Ax, x = 1, . . . , nV ) couple to
the tensor fields and their interaction term is of the form [11, 12, 13, 14]

CrxyB
r ∧ F x ∧ F y , F x = dAx ,
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with Crxy = constant. This term is related by supersymmetry to the kinetic term
of the vectors

Crxyb
rF x ∧∗F y . (2)

The fields br, r = 0, . . . , nT satisfy the constraint

ηrsb
rbs = 1 ,

which defines the manifold SO(1, nT )/SO(nT ). The terms (2) explicitly break
the SO(1, nT ) symmetry, unless the vector fields Ax transform under some nV –
dimensional representation RV of SO(1, nT ) with the property that Sym(RV ⊗RV )
contains the vector representation. In that case, the constants Crxy can be chosen
as invariant couplings. This happens, for instance, if RV is a spinor representation
of SO(1, nT ). Remarkably, this choice leads after dimensional reduction on S1

to the real special geometries which are homogeneous (in particular, symmetric)
spaces [15, 16, 17, 18].

Under this assumption, the SS reduction produces a theory with a flat gauge
group of the form U(1) n RV , where the U(1) generator is in the Cartan subal-
gebra (CSA) of the maximal compact subgroup SO(nT ) of the global symmetry
SO(1, nT ). The U(1) group is gauged by the vector coming from the metric in
dimension six. The tensors are in a vector representation of SO(1, nT ), so they are
charged under U(1) (except for some singlets as B0).

We remark that in order to introduce a SS phase in the tensor–vector multiplet
sector it is actually sufficient that the constants Crxy preserve a U(1) subgroup of
SO(1, nT ), which is a much weaker assumption. The examples that we will consider
in this paper have the full SO(1, nT ) symmetry.

The generator of the group U(1) may also have a component on the isometries
of the quaternionic manifold [19]; in particular, it may have a component in the
CSA of the SU(2) R–symmetry, then breaking supersymmetry (notice that this
can happen even if hypermultiplets are not present, corresponding to a D = 5
Fayet–Iliopoulos term). The SS reduction leads to a positive semidefinite potential
also in this case. The D = 5 interpretation of the theory must correspond to a
gauging with the term VR = 0 (see Section 4 and Ref. [20]).

The report is organized as follows. In Sections 2, 3, 4 we discuss the dimensional
reduction in presence os SS phases, included the induced scalar potential and its
comparison with D = 5 gauged supergravity. In Section 5 we discuss the conditions
for uplifting (oxidation) of the D = 5 theory to a chiral theory in D = 6.

2 Generalized dimensional reduction

We give here the qualitative features of the SS reduction of a general (2,0)
theory from D = 6 to D = 5 and show how it produces an N = 2 theory in D = 5
with tensor, vector and hyper multiplets, and a flat gauge group.

Let us consider a D = 6 theory with nT tensor multiplets, nV vector multiplets
and nH hypermultiplets. These theories are anomalous unless the condition

nH − nV + 29 nT = 273 (3)
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is satisfied [21].
It was shown in Ref. [11] that when performing a standard dimensional reduc-

tion to D = 5 on an anomaly–free (2,0) theory, we obtain a particular class of
N = 2, D = 5 theories. After the reduction, the geometry of the hypermultiplets
(MQ) remains unchanged. The scalar manifold of the vector and tensor multi-
plets has a real special geometry [25]. Let MR be this manifold in D = 5 and
d = dimMR.

On general grounds, real–special geometry consists essentially on an embedding
of M in a manifold of dimension d + 1 through a cubic polynomial constraint

V = dIJKtI tJ tK = 1 , I, J, K = 1, . . . , d + 1 .

The metric induced by the embedding from the metric in the higher dimensional
manifold aIJ ,

aIJ = − 1
2 ∂I∂J lnV , gij = aIJ∂it

I∂jt
J
∣

∣

V=1
, i, j = 1, . . . , d . (4)

In the following, we will denote GIJ = aIJ |V=1. When the D = 5 theory comes
from a dimensional reduction from D = 6, d = nT +nV +1 (the extra scalar coming
from the metric), and the cubic polynomial takes the particular form

V = 3 (zηrsb
rbs + Crxy braxay) ; r = 0, 1, · · · , nT ; x = 1, · · · , nV . (5)

ηrs is the (1, nT ) Lorentzian metric related to the space SO(1, nT )/SO(nT ) (para-
metrized by br) in (1), z =

√
g55 = eσ is the Kaluza–Klein scalar and ax = Ax

6 are
the axions.

We now focus on the cases when SO(1, nT ) is a global symmetry. This demands
the coupling Crxy to be an invariant coupling in the sense explained in Section 1.
One could then introduce a SS phase in the CSA of SO(nT ). Some of the vector
and tensor multiplets are charged under this generator, so they acquire mass. In
the D = 5 interpretation the vectors gauge a non-abelian flat group, but their scalar
partners give no contribution to the scalar potential, in agreement with the known
results on D = 5 gauged supergravity [22, 23]. The gauging of flat groups in the
context of N = 2 supergravity has not been considered in previous classifications
[24]. These gaugings are always of no-scale type due to the particular structure of
the critical points [26].

Finally, we want to note that to uplift (oxidate [27, 28]) to D = 6 a five di-
mensional N = 2 supergravity a necessary condition is that the cubic polynomial
defining the real special geometry has the form (5). All the homogeneous spaces
with real special geometry fall in this category. These spaces have been classified
in Refs. [15, 16, 17, 18]; they were denoted as L(q, P, Ṗ ) in Ref. [18]. We ex-
plain here this notation. Let q = nT − 1 and let DnT

be the real dimension of
an irreducible representation of Spin(1, nT ). For nT = 1, 5 mod 8 there are two
inequivalent real or pseudoreal (quaternionic) representations. Let P and Ṗ denote
the number of copies of such representations (Ṗ = 0 for nT 6= 1, 5 mod 8). Then,
nV = (P + Ṗ )DnT

. The R–symmetry group of Spin(1, nT ) in the representation
(P, Ṗ ) is denoted by Sq(P, Ṗ ) (see Table 3 of Ref. [18]).
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When Ṗ = 0, the notation L(q, P ) = L(q, P, 0) is used. The symmetric spaces
[25] correspond to the particular cases L(1, 1), L(2, 1), L(4, 1), L(8, 1), L(−1, P )
and L(0, P ). We also have L(q, 0) = L(0, q). They are reported in Table 2. of Ref.
[18]. The examples of SS reductions reported in this paper will actually fall in this
class.

3 D = 5 massive tensor multiplets

The D = 5 theory obtained through an ordinary Kaluza–Klein dimensional
reduction contains nT + nV + 1 vector multiplets. This is because the (anti) self-
duality condition in D = 6

∂[µBr
νρ] = ± 1

3!
εµνρλτσ∂λBr|τσ , µ, ν = 1, . . . , 6 (6)

tells us that in D = 5 the two form Br
µν is dual to the vector Br

µ6 (µ, ν = 1, . . . 5).
We want now to perform a SS generalized dimensional reduction instead. Let

Mr
s = −M r

s be the SS phase in the CSA of the global symmetry SO(nT ) ⊂
SO(1, nT ). The form B0 (of the gravitymultiplet) is inert under SO(nT ), so in the
rest of this subsection the value r = 0 is excluded and r = 1, . . . nT . The D = 6
anti self-duality condition gives now

∂[µBr
νρ] =

1

3!
εµνρλτ6

(

∂6Br|λτ + 2∂λBr|τ6
)

=

=
1

3!
εµνρλτ

(

Mr
sB

s|λτ + F r|λτ
)

, µ, ν = 1, . . . , 5 , (7)

where F r
λτ = 2∂[λBr

τ ]6.

Equation (7) can be rewritten as a self-duality condition for a massive two–form
in five dimensions [29]. Assume that the Cartan element M is invertible; then we
can define

B̂r
µν = Br

µν + (M−1)r
sF

s
µν ,

so

∂[µB̂r
νρ] = Mr

s

1

3!
εµνρλτ B̂s|λτ ,

that is,
dB̂r = Mr

s
∗B̂s .

For nT even, an element M with non zero eigenvalues ±im` 6= 0 (` = 1, . . . , nT /2) is
invertible. Then we have nT /2 complex massive two–forms. For nT odd, the matrix
M has at least one zero-eigenvalue. The corresponding antisymmetric tensor Br0

is a gauge potential which can be dualized to a vector. If some other eigenvalue
m` is zero, the same argument applies and there will be a couple of tensors (or one
complex tensor) which can be dualized to vectors.

Summarizing, in the five dimensional theory there are 2n ≤ nT , massive tensor
multiplets (or n complex ones) and nT − 2n + 1 abelian vector multiplets, one of
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them formed with the vector which is dual (after reduction to D = 5) to the self
dual tensor present in the D = 6 graviton multiplet. This vector is a singlet of the
global symmetry group.

4 The induced scalar potential and its extrema

In this section we compute the scalar potential of the SS reduced theory.
The scalar potential comes from the kinetic term of the scalar fields [1]. The only

scalars at D = 6 are in the tensor and hyper multiplets, which parametrize the man-
ifold in (1). We denote by ϕi, i = 1, . . . , nT the coordinates on SO(1, nT )/SO(nT ),
and let

va = va
i ∂µϕi dxµ = va

µ dxµ , a = 1, . . . , nT

be the pull back to space time of the vielbein one form. Similarly, the quaternionic
manifold MQ [10, 30], with holonomy SU(2) × USp(2nH), has coordinates qu,
u = 1, . . . 4nH and vielbein

UαA = UαA
u ∂µqu dxµ = UαA

µ dxµ , α = 1, · · · , 2nH , A = 1, 2 .

There is still a scalar mode coming from the metric eσ =
√

g55.
For the scalar potential we obtain

V (σ, ϕ, q) = V SS
T + V SS

H = e−8σ/3
[

va
6 (ϕ)v6a(ϕ) + UαA

6 (q)UβB
6 (q)CαβεAB

]

, (8)

where Cαβ and εAB are the antisymmetric metrics.
We see that this potential is semipositive definite. The critical points occur at

va
6 (ϕ) = 0 and UαA

6 (q) = 0 , (9)

so V = 0 at the critical points, which are then Minkowski vacua. The scalar σ is
not fixed, so the theory is of no-scale type. Notice that (9) implies

va
6 (ϕ) = va

i M j
i ϕj = 0, , UαA

6 (q) = UαA
u Mu

v qv = 0 .

If the mass matrices have some vanishing eigenvalues, then this results in some
moduli of the theory, other than σ. For nT odd, since the tensor multiplet mass
matrix has always one vanishing eigenvalue, there are at least two massless scalars.
There are three massless vectors in this case.

The SS potential given in (8) should be compared to the most general gauging
of N = 2, D = 5 supergravity [22, 23, 32]

VD=5 = VT + VH + VR ; VT ≥ 0 ; VH ≥ 0 ,

where VT and VH are the contributions of tensor and hypermultiplets (separately
positive) and VR is the contribution from vector and gravity multiplets due to the
quaternionic Killing prepotential P X

I , X = 1, 2, 3 [30].
For a D = 5 gauging corresponding to a SS reduction, we then need VR = 0.
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The explicit form of VR is [23, 22, 32]

VR = −4tIJGIKGJLP X
K P X

L = − 4
3

(

1
3 (t−1)IJ + tI tJ

)

P X
I P X

J , (10)

where tIJ = dIJKtK and GIJ = aIJ |V=1 = − 1
3 (t−1)IJ + tI tJ (see (4)).

Even when there are no hypermultiplets, this term is not necessarily zero, be-
cause one can take a constant prepotential, P X0

I = gI = constant (the rest zero.).
gI is the N = 2 Fayet–Iliopoulos parameter, and we retrieve the particular form of
VR found in Ref. [20].

Equation (10) can also be written as

VR = −4dIJKtIP
X
J P X

K , (11)

where indices are lowered and raised with the metric GIJ . For symmetric spaces
one has dIJK = dIJK [20].

From the point of view of the SS reduction, the constant prepotential corre-
sponds to an SU(2) phase, which in absence of hypermultiplets only gives masses
to the fermions. Therefore we must have VR = 0 for any value of tI in the reduced
theory. Moreover, since this depends only on the real special geometry (see (11)),
this conclusion also holds in presence of hypermultiplets.

In the SS reduction the vector gauging the U(1) ⊂ SU(2) is the partner of the
scalar z = eσ, so P X

z 6= 0 and the rest are zero. VR = 0 then requires

(t−1)zz = −3(tz)2 ⇐⇒ Gzz = 2(tz)2 . (12)

Let us consider some particular examples of theories with VR = 0. Setting
nV = 0, equation (5) becomes

V = 3zηrsb
rbs

and one can check that (12) holds [20]. It also holds for the spaces L(0, P ). More
generally, it holds for all symmetric spaces with real special geometry because of
the relations dIJK = dIJK and dzzI = 0. They readily imply VR = 0.

We have checked that there are in fact counterexamples to the condition VR = 0
among the theories classified in [17, 18] which are all of the form (5), so VR = 0
is a further restriction satisfied by the D = 5 real geometries that can be uplifted
(oxidated) to D = 6. It would be interesting to know, in the general case, what the
conditions on the coefficients Cr

xy = ηrsCsxy in (5) are to have VR = 0.
We will see in the next subsection that the possible resolution of this puzzle lies

in the cancellation of anomalies of the six dimensional theory.

5 Uplifting N = 2 at D = 5 to (2,0) D = 6 theory

In D = 6, (2, 0) chiral theories it was found that there is, in general, a clash
between the gauge invariance of the two–forms and the gauge invariance of the 1
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forms (vector fields). For generic couplings Crxy, in the abelian case, the nV U(1)
currents Jx are not conserved but satisfy the equation [14, 11]

d∗Jx = ηrsC
r
xyCs

zwF y ∧ F z ∧ F w . (13)

This violation of the gauge invariance implies also a violation of supersymmetry
because the theory is formulated in the Wess–Zumino gauge and the supersymmetry
algebra closes only up to gauge transformations [11]. The current is conserved if
the constants Cr

xy satisfy the condition

ηrsC
r
x(yC

s
zw) = 0 . (14)

This condition is equivalent to the seemingly stronger condition

ηrsC
r
(xyCs

zw) = 0 (15)

because Cr
xy = Cr

yx. This can also be seen from the fact that the anomaly polyno-
mial [11]

A ∼ ηrsC
r
xyCs

zwF x ∧ F y ∧ F z ∧ F w

vanishes if (15) holds. It is interesting to observe in this respect that among the
homogeneous spaces in Ref. [17, 18] only the symmetric spaces, with the exception
of the family L(−1, P ), P > 0, satisfy this condition [17, 18].

Also, we must note that the symmetric spaces satisfying (15) do have in fact
VR = 0, while for the homogeneous, non symmetric cases there are counterexamples.

Condition (14) is only required for a D = 6 ungauged supergravity. If the the-
ory in D = 6 is already gauged, the terms in the right hand side of (13) may be
compensated by (one loop) quantum anomalies through a Green–Schwarz mecha-
nism, namely, the Lagrangian becomes a Wess–Zumino term [9, 12, 14]. The D = 6
potential is semipositive definite and simply given by [8]

VD=6 ' √
gP X

x P X
y (C−1)xy , where Cxy = Crxybr .

The D = 6 supersymmetric vacua occur at P X
x = 0. An hypermultiplet can be

“eaten” by a vector multiplet, making it massive. Note that there are not BPS
particle multiplets in D = 6. The additional contribution to the potential in D = 5
is √

g5 e−2σ/3P X
x P X

y (C−1)xy .

Since in this case VR needs not to vanish, one may find new vacua in the SS
reduction.

As an illustration of spaces satisfying (15), we give the spectrum of tensor,
vector and hypermultiplets for the exceptional symmetric spaces in Table 1. Note
that the values of nT and nV are given by the uplifting (oxidation) procedure of
Ref. [31, 28]. These spaces are contained in the classification of Refs. [17, 18] and
consequently have a cubic polynomial of the form (5). The number nH instead
is fixed by the gravitational anomaly cancellation (3). For generic SS phases, the
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Table 1. Exceptional symmetric spaces

L(q, P ) L(1, 1) L(2, 1) L(4, 1) L(8, 1)

(nT , nV , nH) (2,2,217) (3,4,190) (5,8,136) (9,16,28)

L(1, 1) model has one massless scalar and two massless vectors. All the other
exceptional models have two massless scalars and three massless vectors.

There are no other solutions in the series L(q, P, Ṗ ). It is obvious that for non
homogeneous spaces the constants Cr

xy are rather arbitrary and there may be much
more solutions to the uplifting condition.

However, in order to have a SS phase in the tensor and vector multiplet sector,
non homogeneous spaces should have at least a residual U(1) isometry.
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