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Exact isotropic and anisotropic plasma equilibria are constructed as solutions to non-
linear 3D Magnetohydrodynamic (MHD) and anisotropic Chew–Goldberger–Low (CGL)
plasma equilibrium equations, using the representation of equilibrium equations in coor-
dinates connected with magnetic surfaces.

Infinite–dimensional symmetries of MHD and CGL equilibrium equations used in this
construction are discussed from the prospective of Lie group analysis.

The infinite–parameter set of transformations between MHD and CGL equilibrium
systems is employed to produce families of anisotropic (CGL) equilibria from particular
isotropic (MHD) ones.

Solutions produced with the presented method are generally fully 3D solutions with
no geometrical symmetries; they have different topologies and physical properties, and
can serve as models of astrophysical phenomena.
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1 Introduction

I. Continuum plasma models. Description of plasma as a continuous medium is
widely used in applications to controlled thermonuclear fusion, astrophysics (star
formation, solar activity, earth magnetosphere, etc.), and terrestrial applications
(laboratory and industrial plasmas.) Appropriate references are [1] – [14].

Two most popular continuum plasma models are the isotropic Magnetohydro-
dynamics (MHD) equations [15] and the anisotropic Chew–Goldberger–Low (CGL)
equations [16]. These systems were obtained from Boltzmann and Maxwell equa-
tions under different assumptions [16, 17, 18].

In particular, the isotropic MHD system is valid when the mean free path of
plasma particles is much less than the typical scale of the problem, so that the
picture is maintained nearly isotropic via frequent collisions. The system has the
form

∂ρ

∂t
+ div ρV = 0 , (1)

ρ
∂V

∂t
= ρV × curlV − 1

µ
B× curlB− gradP − ρ grad

V2

2
+ µ14V , (2)

∂B

∂t
= curl(V ×B) + η4B , η =

1

σµ
, (3)
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divB = 0 , J =
1

µ
curlB . (4)

Here V is plasma velocity, B is magnetic field, J, electric current density, ρ, plasma
density, µ, magnetic permeability of free space, σ, conductivity coefficient, µ1,
plasma viscosity coefficient; η, resistivity coefficient. The usual scalar Laplace
operator is denoted by 4. The MHD system must be closed with an additional
equation of state.

For a vanishing magnetic field, B=0, the above system is reduced to Navier–
Stokes equations of motion of a viscous fluid.

On the other hand, when the mean free path for particle collisions is long com-
pared to Larmor radius (for instance, in strongly magnetized or rarified plasmas),
the CGL model should be used. In this approach, the density function in Boltzmann
equation is expanded in the powers of the Larmor radius [16].

The resulting system is anisotropic, because it has a distinguished direction —
the direction of the magnetic field B:

∂ρ

∂t
+ div ρV = 0 , (5)

ρ
∂V

∂t
= ρV × curlV − 1

µ
B× curlB− divP − ρ grad

V2

2
+ µ14V , (6)

∂B

∂t
= curl(V ×B) + η4B , η =

1

σµ
, (7)

divB = 0 , J =
1

µ
curlB , (8)

Pij = p⊥δij + τBiBj , τ =
p‖ − p⊥

B2
, i, j = 1, 2, 3 . (9)

P is a 3× 3 pressure tensor with two independent components: the pressure along
the magnetic field p‖ and in the transverse direction p⊥. τ is the anisotropy factor.

For the CGL system to be closed, one needs to add to it two equations of state.

The Boltzmann equation used with other assumptions lets one develop different
plasma continuum models, for example, multi–fluid ones, where different kinds of
particles are looked at as independent fluids [18]. However the MHD and CGL
models have received most attention.

From now on we restrict ourselves to the case of nonviscous infinitely–conducting
plasmas: µ1 = η = 0. This approximation is natural in the case of large kinetic and
magnetic Reynolds numbers. Under this assumption, both MHD and CGL systems
have several remarkable analytical properties. In particular, one can name, for both
systems, the ”frozen-in magnetic field” property (Kelvin’s theorem), Lagrangian
and Hamiltonian formulation [19], and conservation of helicity [20].

II. Ideal plasma equilibrium models. In many applications, dynamic and
stationary equilibrium states of plasmas are of particular importance.
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This work continues a series of publications [6], [21], [22], [23] – [29], devoted to
the study of symmetries and exact solutions of equilibrium states of the isotropic
(MHD) the anisotropic (CGL) magnetohydrodynamics equations.

Ideal MHD equilibrium equations are obtained as a time–independent reduction
of the MHD system (1) – (4) in the case of infinite conductivity and negligible
viscosity:

ρV × curlV − 1

µ
B× curlB− gradP − ρ grad

V2

2
= 0 , (10)

div
(

ρV
)

= 0 , curl(V ×B) = 0 , divB = 0 . (11)

In this paper we discuss incompressible plasmas:

divV = 0. (12)

Incompressibility condition is a good approximation for subsonic plasma flows with
low Mach numbers M � 1, M2 = V2/(γP/ρ). For incompressible plasmas, the
continuity equation div ρV = 0 implies V · grad ρ = 0, hence density is constant on
streamlines.

In the particular case of static plasma equilibrium (V = 0), the system takes
the form

curlB×B = µ gradP , divB = 0 . (13)

An important reduction of this system is the constant–pressure force-free plasma
equilibrium system

curlB = α(r)B , divB = 0 . (14)

All static and dynamic incompressible MHD equilibria (except Beltrami flows
curlB = αB, α = const) are known to possess a family of magnetic surfaces (or
a foliation) Ψ(r) = const, to which velocity both V and B are tangent, and thus
magnetic field lines and plasma streamlines lie on these surfaces [30, 21, 22].

The equilibrium reduction of anisotropic (CGL) equations (5) – (9) is [26, 27]

ρV × curlV −
(

1

µ
− τ

)

B× curlB = grad p⊥ + ρ grad
V2

2
+

+τ grad
B2

2
+ B(B · grad τ) ,

(15)

div
(

ρV
)

= 0 , curl(V ×B) = 0 , divB = 0 . (16)

For this system to be closed, one needs to add to it two equations of state. In
this paper we will consider incompressible CGL plasmas: divV = 0.

In [27], we have shown that CGL equilibrium equations generally share the
topology of the MHD equilibrium system (10), (11): the plasma domain is also
spanned by nested 2D magnetic surfaces. (This may not be the case only when
B||V.)
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The static CGL equilibrium equations have the form is (cf. (13))
(

1

µ
− τ

)

curlB×B = gradp⊥ + τ grad
B2

2
+ B(B · grad τ) , divB = 0 . (17)

Both the isotropic MHD equilibrium system (10) – (12) and the anisotropic CGL
equilibrium system (15), (16), together with their static reductions (13) and (17),
are essentially non-linear systems of partial differential equations depending on
three spatial variables. No general methods exist for the construction of exact
solutions to the corresponding boundary value problems in generic domains; the
question of stability is answered only for particular types of instabilities (for a
review, see [27].) However, exact solutions, especially those having natural physical
behaviour (see [26]), are demanded by applications.

In the present paper, we construct new MHD and CGL equilibria using the re-
cently discovered analytical properties of the above systems — infinite symmetries
and transformations of incompressible MHD equilibria into solutions to incompress-
ible CGL equilibrium equations.

In Section 2, we discuss analytical properties of ideal incompressible MHD and
CGL equilibrium systems, in particular, infinite–parameter Lie groups of symme-
tries and their connection with classical Lie group analysis of these systems. It
is remarkable that these groups, the richest known classes of transformations for
these systems, are equivalent to certain Lie point transformations of corresponding
systems. Infinite transformations between solutions of MHD and CGL equilibrium
systems provide a tool for the construction of sets of anisotropic equilibrium con-
figurations from isotropic ones, the former retaining the topology and boundedness
of the latter and having certain stability properties.

In Section 3, we present a method of building exact 3D isotropic and anisotropic
plasma equilibria with and without dynamics, and often without geometrical sym-
metry, in different geometries and with physically relevant properties. The method
is based on representing the system of static classical plasma equilibrium (13) equa-
tions in coordinates connected with magnetic surfaces. In many important cases,
for a given set of magnetic surfaces, an orthogonal coordinate system can be chosen,
with one of the coordinates constant on the magnetic surfaces. In such coordinates,
the static plasma equilibrium system is reduced to two partial differential equations
for two unknown functions. The suggested representation is used for producing par-
ticular exact static solutions in different geometries. These solutions, by virtue of
symmetries and transformations discussed in Section 2, give rise to families of more
complicated dynamic and static, isotropic and anisotropic equilibrium configura-
tions.

A particular example that illustrates the use of the introduced approach is
given. We construct exact dynamic isotropic and anisotropic plasma equilibrium
configurations that model solar flares in the star coronal plasma near an active
region. The resulting model is essentially non-symmetric and presented in an exact
form; it reproduces important features of solar flares known from observations. The
presented equilibrium has ellipsoidal magnetic surfaces.
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Several other examples of exact solutions constructed using the coordinate rep-
resentation method are found in [27].

2 Symmetries and transformations of plasma equilibrium systems

2.1 Symmetry properties of plasma equilibrium systems

In this section, we list known symmetries and transformations of MHD and CGL
equilibrium equations. (”Symmetry” here means that a system of differential equa-
tions is invariant under a certain change of variables.)

Historically, reflection and interchange symmetries were observed first.

i. Reflection symmetry. The general system of equations of compressible and
incompressible MHD and CGL equilibria (10), (11), (15), (16) admit the following
two independent reflection symmetries:

V → −V , B→ −B .

ii. ”Interchange symmetry”. If the density ρ = const, then by a scaling
transform V1 =

√
ρ V, B1 =

√

1/µ B the MHD equilibrium system (10), (11) can
be rewritten in the invariant form [31]:

V1 × curlV1 −B1 × curlB1 − gradP1 = 0 ,

curl(V1 ×B1 = 0 , divB1 = 0 , divV1 = 0 .

If a solution to this system {V1,B1, P1} is known, then evidently {B1,V1,−P1}
is also a solution, i.e. the system is invariant under the transformation

V←→ B , P → −P .

The CGL equilibrium system possesses the same symmetries when τ = const,
τ < 1/µ [27].

iii. Infinite symmetries of MHD equilibrium equations. It was recently
shown by Bogoyavlenskij [21, 22] that ideal isotropic MHD equilibrium equations
(10) – (12) possess a family of intrinsic symmetries. If {V(r),B(r), P (r), ρ(r)} is
a solution of (10), (11), where the density ρ(r) is constant on both magnetic field
lines and streamlines, then {V1(r),B1(r), P1(r), ρ1(r)} is also a solution, where

B1 = b(r)B + c(r)
√

µρ V ,

V1 =
c(r)

a(r)
√

µρ
B +

b(r)

a(r)
V ,

ρ1 = a2(r)ρ , P1 = CP +
CB2 −B2

1

2µ
.

(18)

Here b2(r) − c2(r) = C = const, and a(r), b(r), c(r) are arbitrary functions
constant on both magnetic field lines and streamlines (i.e. on magnetic surfaces
Ψ(r) = const, when they exist).
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These symmetries form an infinite–dimensional Abelian group [22]

Gm = Am ⊕Am ⊕R+ ⊕ Z2 ⊕ Z2 ⊕ Z2 . (19)

Bogoyavlenskij symmetries do not change the topology (the set of magnetic sur-
faces for non-field–aligned solutions, and field lines for field–aligned solutions), and
preserve the Lagrangian [21, 22]. The symmetries depend totally on two arbitrary
functions defined on a cellular complex depending on the initial solution topology
(see [21, 22, 27].)
iv. Infinite symmetries of CGL equilibrium equations. In [29, 25, 26, 27]
we have proven that the system of incompressible anisotropic (CGL) equilibrium
equations (15), (16), (12) possesses a similar family of intrinsic symmetries: for
each solution {V(r), B(r), p⊥(r), p‖(r), ρ(r)} with density ρ(r) and anisotropy
factor τ(r) (9) constant on both magnetic field lines and streamlines, the functions

ρ1 = m2(r)ρ ,

V1 =
b(r)

√

1/µ− τ

m(r)
√

ρ
B +

a(r)

m(r)
V ,

B1 =
a(r)

n(r)
B +

b(r)
√

ρ

n(r)
√

1/µ− τ
V ,

p⊥1 = Cp⊥ +
CB2 −B2

1

2µ
,

p‖1 = p‖n
2(r)

B2
1

B2
+ p⊥

(

C − n2(r)
B2

1

B2

)

+
CB2 + B2

1(1− 2n2(r))

2µ
.

(20)

also define an infinite family of solutions, where a2(r) − b2(r) = C = const, and
a(r), b(r), m(r), n(r) are functions constant on both magnetic field lines and stream-
lines.

These symmetries also form a Lie group [26]

G = Am ⊕Am ⊕Am ⊕R+ ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 (21)

that contains the group (19) of Bogoyavlenskij symmetries of MHD equations.
Like Bogoyavlenskij symmetries for the isotropic case, the symmetries (20) do

not affect the solution topology, preserve the corresponding Lagrangian, and do not
introduce fire–hose instability [26, 27]. They depend on three arbitrary functions,
whose domain is determined by the initial solution topology [26, 27].

2.2 Connection of infinite symmetries with Lie group analysis

It has long been known that the Lie group analysis method (e.g. [32]) is appli-
cable to any (sufficiently smooth) ODE/PDE system, and is generally capable of
detecting both its simple geometric symmetries (e.g., rotations, scaling transforms
and translations), and more complicated ones. However, this method is extremely
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resource–demanding, therefore in most applications, symbolic computation soft-
ware is used (for a review, see [23, 33].)

The direct Lie group analysis of full MHD and CGL equilibrium systems, with-
out additional assumptions, has not been undertaken, due to high numbers of vari-
ables and resulting complexity even for modern symbolic computation software.

However, the analysis of the static plasma equilibrium system (13) has revealed
that it is invariant only under the spatial shifts/rotations and space/parameter
uniform scaling [28]; these transformations cannot be used to produce plasma equi-
librium configurations of new types.

The question about the possibility of obtaining the infinite-parameter Lie group
of Bogoyavlenskij symmetries (18), using Lie formalism, was raised soon after the
discovery of the symmetries. (For instance, Lie symmetries listed in the book
[34] for the general viscous time–dependent MHD system do not contain relevant
infinitesimal generators.)

In [23], we have shown that the Bogoyavlenskij symmetries can indeed be found
as Lie point transformations of the MHD equilibrium system only if general solution
topology (the existence of magnetic surfaces to which vector fields B and V are
tangent) and the incompressibility condition are explicitly taken into account in
the form of additional constraints:

ρ(r) = ρ(Ψ(r)) , grad(Ψ(r)) ·B = 0 , grad(Ψ(r)) ·V = 0 .

Here Ψ(r) is a magnetic surface function (or, more generally, a function constant
on magnetic field lines and plasma streamlines.)

The infinitesimal generators giving rise to the Bogoyavlenskij transformations
(18) are [23]

X(1) = M(r)

(

3
∑

k=1

Bk

µρ

∂

∂Vk

+

3
∑

k=1

Vk

∂

∂Bk

− 1

µ
(V ·B)

∂

∂P

)

,

X(2) =

3
∑

k=1

Vk

∂

∂Vk

+

3
∑

k=1

Bk

∂

∂Bk

+ 2P
∂

∂P
,

X(3) = N(r)

(

2ρ
∂

∂ρ
−

3
∑

k=1

Vk

∂

∂Vk

)

.

The infinite–dimensional Lie group of symmetries (20), (21) of incompressible
anisotropic (CGL) plasma equilibrium equations (15), (16), (12) can also be found
from Lie group analysis, as shown in [27]. This can only be done if, as in the above
MHD case, a function Ψ(r) constant on magnetic field lines and plasma streamlines
is introduced, and the system is extended with constraints ρ(r) = ρ(Ψ(r)), τ(r) =
τ(Ψ(r)). Then the symmetries (20) are equivalent to Lie point transformations
produced by infinitesimal generators [27]

X(4) = M(r)

(

3
∑

k=1

Bk

1/µ− τ

ρ

∂

∂Vk

+

3
∑

k=1

Vk

∂

∂Bk

− 1

µ
(V ·B)

∂

∂p⊥

)

,
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X(5) =
3
∑

k=1

Vk

∂

∂Vk

+
3
∑

k=1

Bk

∂

∂Bk

+ 2p⊥
∂

∂p⊥
,

X(6) = N(r)

(

2ρ
∂

∂ρ
−

3
∑

k=1

Vk

∂

∂Vk

)

,

X(7) = L(r)

(

2

(

1

µ
− τ

)

∂

∂τ
−

3
∑

k=1

Bk

∂

∂Bk

+
B2

µ

∂

∂p⊥

)

.

Here and above L(r), M(r), N(r) are arbitrary smooth functions constant on
both magnetic field lines and streamlines.

Thus it was shown that such complex and important sets of transformations
infinite–dimensional groups of Bogoyavlenskij symmetries (18), (20) of the isotropic
(MHD) and anisotropic (CGL) plasma equilibrium equations, the richest known
classes of transformations for these systems, can be obtained through the applica-
tion of the general Lie algorithm.

2.3 The infinite family of transformations from MHD to CGL equilibria

In [25, 26, 27] we have found and discussed an infinite–dimensional set of transfor-
mations that connect solutions to incompressible MHD and CGL plasma equilib-
rium systems. The following theorem holds:

Theorem 1 Let {V(r),B(r), P (r), ρ(r)} be a solution of the system (10) – (12)
of incompressible MHD equilibrium equations, where the density ρ(r) is constant
on both magnetic field lines and plasma streamlines (i.e. on magnetic surfaces
Ψ = const, if they exist.)

Then {V1(r),B1(r), p⊥1(r), p‖1(r), ρ1(r)} is a solution to incompressible CGL
plasma equilibria (15), (16), (12), where

B1(r) = f(r)B(r) , V1(r) = g(r)V(r) , ρ1 = C0
ρ(r)µ

g2(r)
,

p⊥1(r) = C0µP (r) + C1 +

(

C0 −
f2(r)

µ

)

B2(r)

2
,

p‖1(r) = C0µP (r) + C1 −
(

C0 −
f2(r)

µ

)

B2(r)

2
,

(22)

and f(r), g(r) are arbitrary functions constant on the magnetic field lines and
streamlines. C0, C1 are arbitrary constants.

Under the conditions of the theorem, the anisotropy factor

τ1 ≡
p‖1 − p⊥1

B1

2
=

1

µ
− C0

f2(r)

is also constant on the magnetic field lines and streamlines.
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The transformations (22) do not change the topology of plasma equilibrium
configurations. All CGL solutions obtained from non-Beltrami MHD equilibria
using Theorem 1 have the same magnetic surfaces as the original solution. In [27],
we have shown that anisotropic solutions constructed using the transformations
(22) can be made free of the fire-hose instability (and, in the static case, of the
mirror instability) by the proper choice of the transformation parameters.

3 Exact isotropic and anisotropic plasma equilibria arising from the

representation connected with magnetic surfaces

Bogoyavlenskij symmetries (18) and MHD→CGL transformations (22) have
been extensively used to construct new solutions from known ones [21, 22, 26,
27]. These methods are capable of changing magnitudes of physical parameters of
plasma, producing dynamic configurations from static ones, ”mixing” velocity and
magnetic field (if they are not parallel in the initial solution), but not capable of
changing solution topology or infiniteness of its total energy (when it is infinite).

Therefore a need is observed in exact particular plasma equilibrium solutions
with various domains, topologies and relations between physical parameters. Com-
bined with infinite–dimensional symmetries and transformations discussed above,
they would serve to produce realistic models of physical phenomena that involve
plasma equilibrium.

Only several different examples and classes of exact plasma equilibria have been
constructed so far (for a review, see [27]); many of them were found by dimension
reduction methods (e.g. from Grad–Shafranov or JFKO equations) and therefore
have geometrical symmetries. We also note that many known exact solutions have
limited applicability in modelling because of the violation of necessary physical
conditions (see [26]).

In this work, we suggest a method of building exact particular solutions in
different geometries and with different sets of magnetic surfaces.

We start from representing the system of static classical plasma equilibrium
equations (13) in coordinates connected with magnetic surfaces. In many important
cases, for a given set of magnetic surfaces, an orthogonal coordinate system can be
constructed, with one of the coordinates constant on the magnetic surfaces.

A set of coordinates is defined by its metric tensor coefficients; we establish suf-
ficient conditions for the metric coefficients under which exact solutions to plasma
equilibrium equations can be found. We also prove that in coordinates where the
Laplace equation admits 2–dimensional solutions, non-trivial exact plasma equilib-
ria of a certain type can be built.

In many systems of coordinates, classical and non-classical, non-trivial gradi-
ent vector fields can be found, tangent to prescribed sets of magnetic surfaces (see
[29, 25].) Though gradient fields by themselves represent only degenerate plasma
equilibria with constant pressure and no electric currents, and cannot model phys-
ical phenomena, they can serve as initial solutions in infinite–parameter transfor-
mations (such as (18), (22)) that produce non-trivial dynamic and static, isotropic
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and anisotropic plasma equilibrium configurations.

Examples of new exact isotropic and anisotropic plasma equilibrium solutions
obtained using the above-described machinery are readily constructed. A configura-
tion with elliptic magnetic surfaces described in section 3.2 below models isotropic
and anisotropic solar flares. Other exact solutions, including non-symmetric plasma
equilibria with spherical or non-circular–cylindrical magnetic surfaces and an as-
trophysical model of mass exchange between two spheroidal objects, are found in
the thesis [27].

3.1 Plasma equilibrium equations in coordinates connected with magnetic
surfaces

The question whether it is possible, given a family of smooth surfaces A(x, y, z) =
const in R

3, to construct (at least locally) two other families of surfaces so that
the three families form a triply orthogonal system, was answered by Darboux [35]:
a family of surfaces A(x, y, z) = const is a part of a triply orthogonal system if and
only if the function A(r) satisfies a certain nonlinear partial differential equation
of order 3 [35, 36]. Such families of surfaces were called by Darboux the families of
Lamé. Thus, for a given family of Lamé, one can construct a system of orthogonal
coordinates with one of the coordinates constant on surfaces A(x, y, z) = const.
There exist many examples of families of Lamé; they include sets of parallel surfaces;
sets of surfaces of revolution; Ribaucour surfaces, and other families [36].

In orthogonal coordinates, the metric tensor is

gij = Hi
2δij , Hi

2 =

(

∂x

∂ui

)2

+

(

∂y

∂ui

)2

+

(

∂z

∂ui

)2

, i, j = 1, 2, 3 , (23)

where Hi are the scaling (Lamé) coefficients.
All subscripts used below mean corresponding partial derivatives.

The following theorem contains a representation of static plasma equilibrium
equations (13) in coordinates connected with magnetic surfaces.

Theorem 2 To every solution {Φ(u, v, w), P (w)} of the system

∂

∂u

(√
g22
√

g33√
g11

Φu

)

+
∂

∂v

(√
g11
√

g33√
g22

Φv

)

= 0 , (24)

1

g11
ΦuΦuw +

1

g22
ΦvΦvw = −Pw (25)

in some orthogonal coordinates (u, v, w) with a metric tensor gij there corresponds
a solution to the isotropic static Plasma Equilibrium system (13) with magnetic
surfaces w = const forming a family of Lamé, the pressure P = P (w), and the
magnetic field

B =
Φu√
g11

eu +
Φv√
g22

ev . (26)
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For the sake of shortness, we do not reproduce the proofs of this and some of the
following statements; they are found in the thesis [27].

Remark 1. The converse is also true: given a static MHD equilibrium (13) with
magnetic surfaces being surfaces of Lamé, it can be shown that it satisfies the
system (24), (25) [27].

The expression (24) is the (u, v)–part of the Laplace’s equation in the coordi-
nates (u, v, w). Therefore the system of static MHD equilibrium equations (13)
with magnetic surfaces being surfaces of Lamé is (at least locally) equivalent to the
system

4(u,v)Φ = 0 , (27)

grad(u,v) Φ · grad(u,v) Φw = −Pw , (28)

where the subscript (u, v) means that only u– and v– parts of the corresponding
differential operators are used.

Remark 2. In coordinate systems where g11 = g11(u, v), g22 = g22(u, v), the
second equation of the system, (28), has a simple energy–connected interpretation.
Indeed, by (26) it becomes

1√
g33

∂

∂w

(

B2

2
+ P

)

= 0 .

For incompressible plasma equilibria, it means that the component of the gradient
of total energy density in the direction normal to the magnetic surfaces vanishes.
Therefore for any MHD equilibrium configuration in which magnetic surfaces w =
const form a family of Lamé, and where g11 = g11(u, v), g22 = g22(u, v), the total
energy can be finite only if the plasma domain is bounded in the direction transverse
to magnetic surfaces.

Remark 3. The electric current density J = µ−1 curlB is written in terms of Φ
as follows:

J =
1

µ

(

− 1√
g22
√

g33

∂2Φ

∂v∂w
eu +

1√
g11
√

g33

∂2Φ

∂u∂w
ev

)

. (29)

Remark 4. As noted by Lundquist [37], the static MHD equilibrium equations
(13) are equivalent to the time–independent incompressible Euler equations that
describe ideal fluid equilibria. Therefore static Euler equations may also be pre-
sented in the form (24), (25).

Remark 5. As illustrated below and in the thesis [27], in many cases appropriate
orthogonal coordinates (u, v, w) required by the above theorem may be introduced
globally in the plasma domain D.

Remark 6. A theorem proven in [27] gives sufficient conditions on the metric
tensor components, such that in the corresponding coordinate system (u, v, w) so-
lutions of the plasma equilibrium system (24), (25) of certain forms exist.
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The following theorem shows how to construct trivial ”vacuum” (gradient) mag-
netic fields in any coordinate system which affords 2–dimensional solutions to the
Laplace equation.

Theorem 3 In any coordinate system where the 3D Laplace equation

4(u,v,w)φ(u, v, w) = 0

admits a solution independent of one of the variables (w), there exists a trivial
(”vacuum”) magnetic field configuration

divB = 0 , curlB = 0 (30)

corresponding to this solution, and this magnetic field is tangent to surfaces w =
const.

Proof. If a solution of the Laplace equation φ(u, v) independent of w is given,

∂

∂u

HvHw

Hu

∂φ(u, v)

∂u
+

∂

∂v

HuHw

Hv

∂φ(u, v)

∂v
+

∂

∂w

HuHv

Hw

∂φ(u, v)

∂w
= 0,

then it is indeed at the same time a solution to the ”truncated” Laplace equation
(27).

It also is a solution to the second plasma equilibrium equation (28) when P (w) =
const, because it nulls the left-hand side identically. Thus φ(u, v) defines a force-free
plasma magnetic field (26).

From the fact that φ(u, v) satisfies the system (27), (28) it follows that the
magnetic field (26) is tangent to the coordinate surfaces w = const, by derivation
of the equations.

For every such solution the electric current J (29) vanishes, thus making such
plasma equilibrium a vacuum magnetic field configuration.

The theorem is proven.

Remark 1. Use of ”vacuum” magnetic fields. As plasma equilibria, vacuum
magnetic fields are trivial and can not be used for direct modelling of real physical
equilibrium phenomena, where electric current J, plasma pressure P and velocity
V are generally non-zero. However, they can be used as an initial solution to
construct new non-trivial solutions to Plasma Equilibrium equations in static and
dynamic cases, for isotropic and anisotropic plasmas.

Indeed, the application of Bogoyavlenskij symmetries (18) to such a configura-
tion results in non-trivial field–aligned isotropic MHD solutions with P 6= const,
J 6= 0, and density being an arbitrary function of magnetic surface variable.

By the application of the MHD→CGL transforms (22) to a static vacuum mag-
netic field configuration, static anisotropic CGL plasma equilibria are obtained, also
non-trivial in the sense p‖, p⊥ 6= const, J 6= 0 and having the same topology as the
original vacuum field. These static anisotropic equilibria can be extended further
on the dynamic case with the help of the analog of Bogoyavlenskij symmetries for
CGL plasmas (20) (see examples in subsection 3.2 and [27].)

12
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Remark 2. Availability of vacuum magnetic fields. By Theorem 3, the
solutions to the ”truncated” Laplace’s equation (27) are available in any coordi-
nate system that allows simple separability of Laplace’s equation or where two–
dimensional solutions exist. Many classical and esoteric coordinate systems do
admit two–dimensional solutions of the Laplace equation, as found in literature,
for example, [38].

New systems of coordinates may be constructed where the Laplace’s equation
will be separable or have two–dimensional solutions. The list of necessary and
sufficient conditions on the metric coefficients is available in [39].

3.2 An example of exact plasma equilibria

In this section, we present a particular example that illustrates the use of the above-
described approach connected with magnetic surface representation for building
new dynamic and static, isotropic and anisotropic plasma equilibria.

We construct exact dynamic isotropic and anisotropic plasma equilibrium con-
figurations that model solar flares in the coronal plasma near an active region. The
resulting model is essentially non-symmetric and presented in an exact form; it re-
produces important features of solar flares known from observations. The presented
equilibrium has ellipsoidal magnetic surfaces.

We start from the construction of vacuum magnetic fields tangent to ellipsoids,
using the magnetic–surface–connected representation of plasma equilibria equations
(Theorems 2 and 3). Then transformations are applied to this trivial solution to
produce non-trivial isotropic and anisotropic plasma equilibria.

Ellipsoidal coordinates (η, θ, λ) are described in, e.g., [38]. The coordinate sur-
faces are ellipsoids and one–sheet and two–sheet hyperboloids.

Laplace’s equation is separable in ellipsoidal coordinates, and we take a solution
depending only on (θ, λ), so that its gradient has zero η–projection transverse to
ellipsoids, but is tangent to them:

Φ1(θ, λ) =

[

A1 + B1sn
−1

(

√

c2 − θ2

c2 − b2
,

√

c2 − b2

c2

)

]

·
[

A2 + B2sn
−1

(

λ

b
,
b

c

)]

.

Here sn(x, k) is the Jacobi elliptic sine function. The inverse of it is an incomplete
elliptic integral

Fell(z, k) =

∫ z

0

dt√
1− t2

√
1− k2t2

.

b, c are the parameters of elliptic coordinate systems used for this solution; the
notation agrees with [38].

Φ1(θ, λ) does not depend on η, and therefore evidently satisfies both equations
(24), (25) (with u = θ, v = λ.) The resulting magnetic field (26) is tangent to
ellipsoids η = const, and has a singularity at θ = λ, i.e. on the plane y = 0.

However one may verify that for a plasma region c < η1 < η < η2 the total
magnetic energy

∫

V

(

B2/2
)

dv is finite. Also, if one restricts to a half-space y > 0

13
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Fig. 1. Lines of the magnetic field (32) tangent to the ellipsoid η = 12. The shown
ellipsoid is a magnetic surface from the family of nested ellipsoids η = const in classical
ellipsoidal coordinates. This configuration is smoothly defined in the half–space y > 0.

or y < 0, then the magnetic field is well-defined in a continuous and differentiable
way.

If the magnetic field is tangent to the boundary of a domain, one can safely as-
sume that outside of it B = 0 identically. This is achieved, as usual, by introducing
a boundary surface current

ib(r1) = µ−1B(r1)× nout(r1) , (31)

where r1 is a point on the boundary of the domain, and nout is an outward normal.
Fig. 1 shows several magnetic field lines for the case (b = 7, c = 10, A1 = A2 =

0, B1 = 1/100, B2 = 1/30) on the ellipsoid η = 12. For this set of constants, the
vector of the magnetic field has the form is

B0 =
Fell

(

λ
7 , 7

10

)

√

(θ2 − λ2)(η2 − θ2)
eθ −

Fell

(

√

100−θ2

51 ,
√

51
100

)

√

(η2 − λ2)(θ2 − λ2)
eλ . (32)

This ”vacuum” (gradient) magnetic field is used to produce non-trivial dynamic
isotropic and anisotropic plasma equilibria, as shown below.

We remark that though the magnetic field lines of the field (32) have a plane of
symmetry x = 0, a non-zero choice of constants (A1, A2, B1, B2) would produce a
completely non-symmetric magnetic field tangent to a family of ellipsoids.

i. Isotropic dynamic plasma equilibria with ellipsoidal magnetic sur-

faces. The above vacuum magnetic field B0 is indeed a trivial solution to the
general isotropic plasma equilibrium system (10), (11) with V = 0, P = P0 = const
and an arbitrary density function ρ = ρ0(r).

14
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Fig. 2. Magnetic flux tubes in the model of solar flares. The magnetic field (32) in the half-
space y > 0 can be restricted to a set of one or more disjoint magnetic flux tubes bounded
by surface currents. Such force-free configuration, after the application of symmetries (18)
and MHD→CGL transformations (22), gives rise to isotropic and anisotropic models of

plasma behaviour in arcade solar flares.

The plasma domain D is either a region in the half–space y > 0 between two
ellipsoid shells η1, η2 : c < η1 < η < η2 (c = 10), or a set of flux tubes, connected
sets of adjacent magnetic field lines. (Two sample flux tubes are shown on Fig. 2.)
Outside of D we choose ρ0 = 0 and B0 = 0 employing a surface current (31).

If we choose ρ0(r) to be constant on magnetic field lines (plasma streamlines
do not exist as there is no flow), then the infinite–parameter transformations (18)
become applicable to such configuration. Applying them formally, we obtain a
family of isotropic plasma equilibria

B1 = m(r)B0 , V1 =
n(r)

a(r)
√

µρ0(r)
B0 ,

ρ1 = a2(r)ρ0(r) , P1 = CP0 − n2(r)
B2

0

2µ
,

m2(r)− n2(r) = C = const ,

(33)

where a(r), m(r), n(r), ρ0(r) are functions constant on magnetic field lines and
streamlines (which coincide in this case, as V1 and B1 are collinear).

The magnetic field lines in the chosen region are not dense on any 2D surface
or in any 3D domain, therefore the arbitrary functions a(r), m(r), n(r), ρ0(r) can
be chosen (in a smooth way) to have a constant value on each magnetic field line,
thus being in fact functions of two variables enumerating all magnetic field lines in
the region of interest (for example, η and λ, which specify the beginning of every
magnetic field line).

We remark that unlike the initial field B0, the vector fields B1 and V1 are
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neither potential nor force–free: curlB1 = gradm(r)×B0 not parallel to B1. But
both B1 and V1 satisfy the solenoidality requirement.

Direct verification shows that, with a non-singular choice of the arbitrary func-
tions, the total magnetic energy Em = 1

2

∫

V
B2

1 dv and the kinetic energy Ek =
1
2

∫

V
ρV 2

1 dv are finite. The magnetic field, velocity, pressure and density B1, V1,
ρ1, P1 are defined in a continuous and differentiable way.

ii. Anisotropic plasma equilibria with ellipsoidal magnetic surfaces.

When the mean free path for particle collisions is long compared to Larmor radius,
(e.g. in strongly magnetized plasmas), the tensor–pressure CGL approximation
should be used. The model suggested here describes a rarefied plasma behaviour
in a strong magnetic field looping out of the star surface.

To construct an anisotropic CGL extension of the above isotropic model, we use
the MHD→CGL transformations (22). Given B1, V1, P1, ρ1 determined by (33)
with some choice of the arbitrary functions a(r), m(r), n(r), ρ0(r), we obtain an
anisotropic equilibrium B2, V2, p‖2, p⊥2, ρ2 defined as

B2 = f(r)B1 , V2 = g(r)V1 , ρ2 = C0
ρ1µ

g(r)2
,

p⊥2 = C0µP1 + C1 +

(

C0 −
f(r)2

µ

)

B2
1

2
,

p‖2 = C0µP1 + C1 −
(

C0 −
f(r)2

µ

)

B2
1

2
,

(34)

f(r), g(r) are arbitrary functions constant on the magnetic field lines and stream-
lines, i.e. again on constant on every plasma magnetic field line, and C0, C1 are
arbitrary constants.

Setting P0 = 0 in (33) and making an explicit substitution, we get

B2 = f(r)m(r)B0 ,

V2 = g(r)
n(r)

a(r)
√

µρ0(r)
B0 ,

ρ2 = C0a
2(r)

ρ0(r)µ

g(r)2
, (35)

p⊥2 = C1 +
B2

0

2µ

(

C0Cµ− f2(r)m2(r)
)

,

p‖2 = C1 +
B2

0

2µ

(

f2(r)m2(r) − C0Cµ− 2C0n
2(r)

)

.

It is known [26, 27] that for the new equilibrium to be free from a fire–hose
instability, the transformations (22) must have C0 > 0.

p⊥ is the pressure component perpendicular to magnetic field lines. It is due to
the rotation of particles in the magnetic field. Therefore in strongly magnetized or
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rarified plasmas, where the CGL equilibrium model is applicable, it is natural that
the behaviour of p⊥ is connected with that of B2.

In the observational studies of the solar wind flow in the Earth magnetosheath
[40], the relation

p⊥
p‖

= 1 + 0.847
B2

2p‖
(36)

was proposed. We denote k(r) = C0Cµ− f2(r)m2(r) and select the constants and
functions C0, C, f(r), m(r) so that k(r) ≥ 0 in the space region under consideration.
From (35), we have:

p⊥2 − p‖2 =
B2

0

2µ

(

2k(r) + 2C0n
2(r)

)

,

or
p⊥2

p‖2
= 1 +

2k(r) + 2C0n
2(r)

µf2(r)m2(r)

B2
2

2p‖2
,

which generalizes and includes the experimental result (36).

iii. A model of plasma behaviour in arcade solar flares. Solar flares are
phenomena that take place in the photospheric region of the solar atmosphere and
are connected with a sudden release of huge energies (typically 1022 − 1025 J) ([1],
pp. 331 – 348). Particle velocities connected with this phenomenon (about 103 m/s)
are rather small compared to typical coronal velocities (∼ 5 · 105 m/s), therefore
equilibrium models are applicable.

Morphologically two types of solar flares are distinguished: loop arcades (mag-
netic flux tubes) and two–ribbon flares. Flares themselves and post–flare loops are
grounded in from active photospheric regions.

As noted in [1], p. 332, ”rigorous theoretical modelling has mainly been re-
stricted to symmetric configurations, cylindrical models of coronal loops and two–
dimensional arcades.”

The configurations described above can serve as non-symmetric 3D isotropic
and anisotropic models of quasi–equilibrium plasma in flare and post–flare loops,
where magnetic field and inertia terms prevail upon the gravitation potential term
in the plasma equilibrium equations:

V× curlV � gradϕ ,
1

µ
B× curlB� ρ gradϕ .

where ϕ is the star gravitation field potential.
The characteristic shape of the magnetic field energy density B and the pressure

P along a particular magnetic field line, for the isotropic case, are given on Fig. 3.

Magnetic field lines in the model are not closed; therefore by introducing a
surface current of the type (31), a plasma domain D can indeed be selected to
have any tubular loop shape (e.g. the one shown on Fig. 2), and the magnetic
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Fig. 3. A model of a solar flare — a coronal plasma loop near an active photospheric
region. The figure shows the characteristic shape of the magnetic field energy density B2

and the pressure P curves along a particular magnetic field line. (The isotropic case.)

field can be assumed zero outside (together with the velocity in dynamic models.)
The current sheet introduction is not artificial — as argued in [2], in a general 3D
coronal configurations the current sheets between flux tubes are formed (see also:
[1], p. 343.)

The above-described isotropic MHD model is valid when the mean free path
of plasma particles is much less than the typical scale of the problem, so that the
picture is maintained nearly isotropic via frequent collisions.

However, the CGL framework must be adopted when plasma is rarefied or
strongly magnetized. For such plasmas, we propose the above anisotropic model
(35), for which the requirement of plasma being rarefied can be satisfied by choosing
a(r) sufficiently small.

4 Conclusion

Isotropic (MHD) the anisotropic (CGL) magnetohydrodynamics equations and
their equilibrium reductions (10), (11), (15), (16) are extensively used in the mod-
elling of astrophysical and terrestrial plasmas.

Both MHD and CGL equilibrium systems are essentially non-linear systems
of partial differential equations depending on three spatial variables. Therefore
the problem of the construction of exact solutions, especially those having natural
physical behaviour and relevant for modelling, presents a significant difficulty. Only
several types of particular exact solutions have been known (see [27].)

Infinite–parameter Lie groups of symmetries (18) and (20) of ideal incompress-
ible MHD and CGL equilibrium systems, together with their properties and ap-
plications in the construction of families of new exact solutions, are discussed in
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Section 2. It is important that both of these rich groups symmetries are equiva-
lent to certain Lie point transformations of the corresponding systems, and can be
found from the direct Lie group analysis procedure.

Infinite–dimensional transformations between solutions of MHD and CGL equi-
librium systems provide another means of the construction of families of physically
meaningful anisotropic equilibrium configurations from known isotropic ones (Sec-
tion 2.3.)

The above symmetries and transformations, however, have to be applied to some
known MHD equilibria. They can not change some intrinsic qualitative properties
of initial equilibrium solutions, such as solution topology. Therefore, to acheive the
diversity of equilibrium models, a demand exists on new particular exact solutions
with topologies corresponding to particular applications.

In Section 3, we present a method of building exact 3D isotropic and anisotropic
plasma equilibria with and without dynamics, and often without geometrical sym-
metry, in different geometries and with physically relevant properties.

The representation of the system of static classical plasma equilibrium equations
(13) in coordinates connected with magnetic surfaces is formulated in Theorem 2.
In such coordinates, the static plasma equilibrium system is reduced to two partial
differential equations (24), (25) for two unknown functions. Solutions to these
equations in different geometries can be obtained. Special attention is paid to the
construction of ”vacuum” gradient magnetic fields (Theorem 3.)

Solutions to the system (24), (25), including ”vacuum”–type solutions, by virtue
of symmetries and transformations discussed in Section 2, give rise to families of
more complicated dynamic and static, isotropic and anisotropic equilibrium config-
urations.

A particular example illustrates the use of the introduced coordinate approach.
In Section 3.2, exact dynamic isotropic and anisotropic plasma equilibrium configu-
rations that model solar flares in the star coronal plasma near an active region are
constructed. The resulting model is essentially non-symmetric and is presented in
an exact and explicit form; it reproduces important features of solar flares known
from observations. The presented equilibrium has ellipsoidal magnetic surfaces.

Other examples of the use of the magnetic surface coordinate representation
method can be found in the Thesis [27].

The author thanks Drs. Oleg Bogoyavlenskij, Pavel Winternitz, Leo Jonker, Daniel Offin

and Kayll Lake for the discussion of the presented results and for useful remarks.
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