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In this paper we present some recent and new developments in the theory of p–
mechanics. p–Mechanics is a consistent physical theory which contains both classical
and quantum mechanics. The Heisenberg group and its representation theory is the basis
of p–mechanics. We give a summary of recent results on p–mechanical observables, states
and canonical transformations. In doing so we exhibit relations between the quantum and
classical image of these objects. We also present some new work on the Kepler/Coulomb
problem. This involves constructing a new Hilbert space which represents the dynamics
of the Kepler/Coulomb problem in a simple form.
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1 Introduction

Since the time of von Neumann the infinite dimensional Schrödinger represen-
tation of the Heisenberg group has been used in the mathematical formulation of
quantum mechanics. By the Stone–von Neumann theorem all unitary irreducible
infinite dimensional representations of the Heisenberg group are unitarily equiva-
lent to the Schrödinger representation. There is also a system of one dimensional
representations of the Heisenberg group — these are often ignored and just included
in the Stone–von Neumann theorem for mathematical completeness. In [3, 4] it is
shown that these one dimensional representations play the same role in classical me-
chanics which the infinite dimensional representations play in quantum mechanics.
p–Mechanics uses both the one and infinite dimensional representations to obtain
relations between classical and quantum mechanics. It shows that both classical
and quantum mechanics are derived from the same source separated by the one
and infinite dimensional representations respectively.

In Section 2 we present some background material on the representation theory
of the Heisenberg group. p–Mechanical observables and their time evolution is
the subject of Section 3. Section 4 contains a description of the role of states in p–
mechanics. In Section 5 we describe the representation of both linear and non-linear
canonical transformations in p–mechanics. In Section 6 we present some new results
on the p–mechanical Kepler/Coulomb problem. It is shown that the current form
of p–mechanics is insufficient for analysing the Kepler/Coulomb problem. We use
Klauder’s coherent states for the Kepler/Coulomb problem to derive a new Hilbert
space which is particularly useful in studying the Kepler/Coulomb problem. The
dynamics for the Kepler/Coulomb problem take a particularly nice form in this
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Hilbert space. This Hilbert space is limited as it can only deal with a subset of
observables and states.

2 The Heisenberg group and its representations

In this section we present some background material on the Heisenberg group
and its representations.

Definition 2.1. The Heisenberg group [1, 2] (denoted Hn) is the set of all triples
in R × Rn × Rn under the law of multiplication

(s, x, y) · (s′, x′, y′) =
(

s+ s′ + 1
2 (x · y′ − x′ · y), x+ x′, y + y′

)

. (1)

The non-commutative convolution of two functions B1, B2 ∈ L1(Hn) is defined
as

(B1 ∗B2)(g) =

∫

Hn

B1(h)B2(h
−1g)dh =

∫

Hn

B1(gh
−1)B2(h)dh ,

where dh is Harr Measure on H
n, which is just Lebesgue measure on R

2n+1,
ds dx dy. This operation can be extended to the convolution of two distributions
in the natural way — see [2, Chap. 0]. The most common representation of the
Heisenberg group is the Schrödinger representation. The Schrödinger representa-
tion [1, Sect. 1.3] for h > 0 is defined on L2(Rn) as

(

ρSh(s, x, y)ψ
)

(ξ) = e−2πihs+2πixξ+πihxyψ(ξ + hy) . (2)

It has been shown that this representation is unitary [1, Sect. 1.3], and irreducible
[1, Prop. 1.43]. In this paper we only briefly look at this infinite dimensional
representation; instead we concentrate on other forms of the infinite dimensional
representation and also the often neglected family of one dimensional representa-
tions.

Definition 2.2. We define the space F 2(Oh) [3, 4] as

F 2(Oh) = {fh(q, p) ∈ L2(R2n) : Dj
hfh = 0, for 1 ≤ j ≤ n} , (3)

where the operator Dj
h on L2(R2n) is defined as

h

2

(

∂

∂pj
+ i

∂

∂qj

)

+ 2π(pj + iqj).

An inner product on F 2(Oh) is given by

〈v1, v2〉F 2(Oh) =

(

4

h

)n ∫

R2n

v1(q, p)v2(q, p) dq dp . (4)

F 2(Oh) is a Hilbert space with respect to this inner product [5, Sect. 4.1]. The
representation ρh [3, 4] of Hn on F 2(Oh) is defined by

ρh(s, x, y) : fh(q, p) 7→ e−2πi(hs+qx+py)fh
(

q − h
2 y, p+ h

2x
)

, (5)

which is unitary with respect to the inner product defined in (4). The crucial
theorem which motivates the whole of p–mechanics is
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Theorem 2.3. (The Stone–von Neumann Theorem) All unitary irreducible repre-
sentations of the Heisenberg group, H

n, up to unitary equivalence, are either:
(i) of the form ρh on F 2(Oh) from equation (5), or
(ii) for (q, p) ∈ R2n the commutative one–dimensional representations on C =

L2(O(q,p))

ρ(q,p)(s, x, y)u = e−2πi(q·x+p·y)u . (5)

For a proof of this theorem see [6].

3 Observables and their dynamics in p−mechanics

The basic idea of p–mechanics is to choose particular functions or distribu-
tions on Hn which under the infinite dimensional representation will give quantum
mechanical observables, while under the one dimensional representation will give
classical mechanical observables. In doing this it is shown that both mechanics
are derived from the same source. p–Mechanical observables can be realized as
operators (some of which are unbounded) on a subset of L2(Hn) generated by
convolutions of the chosen functions or distributions. To define p–mechanical ob-
servables properly we need to introduce a map from the set of classical observables
to the set of p–mechanical observables. In [3,4] a map of p–mechanization, P , from
the set of classical observables to the set of p-mechanical observables is defined as

(Pf)(s, x, y) = δ(s)f̆(x, y) , (6)

where f is any classical observable and f̆ is the inverse Fourier transform of f (that

is, f̆(x, y) =
∫

R2n f(q, p)e2πi(qx+py) dq dp).

Definition 3.1 (p−Mechanical Observables). The set of p–mechanical observ-
ables is the image of the set of classical observables under the map P from equation
(6).

Clearly this definition depends on how the set of classical observables is defined.
Any physically reasonable classical mechanical observable can be realized as an
element of S ′(R2n) (see [10] for a definition of S ′). Since the Fourier transform
maps S ′(R2n) into itself, S ′(Hn) is a natural choice for the set of p–mechanical
observables. It includes the image of all classical observables which are polynomials
or exponentials of the variables q and p.

If we take the ρh representation (5) of many of the distributions described
above we would get unbounded operators. For example the p–mechanisation of

the classical position coordinate q is the distribution
∂

∂x
δ(s)δ(x)δ(y); under the

ρh representation this will become the unbounded operator
h

2

∂

∂p
− 2πiqI . This

operator is clearly not defined on the whole of F 2(Oh). This technical problem
can be solved by the usual method of rigged Hilbert spaces (also known as Gelfand
triples) [9] which uses the theory of distributions. Another approach to dealing
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with unbounded operators is given by using the G̊arding space as explained in [1,
Chap. 0].

The dynamics of a p–mechanical system are described in [3, 4, 7] using the
universal brackets (also known as the p-mechanical brackets). Before we can define
the universal brackets we need to define the operator A.

Definition 3.2. Let S be the operator
∂

∂s
on C∞(Hn). The operator A is defined

on exponents by

SA = 4π2I , where Ae2πihs =







2π

ih
e2πihs , if h 6= 0 ,

4π2s , if h = 0 ,
(7)

and can be extended by linearity to the whole of L1(Hn). It can also be extended by
linearity to the whole of S(Hn) and then the adjoint is an operator on S ′(Hn). A

is called the anti–derivative operator since it is a right inverse to
∂

∂s
.

Definition 3.3. The universal brackets (also known as p–mechanical brackets) are

{[B1, B2]} = (B1 ∗B2 −B2 ∗B1)A . (8)

It is shown in [7, Prop. 3.5] that under the one and infinite dimensional rep-
resentations the universal brackets become the Poisson brackets and the quan-
tum commutator respectively. Hence for a system with Hamiltonian BH (the p–
mechanisation of the classical Hamiltonian H) solving the p–dynamic equation

dB

dt
= {[B,BH ]} (9)

will give the quantum and classical dynamics under the infinite and one dimensional
representations respectively.

Example 3.4 (The Harmonic Oscillator). The classical Hamiltonian of the
harmonic oscillator with frequency ω and mass m is

H(q, p) =
1

2

(

mω2q2 +
1

m
p2

)

. (10)

This is a C∞ function which can be realized as an element of S ′(R2n). The p–
mechanisation (see equation (6)) of this is the p–mechanical harmonic oscillator
Hamiltonian1)

BH(s, x, y) = −
1

8π2

(

mω2δ(s)δ(2)(x)δ(y) +
1

m
δ(s)δ(x)δ(2)(y)

)

. (11)

1) δ(s)δ(2)(x)δ(y) is used to denote the distribution ∂
2

∂x2 δ(s)δ(x)δ(y).
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In [3, Eq. 4.14] it is shown that the p–dynamic equation (9) for an arbitrary
p–mechanical observable in this system is

dB

dt
= {[B,BH ]} = ω2my

∂B

∂x
−
x

m

∂B

∂y
,

which has solution

B(t; s, x, y) = B0

(

s, x cos(ωt) +mωy sin(ωt),−
1

mω
x sin(ωt) + y cos(ωt)

)

. (12)

Example 3.5 (The Forced Oscillator). The classical Hamiltonian for an oscil-
lator of frequency ω and mass m being forced by a real function of a real variable
z(t) is

H(t, q, p) =
1

2

(

mω2q2 +
1

m
p2

)

− z(t)q .

Through the procedure of p–mechanisation (see equation (6)) we get the p–mecha-
nical forced oscillator Hamiltonian to be

BH(t, s, x, y) = −
1

8π2

(

mω2δ(s)δ(2)(x)δ(y) +
1

m
δ(s)δ(x)δ(2)(y)

)

−

−
z(t)

2πi
δ(s)δ(1)(x)δ(y) .

(13)

In [8] it is shown that the p–dynamic equation for the forced oscillator is

dB

dt
= ω2my

∂B

∂x
−
x

m

∂B

∂y
− 2πiyz(t)B , (14)

which has solution

B(t; s, x, y) = exp

[

−2πi

(

1

mω

∫ t

0

z(τ) sin(ωτ) dτ X(t)+

+

∫ t

0

z(τ) cos(ωτ) dτ Y (t)

)]

B(0; s,X(t), Y (t)) ,

(15)

where

X(t) = x cos(ωt) +mωy sin(ωt) ,

Y (t) = −
x

mω
sin(ωt) + y cos(ωt) .

4 States in p−mechanics

We now describe the role states play in p–mechanics. States in p–mechanics
are functionals on the set of p–mechanical observables and come in two forms —
elements of a Hilbert space and integration kernels.
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Definition 4.1. The Hilbert space H2
h, h ∈ R\{0}, is defined as the set of functions

on H
n

H2
h =

{

e2πihsf(x, y) : Ejhf = 0 1 ≤ j ≤ n and f ∈ L2(R2n)
}

, (16)

where the operator Ejh = πh(y − ix) + i
∂

∂x
−

∂

∂y
(this is the Fourier transform of

D
j
h from (3)).

The inner product on H2
h is defined as

〈v1, v2〉H2

h

=

(

4

h

)n ∫

R2n

v1(s, x, y)v2(s, x, y) dx dy . (17)

The set of p–mechanical observables acts on H2
h by convolution. For many observ-

ables this will give rise to unbounded operators which are not defined on the whole
of H2

h. This problem is solved as before by the use of rigged Hilbert spaces. It is

shown in [8, Eq. 3.4] that any element v ∈ H2
h is of the form v(s, x, y) = e2πihsf̂(x, y)

for some f ∈ F 2(Oh) (f̂ denotes the Fourier transform of f). The following result
from [8] shows that states in H2

h and F 2(Oh) will give the same expectation values.

Theorem 4.2. If B is a p–mechanical observable and v1, v2 ∈ H2
h are of the form

v1(s, x, y) = e2πihsf̂1(x, y) ,

v2(s, x, y) = e2πihsf̂2(x, y) ,
(18)

where f1 and f2 are in F 2(Oh), then we have the relationship

〈B ∗ v1, v2〉H2

h

= 〈ρh(B)f1, f2〉F 2(Oh) . (19)

Each of these states can also be realized by an appropriate integration kernel.

Theorem 4.3. If l(s, x, y) is defined to be the kernel

l(s, x, y) =

(

4

h

)n ∫

R2n

v((s, x, y)−1(s′, x′, y′))v((s′, x′, y′)) dx′ dy′ , (20)

then

〈B ∗ v, v〉H2

h

=

∫

Hn

B(s, x, y)l(s, x, y) ds dx dy .

Theorem 4.3 is proved in [8]. Next we define the time evolution of the H2
h states.

The operator A on v ∈ H2
h is just Av =

2π

ih
v which is a left and right inverse of

1

4π2

∂

∂s
.
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Definition 4.4. If we have a system with energy BH then an arbitrary vector
v ∈ H2

h evolves under the equation

dv

dt
= BH ∗ Av = ABH ∗ v . (21)

The operation of left convolution preserves each H2
h so this time evolution is

well defined. Equation (21) implies that if we have BH time–independent then for
any v ∈ H2

h

v(t; s, x, y) = etBHAv(0; s, x, y) ,

where eBHA is the exponential of the operator of applying A and then applying the
left convolution of BH — this operator is defined using Stone’s theorem [11, Sect.
8.4].

Theorem 4.5. If we have a system with energy BH (assumed to be Hermitian)
then for any state v ∈ H2

h and any observable B

d

dt
〈B ∗ v, v〉 = 〈{[B,BH ]} ∗ v, v〉 .

We now define the time evolution of kernel states. Before we can do this we
need to define the concept of kernel self-adjointness.

Definition 4.6. A p–mechanical observable, B, is said to be kernel self-adjoint if
the adjoint of the operator {[·, B]} on the set of p-mechanical observables is the oper-
ator {[B, ·]} on the set of kernels (which are functionals on the set of p–mechanical
observables). This is equivalent to the following equation holding

〈{[C,B]} , l〉 = 〈C, {[B, l]} 〉

for any p–mechanical observable C, where the brackets 〈·, ·〉 represent

〈B, l〉 =

∫

B(g)l(g) dg .

The p–mechanical position and momentum observables are both kernel self ad-
joint and so are the p–mechanical Hamiltonians for the forced and harmonic oscil-
lators. Hence all the Hamiltonians considered in this paper are kernel self adjoint.

Definition 4.7. If we have a system with a kernel self-adjoint p–mechanical Hamil-
tonian, BH , then an arbitrary kernel l ∈ Lh, h ∈ R, evolves under the equation

dl

dt
= {[BH , l]} . (22)

The next theorem from [8] shows that the time evolution of these kernels coin-
cides with the time evolution of p–mechanical observables.
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Theorem 4.8. If l is a kernel evolving under equation (22) then any observable B
will satisfy

d

dt

∫

Hn

B l dg =

∫

Hn

{[B,BH ]} l dg .

In [8] an overcomplete system of coherent states in H2
h was derived using rep-

resentations of the Heisenberg group

v(h,a,b)(s, x, y) = (23)

= v(h,0,0)

(

s+
1

2h
(by + ax), x+

b

h
, y −

a

h

)

=

= exp

(

2πihs+ πi(by + ax) −
πh

2

(

x+
b

h

)2

−
πh

2

(

y −
a

h

)2
)

.

The corresponding kernel coherent states are

l(h,a,b) = exp

(

2πihs+ 2πi(ax+ by) −
πh

2
(x2 + y2)

)

. (24)

It is shown in [8] that if we choose B = P(f) then

lim
h→0

〈B ∗ v(h,q,p), v(h,q,p)〉 =

∫

Hn

B l(h,q,p) dg = f(q, p) .

By the usual theory of coherent states in a Hilbert space any element v ∈ H2
h can

be written as

v =

∫

R2n

〈v, v(h,q,p)〉v(h,q,p) dq dp . (25)

5 Canonical transformations in p−mechanics

In this chapter we discuss the representation of canonical transformations in
p–mechanics. A canonical transformation in classical mechanics is a map A defined
on phase space which preserves the symplectic form2), that is

ω(A(q, p), A(q′, p′)) = ω((q, p), (q′, p′)) . (26)

If A is a linear canonical transformation then its effect on a p–mechanical observable
B is just [3]

B(s, x, y) 7→ B(s, (A−1)∗(x, y)) .

The image of non-linear canonical transformations in p–mechanics is a much
more delicate subject — this is the main focus of [6]. The approach we take
continues the work of Moshinsky and his collaborators. Our aim is to understand
the operator U on H2

h which corresponds to the classical canonical transformation.

2) ω is defined as ω((q, p), (q′, p′)) = qp′ − q′p.
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Our method starts with the observation that a canonical transformation in classical
mechanics described by 2n independent relations

qi → Qi(q, p) , pi → Pi(q, p) , (27)

i = 1, . . . , n where {Qi, Pj}q,p = δij can be realized implicitly by 2n functional
relations

fi(q, p) = Fi(Q,P ) , gi(q, p) = Gi(Q,P ) , (28)

i = 1, . . . , n where {fi, gj}q,p = {Fi, Gj}Q,P . The advantage of describing the
canonical transformation implicitly is that the p–mechanisation (see equation (6))
of the functions in (28) may be easier to define than the functions in equations (27).

In Dirac’s original treatment of quantum canonical transformations [18] he pro-
posed that the canonical transformation from equations (27) should be represented
in quantum mechanics by an unitary operator U on a Hilbert space such that

Q̃i = Uq̃iU
−1 and P̃i = Up̃iU

−1 ,

i = 1, . . . , n. Here Q̃i, P̃i, q̃i, p̃i are the quantum mechanical observables corre-
sponding to the classical mechanical observables Qi, Pi, qi, pi respectively.

In [15] Mello and Moshinsky suggested that in some circumstances it is easier
to define the operator U by the equations

F̃U = Uf̃ and G̃U = Ug̃ ,

where F̃ , G̃, f̃ , g̃ are the operators corresponding to the classical observables F , G,
f , g from equations (28).

We proceed to transfer this approach into p–mechanics. We want to understand
the operator U which is defined by the equations

UP(fi(q, p)) ∗ v = P(Fi(Q,P )) ∗ Uv , (29)

UP(gi(q, p)) ∗ v = P(Gi(Q,P )) ∗ Uv , (30)

where P is the map of p–mechanisation (see equation (6)) and v is any element
of H2

h. We wish to find out the matrix elements of the operator U with respect
to the H2

h coherent states from equation (23), that is 〈Uv(h,a,b), v(h,a′,b′)〉. In [6]
it is shown that m(a, b, a′, b′) = 〈Uv(h,a,b), v(h,a′,b′)〉 satisfies the following integral
equation

∫

R2n

m(a′′, b′′, a′, b′)〈P(fi) ∗ v(h,a,b), v(h,a′′,b′′)〉 da′′ db′′ = (31)

=

∫

R2n

m(a, b, a′′, b′′)〈P(Fi) ∗ v(h,a′′,b′′), v(h,a′,b′)〉 da′′ db′′,

∫

R2n

m(a′′, b′′, a′, b′)〈P(gi) ∗ v(h,a,b), v(h,a′′,b′′)〉 da′′ db′′ = (32)

=

∫

R2n

m(a, b, a′′, b′′)〈P(Gi) ∗ v(h,a′′,b′′), v(h,a′,b′)〉 da′′ db′′.

By equation (25) if we know m(a, b, c, d) then we know the effect of U on any state
in H2

h.
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6 The Kepler/Coulomb problem

6.1 p−mechanisation of the Kepler/Coulomb problem

In this section we look at the Kepler/Coulomb problem in detail. The Kepler/Cou-
lomb Hamiltonian in three dimensional classical mechanics is3)

H(q, p) =
‖p‖2

2
−

1

‖q‖
. (33)

All the norms in the above equation are the 2–norm on R3

(that is ‖x‖ =
√

x2
1 + x2

2 + x2
3 ). Using the fact that the inverse Fourier trans-

form of ‖q‖−1 is the element of S ′(R3),
(

π‖x‖2
)−1

[15, Chap 2, Sect 3.3], the
p–mechanisation (see equation (6)) of H is

BH(s, x, y) =

(

−
1

8π2
δ(s)δ(x)δ(2)(y) − δ(s)

1

π‖x‖2
δ(y)

)

. (34)

This is a distribution in the space S ′(H3). Three classical constants of the motion
are the components of the classical angular momentum vector. The ith component
of the classical angular momentum vector is

li = εijkqjpk (35)

(in the above equation we have used summation convention). The p–mechanisation
of the ith component of angular momentum is

Li = −
1

4π2
εijkδ(s)δ

(1)
(j) (x)δ

(1)
(k)(y) . (36)

δ
(1)
(j) (x) represents the distribution

∂

∂xj
δ(x1, x2, x3). Three more constants of the

classical motion are the three components of the classical Laplace–Runge–Lenz
vector. The ith component of the Laplace–Runge–Lenz vector can be written as

fi = εijkljpk +
qi

r
. (37)

The p–mechanisation of this observable is

Fi =
1

2πi
εijkLj ∗ δ(s)δ(x)δ

(1)
(k)(y)+ (38)

+
1

2πi
δ(s)δ

(1)
(i) (x)δ(y) ∗ δ(s)

1

π‖x‖2
δ(y) .

The Hamiltonian along with both the angular momentum vector and the Lenz
vector are shown to satisfy an o(4) symmetry [14] under both the Poisson brack-
ets and the quantum commutator. Using the commutation of the left and right

3) Here we have taken all constants equal to one to reduce the technicalities in the calculations.

10



The representation theory of the Heisenberg group and beyond

invariant vector fields [3] along with the results

3
∑

j=1

∂

∂xj
xj

1

‖x‖2
=

1

‖x‖2
,

xi
∂

∂xj

1

‖x‖2
= −

2xixj
‖x‖4

= xj
∂

∂xi

1

‖x‖2
,

we get the same o(4) symmetry under the universal brackets (see equation (8)).
This means that if ξ and η are elements of R3 then

{[L.ξ, L.η]} = L.(ξ × η) , (39)

{[L.ξ, F.η]} = F.(ξ × η) , (40)

{[F.ξ, F.η]} = −2H ∗ L.(ξ × η) . (41)

The Kepler/Coulomb p–dynamic equation (see equation (9)) for an arbitrary p–
mechanical observable, B, takes the form:

dB

dt
= −

3
∑

j=1

yj
∂B

∂xj
+

1

π

∫

R3

1

‖x− x′‖2

[

B
(

s+ 1
2y(x− x′), x′, y

)

−

−B
(

s+ 1
2y(x

′ − x), x′, y
)]

dx′.

This equation is very hard to analyse due to being the mixture of a differential
equation and an integral equation. This shows us that taking this approach to
obtain relations between classical and quantum mechanics is not suitable for this
system.

6.2 The Klauder coherent states for the hydrogen atom

Ever since Schrödinger introduced the harmonic oscillator coherent states the
hunt has been on to find a set of states which have the same properties for the
hydrogen atom. Many efforts have been made which possess some of the properties
of the harmonic oscillator coherent states, but finding a set of states which possessed
all the same properties for the hydrogen atom was never achieved. One of the best
attempts was done by Klauder in his ground breaking paper [16] — a set of coherent
states for the hydrogen atom were introduced which had the properties of being:
continuous in their label, temporally stable and satisfying a resolution of unity for
the bound state portion of the hydrogen atom. Unfortunately they are not minimal
uncertainty states, but for our purposes we do not require this property. We now
give a brief overview of these coherent states.

Before we can define the Kepler/Coulomb coherent states we need to introduce
the angular–momentum coherent states adapted to the Kepler/Coulomb problem

11
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[16, Eq. 15]

ψ(n,Ω)(r, θ, φ) =

n
∑

l=0

l
∑

m=−l

[

(2l)!

(l +m)!(l −m)!

]1/2

sinl−m
(

θ

2

)

· cosl+m
(

θ

2

)

×

×e−i(mφ+lψ)ψ(n+1,l,m)(r, θ, φ) (2l + 1)1/2.

It is important to note that for labelling the coherent states a bar is used over
Ω = (θ, φ, ψ), to show that they are different from the θ and φ in the domain of
the function. The functions ψ(n,l,m)(r, θ, φ) are the bound state (negative energy)
eigenfunctions for the Kepler/Coulomb Hamiltonian [17]. We denote by BS the
space spanned by the vectors ψ(n,l,m).

We let AMn denote the nth angular momentum subspace — that is the space
spanned by the angular momentum eigenfunctions ψ(l,m) [17], for 0 ≤ l ≤ n and
−l ≤ m ≤ l. It is shown in [16] that these coherent states satisfy a resolution of
the identity in the subspace AMn, that is

∫

〈ψ, ψ(n,Ω)〉ψ(n,Ω) sin(θ) dθ dφ dψ =

{

ψ , if ψ ∈ AMn;
0 , otherwise.

Now we can define the Kepler/Coulomb coherent states as4)

ψ(σ,γ,Ω) = e−σ
2

∞
∑

n=0





σn exp
[

−2πγ ·
(

ih(n+ 1)2
)−1
]

(n!)1/2



ψ(n,Ω) . (42)

For later use we define the measure ν(σ, γ,Ω) as
∫

f(σ, γ,Ω) dν(σ, γ,Ω) = (43)

=

∫ π

0

∫ 2π

0

∫ 2π

0

lim
Θ→∞

1

2Θ

∫ Θ

−Θ

∫ ∞

0

f(σ, γ,Ω) sin(θ) dσ dγ dθ dφ dψ .

We also define the measure µ(r, θ, φ) by

∫

ψ(r, θ, φ) dµ(r, θ, φ) =

∫ 2π

0

∫ π

0

∫ ∞

0

ψ(r, θ, φ)r2 sin(θ) dr dθ dφ .

One property of the coherent states defined in equation (42) is that they satisfy a
resolution of the identity for the bound states of the Kepler/Coulomb Hamiltonian
[16, Eq. 18], that is

∫

〈ψ, ψ(σ,γ,Ω)〉ψ(σ,γ,Ω) dν(σ, γ,Ω) =

{

ψ , if ψ ∈ BS;
0 , otherwise.

4) These are by no means the unique choice of Kepler/Coulomb coherent sates. The weights

e−σ
2

and n! may be changed as described in [16]. In various papers [22, 23, 25, 26] various
suggestions on other choices of these weights are given.

12
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Another property of the coherent states is

ρh(BH )ψ(σ,γ,Ω) = e−σ
2

∞
∑

n=0



−
ωσn exp

[

2πγ ·
(

ih(n+ 1)2
)−1
]

(n+ 1)2(n!)1/2



ψ(n,Ω) . (44)

This can also be realized as

−
2π

ih
ρh(BH)ψ(σ,γ,Ω) = ω

∂

∂γ
ψ(σ,γ,Ω)(r, θ, φ) . (45)

The above two equations are alternative realizations of the temporal stability [16]
property of the Kepler/Coulomb states.

6.3 A Hilbert space for the Kepler/Coulomb problem

In this section we introduce a new Hilbert space which is suitable for modelling
the quantum mechanical Kepler/Coulomb problem. Two models of quantum me-
chanics are said to be equivalent if all the transition amplitudes are the same [19].
We show in this section that for a subset of states and a subset of observables a
model using this new Hilbert space will be equivalent to the standard model (that
is, the model using the irreducible unitary Scrödinger representation on L2(R3)).
Initially we define a new space.

Definition 6.1. We define the Kepler/Coulomb space, which we denote KC, to be

KC =

{

f(σ, γ,Ω) =

∫

ψ(r, θ, φ)ψ(σ,γ,Ω)(r, θ, φ) dµ(r, θ, φ) : ψ ∈ BS

}

. (46)

The inner product of f1, f2 ∈ KC is given by

〈f1, f2〉 =

∫

f1(σ, γ,Ω)f2(σ, γ,Ω) dν(σ, γ,Ω) ,

where ν is the measure defined in equation (43). We can take the completion of
this space with respect to this inner product to obtain a Hilbert space. We have a
map K1 : BS → KC given by

(K1(ψ)) (σ, γ,Ω) =

∫

ψ(r, θ, φ)ψ(σ,γ,Ω)(r, θ, φ) dµ(r, θ, φ) =

= 〈ψ, ψ(σ,γ,Ω)〉F(SP3) .

(47)

We use the notation f(r,θ,φ) to denote ψ(σ,γ,Ω) as an element of KC.

Lemma 6.2. K1 is a unitary operator and has inverse K−1
1 : KC → BS

K−1
1 f =

∫

f(σ, γ,Ω)ψ(σ,γ,Ω)(r, θ, φ) dν(σ, γ,Ω). (48)

13
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Proof. Both of these assertions follow from the fact that the coherent states ψ(σ,γ,Ω)

satisfy a resolution of the identity for the bound states of the Kepler/Coulomb
problem.

Theorem 6.3. If A is an operator on BS and ψ1, ψ2 ∈ BS, then if we let Ã =
K1AK

−1
1 , f1 = K1ψ1 and f2 = K1ψ2 we have

〈Aψ1, ψ2〉 = 〈Ãf1, f2〉 .

Proof. Using Lemma 6.2 we have

〈Ãf1, f2〉 = 〈K1AK
−1
1 K1ψ1,K1ψ2〉 =

= 〈K1Aψ1,K1ψ2〉 =

= 〈Aψ1, ψ2〉 .

This theorem means that if we transform the usual model of quantum mechanics
by the operator K1 then our new model is equivalent for operators which preserve
BS and states which are in BS. So this new Hilbert space is suitable for modelling
quantum mechanics as long as we are only considering operators which preserve
BS and states which are bound states for the Kepler/Coulomb problem. Unfor-
tunately this model does not extend to all observables and so we cannot obtain a
representation of the Heisenberg group on this space. We now show that for the
Kepler/Coulomb problem the time evolution in our new Hilbert space, KC is just
a shift in the γ variable.

Theorem 6.4. If Ĥ is the operator on BS equal to ρh(BH) then

˜̂
H = K1ĤK−1

1 =
ih

2π
ω
∂

∂γ
.

Proof. It is clear that Ĥ will preserve the space BS and so is an operator on this
space. If we let f be an arbitrary element of KC then f = K1ψ for some ψ ∈ BS

˜̂
Hf =

˜̂
HK1ψ =

= K1Ĥψ =

= 〈Ĥψ, ψ(σ,γ,Ω)〉 =

= 〈ψ, Ĥψ(σ,γ,Ω)〉 = (49)

=

〈

ψ,−
ih

2π
ω
∂

∂γ
ψ(σ,γ,Ω)

〉

= (50)

=
ih

2π
ω
∂

∂γ

〈

ψ, ψ(σ,γ,Ω)

〉

=

=
ih

2π
ω
∂f

∂γ
.
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At (49) we have used the fact that Ĥ is a self adjoint operator and at (50) we have
used equation (45).

The Schrödinger equation in KC is

df

dt
=

2π

ih
˜̂
Hf = ω

∂f

∂γ
.

So the time evolution of an arbitrary f(t;σ, γ,Ω) ∈ KC is given by

f(t;σ, γ,Ω) = f0(σ, γ + ωt,Ω) ,

where f0(σ, γ,Ω) = f(0;σ, γ,Ω) the initial value of the state at time t = 0. The

eigenfunctions in KC of the operator
˜̂
H =

ih

2π
ω
∂

∂γ
are

f(n,l,m)(σ, γ,Ω) = e−σ
2
σn exp

[

−2πγ ·
(

ihn2
)−1
]

(n!)1/2

[

(2l)!

(l +m)!(l −m)!

]1/2

×

× sinl−m
(

θ

2

)

· cosl+m
(

θ

2

)

· e−i(mφ+lψ) (2l+ 1)1/2 ,

where n ∈ N, l ∈ N such that 0 ≤ l ≤ n and m ∈ Z such that −l ≤ m ≤ l. These
eigenfunctions will have eigenvalue −ωn−2 with degeneracy n2. This agrees with
the usual quantum mechanical theory. It is important to note that this model is
only suitable for calculating probability amplitudes for states which are in BS and
observables which preserve BS. However we will describe in Subsection 6.4 how
this can be extended to model a larger set of states.

6.4 Generalizations

We now show how the above approach for the Kepler/Coulomb problem can be
extended to any quantum mechanical system with a discrete spectrum. Further-
more we show that this approach can be extended to include systems with discrete
and continuous spectra. This is all done by facilitating the extensions of Klauder’s
coherent states.

Since Klauder discovered his coherent states for the hydrogen atom there have
been many extensions. Majumdar and Sharatchandra have written a paper [20]
discussing relations between coherent states for the hydrogen atom and the action
angle variables for the Kepler problem. Fox [22] extended this approach to show how
these states could be realized as Gaussians. Crawford [23] described an extension
which could model general systems with energy degeneracies. This work used the
Perelomov coherent states [25] for the degeneracy group. Since these coherent states
satisfy both a resolution of unity for the set of states in question and are temporally
stable, the associated Hilbert spaces can be obtained in exactly the same way as in
Section 6.3. The proofs will almost follow word for word.

15



Alastair Brodlie

If the set of eigenfunctions for the Hamiltonian in question spans the entire
space then K1 from equation (47) will be unitary, bijective, invertible and defined
on the whole of KC. This means that the Hilbert space we obtain will be able to
deal with any observable and any state. Furthermore K1ρhK

−1
1 will be a unitary

irreducible representation of the Heisenberg group which is unitarily equivalent
to the Schrödinger representation. This representation would be able to model
probability amplitudes for any quantum mechanical state and quantum mechanical
observable.

We can also extend our approach to systems with both discrete and continuous
spectra. The extension of the original coherent states to systems with both discrete
and continuous spectra is given in [25, 26]. Since these coherent states satisfy a
resolution of the identity and are temporally stable we can obtain another Hilbert
space by following the proofs in Section 6.3 word for word.
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