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We study open spin chains based on rational sl(N) and sl(M|N) R—matrices. We clas-
sify the solutions of the reflection equations, for both the soliton—preserving and soliton—
non—preserving cases. We then write the Bethe equations for these open spin chains.
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1 Introduction

We are interested in open quantum spin chains based on rational R—matrices of
sl(N) and sl(M|N):

Rlz(/\) =AM +iPo, (1)
where P is the super—permutation operator
M+N ‘
P=3 (-)VE; ®E,. (2)
i,j=1

We will give a classification of the reflection matrices compatible with the inte-
grability of the open spin chain, in the two cases of soliton preserving and soliton
non-preserving boundary conditions.

In section 2, we recall graphically the proof of commutation of transfer matrices
for closed chains. We then recall in section 3 the commutation for open chains.
In section 4, we define the transfer matrix for open spin chains with soliton non
preserving boundary conditions. In section 5 we give the classification of solutions
of the reflection equations, for both soliton preserving and soliton non preserving
cases. We finally present the analytical Bethe ansatz method for these chains and
end with the Bethe equations. More details and references can be found in [1].

2 Closed chain integrability

Let R be a solution of the Yang—Baxter equation

Ri2(A1 — A2) Riz(M1) Raz(M2) = Raz(M2) Riz(M) Ria(M — A2) . (3)
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On a chain with L sites, we define the monodromy matrix as

T(A) = Ra1(A) Raz(A) -+ Rar() (4)

and the transfer matrix as its super trace

t(\) = Tra T(N). (5)

The Hamiltonian is one of the terms of the expansion of the transfer matrix

H=-190

2 d\ (©)

A=0"

The main property used for integrability of closed spin chains, i.e. commutation
of the transfer matrix for different values of the spectral parameter, is the local
Yang—-Baxter equation.
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Graphical proof of the commutation of transfer matrices ¢(u) and #(v):

) t(v)=Tr Tr || |

Insertion of Rup(u — v)R,} (u —v) —

Use of Yang—Baxter —
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Use of Yang—Baxter again —

b |

again ...

Cyclicity of trace —

o = 1(v) t{u)
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3 Open chain integrability

For the integrability of open chains, one also needs the (local) reflection equa-

tion:
Rab(Aa - Ab)-Kra()\a)-Rba(Aa + )\b)Kb()\b) =

= Kp(Ao) Rab(Aa + Ap) Ka(Aa) Rpa(Aa — Ap) - "
Let
Ta(A) = Rar(MN)Ra,.-1(A) -+ Ra2(A) Ra1 () (8)
and
Ta(A) = Ria(MR2a(A) - R 1,0(M)Ria(N)- (9)
The open spin chain transfer matrix is now defined as the super trace:
t(A) = Tro K (V) Tu(N) Ki (V) Tu(N) (10)
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Graphical proof of the commutation of transfer matrices for different spectral
parameters, following Cherednik [2] and Sklyanin [3]:

t(A1) t(Ae) =

T >
Insertion of crossing unitarity:
b} K,,,,;K
T >
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Use of Yang—Baxter equation:

b4

again and again:




Insertion of R R~!:
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Use of Yang—Baxter equation:

)

)

A

{
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Use of Yang—Baxter again:

b 4

pa—
—_
L
=
Use of reflection equation on the left:
pa—
—_
L
=
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Use of reflection equation on the right:

b 4

-
—_

e

=

Use of Yang—Baxter equation:
S W N )

-
—_

e

=
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Use of Yang—Baxter again:

b 4

Another Yang-Baxter:
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Yang-Baxter up to the right end:

b 4

< )
>
< )
—
Use of crossing unitarity:
' Y N )
—

N N\

which is t(A2) t(A1). Hence, [t(A1),t(A2)] = 0.
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4 Soliton non-preserving case

In this section, we consider the case where the reflection on the boundary of
the open chain also exchanges the fundamental representation and its conjugate
(soliton non preserving case). The monodromy matrix itself is changed and includes
alternating fundamental-conjugate vector spaces along the chain (which is supposed
to have an even length 2L).

To(\) = Raoz (N Ra2r-1(\)... Raa(MN)Ra1(N) (11)

p—
- ——
p——
- e ——
Y

with R(\) = R**(=A—ip) = R*2(—\—ip) and 2p = Oo(M — N), 6 = £1. We use a
transposition * which is related to the usual transposition 7 by (A is any matrix):

V = antidiag(1,1,...,1),
for which V2 =60y =1
or
t _y,—1 4T
A=V ATV, where V:antidiag( 1,1, =1,...,—1 ) (12)
—— ———
N/2 N/2
for which V2 =6y =—1.
The second case is forbidden for N odd.
T:(A) = Ria(M)Raa(N) ... Roar—1a(M)Rara(N). (13)

The two-line transfer matrix for the open chain with soliton non-preserving bound-
ary conditions is then defined by

t(A) = Tra K (\) TN Kg NTa(N), (14)
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-
-———J->
i

-

where Tr, denotes here the super trace over the auxiliary space.
The commutation of transfer matrices for different values of the spectral pa-
rameter now relies on the (local) reflection equation

Rap(Ma = M) Ko (M) Roa (M + M) Kb (M) = K (M) Rab (Mo + M) Ka(Na) Rpa (Mo — Ap) -
(15)

5 Solutions of the reflection equation

5.1 Solutions to the soliton—preserving reflection equation

Any bosonic invertible solution of the soliton preserving reflection equation (RE)

Ria(A1 — A2) K1(A1)Ri2( A1 + A2)Ka(A2) =

= Ko(A2)Ri2(M1 + A2) K1 (A1) Ri2(M1 — A2), (16)
where Ri2(A) = A1 41 Pyo is the super—Yangian R—matrix, is of the form
K\ =U (i€1+AE)U ", (17)
where U is independent of A and either
(i) E is diagonal and E? =T (diagonalisable solutions)
(ii) E is strictly triangular and E? = 0 (non-diagonalisable solutions)
5.2 Solutions to the soliton NON-preserving reflection equation
Any bosonic invertible solution of the soliton non-preserving RE
Ris(A1 — M) K1(A) RS (A1 + A2) Ka(Ao) = 18)

= Ka(A2) R (M1 + A2) K1 (A1) Rat (A1 — Aa)

where Ri3(\) = Al 41 Py is the super—Yangian R-matrix, is a constant matrix
(up to a multiplication by a scalar function) such that K' = 4+K.
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6 Pseudovacuum and one eigenvalue of the transfer matrix

We now choose an appropriate pseudo—vacuum, which is an exact eigenstate of
the transfer matrix:

1
L
lwi) = ® |[+); where |+)= 0 € CM*N, (19)
=1 0
ie.
t(A) | wi) =A%) Jws) (20)
with
M+N—2
A°(N) = aW) () + BN D (=D + (V) (21)

|
-

lf
AW E(D) N g v 1 (A,
where, using

A =A+i BN =, .
a(\) = a(=X—ip), b(A) =b(=A —ip)
the functions «, 3, v and g; are defined as:
(i) Soliton preserving boundary conditions with L sites
a(X) =a*(\), B =~v(\) =b*(\) (23)
and ()
A\ A=)
gl()‘): (il+ 2i(l+)l) ) [=0,....M -1,
A+ 5)A+=57) (24)

AN
A) = T IV — s I>M.
gl( ) (M1 TEMn )

(ii) Soliton non-preserving boundary conditions with 2L sites

The basis used until now was the distinguished basis of sl(M|N), where the indices
of sl(M) come in first place, 1, -- , M and those of sl(N) afterwards M +1,--- , M+
N. In the soliton non preserving case we take N = 2n even. We consider in that
case the symmetric basis for sl(M|2n), where the 2n indices of sl(2n) are split in
two parts: 1,--- ,nand n+M+1,--- ,n+ M +n, whereas the indices of the sli(M)
part are in the middle: n+1,---, M 4+ n. (see [1] for details)

o) = (aB) " 500 = (BB) s A0 = (apn) T (29)

and )
At+s5(p—1 M+N-1
gl(A):%v 0§l<%a
2 26
g]\l+é\l—1(>\) =1, if M+ N odd, ( )

9i(A) = gntm—1-1(=A —ip).
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7 Analytical Bethe ansatz

The other eigenvalues are supposed to be obtained by “dressing” with rational
functions

M+N -2
AQ) = oV 90N AN + BN D (DG (A )+ (27)
=1
+y BN g v (W) A1 (V) -
7.1 Bethe ansatz equations in the soliton preserving case
From the analyticity of A(\), one gets
Az<—1—21>=Az1(—g)a I=1,... M—1,
(28)

il il
AQM—I<_1§>:A2M_I_1(_1§), l=M-N+1,....M—1.

Gathering together all the constraints one can determine the dressing functions,
ie.

PUEVI ) At i et 3
S AEAD B AW
A= T11 HAEDJ%I AN g
imi AP I N\
XMﬁ1>)\+)\§z+1)+%_%/\_/\§l+1)+%_% R
ol AR L D i T ’
A0 = Aﬁ) A+A§”Ji]\{— gll—l A—Ag”(;ru\.i—gl i
P WD (IS VS G\ T V|
XMﬁ1>)\+>\g:j+%M—%+%/\—/\Z:z—f—%M—%—F%’
=D R VAR VTR R N G VT VT
I=M, . M+N-1. (29)
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Analyticity around the poles introduced in the factors A; finally imposes the so-
called Bethe equations in the \;:

el(/\l(l))QL _ H 62(/\21) _ A§1)) eg(/\gl) + /\51)) %

< I e=1(A = APy er (A + A1),
j=1
MmO
1=~ JJ e2A? = AP) e2(A + 21 x
j=1

M+
« H H 671(/\51) . /\;H—T)) 671()\1(1) + /\;14-7-))’
r=+1 j=1
1=2,....M—1,M+1,.... M+N -2,
MM=1)
1= J] ea™ =AMy e, A 4 AMY) x
=1
MMED
< I ad™ =AMy e (G A7),
j=1
M(MAN=2)
1= _ H eil(/\l(M+N—l) B A§M+N—2)) 671()\1(‘M+N—1) n )\§M+N—2)) o
j=1
MM+N-1)
y H ez(AEMJrN—l) _ A§M+N—1)) 62(A§M+N71) n )\§_M+N71)) (30)
j=1
with )
Atz
es(N) = 2. (31)
A=

We now implement non trivial soliton preserving boundary conditions K.
From the classification given in section 5, we know that K~ (\) is always conjugated
(by a constant matrix U) to a diagonal matrix of the form

K(\) =diag(a,...,a,0,....0,8,...,0,a,...,a). (32)

mi mo no ni

Then, it is easy to see that the spectrum and the symmetry of the model depend only
on the diagonal, and not on U. Indeed, when considering two reflection matrices
related by a constant conjugation, the corresponding transfer matrices are also
conjugated. Thus, it is enough to consider diagonal K~ (\) matrices to get the
general case. Such a property, which relies on the form of the R—matrix, is a priori
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valid only in the rational sl(N) and sl(M|N) cases.
For a diagonal solution with m; +ma = M, n1 + no = N, a(A) = =\ + iE,
B(A) = A +i¢, and the free boundary parameter £, one can compute the new form

gi(A) of the g—functions entering the expression of KO(A), the new pseudo—vacuum
eigenvalue. They take the form:

gl(A):(_A_Flg)gl(A)? l:()a"'7m1_15
G = (A i€+ im1) (V) L=mi . Mtns—1, (33)
a\) =(=A+i€—ima+in2)g(N), I=M-+ng,.... M+ N—-1,

where g;(\) are given by (24). The dressing functions A; keep the same form,
but the Bethe ansatz equations are modified (by K~ (\)), so that the value of the
eigenvalues A()) are different from the ones obtained when K () = 1.

The modifications induced on Bethe ansatz equations are the following:
— The factor —e;é_ml()\) appears in the LHS of the m* Bethe equation.

— The factor _627§1+m1*’m2*n2 (\) appears in the LHS of the (M + ns)'" Bethe
equation.

7.2 Bethe ansatz equations in the soliton non preserving case

The dressing functions now take the form:

MO A AW 8 AW

AN =]l —m— — 5
1L AFA TS AN+
MONFAD 85 32O il gy

Al(/\) = ’ O | u - o | it x
=1 )\-l-/\j +35 A )\J +3
M a+1) |, u i +1) i
e e

a0 |, u , i +0) it i’ T ’

j=1 )\—l—)\] +35+3 /\—/\j +35+3

M O il o, . w
Ay = [ A T EACA by d
P VL N\ C R
MO+D (I+1) . il i (1+1) . i ;
y H AN T Fin -5+ 5 AN fin— 54y 6
ey )\+)\§l+1)+in_%_%/\_/\gl+1)+in_%_%

-1

n<l<n+
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and A;(\) = Apgon—1-1(—X —ip), and for M =2m + 1

MO N pin = A AW i
A+A§’“>+m—§ A—A<’“>+in—ﬁ

Ar(\) =

(e b=

Jj=1
. i i k i i
)\—|—/\§ +ln—§k+2/\ /\§)+m——k—|—§ (35)
k . i i k 1 i !
)\—|—/\§ +in—% -1 x— /\5 )+ in—%_1
(k=m+n)
and the Bethe ansatz equations read as:
A. sl(2m + 1|2n) superalgebra
ML
el = = [T a0 = Af) ea (0" +A5)
j=1
M@
< JT e=1 (A = APy i) + 2
j=1
MO
1=~ T] e20? = 2x0) €200 +A0)
j=1
M+
« H H efl(/\l(*l) /\(l—‘rT)) (/\(l) + )\(l+7-)) :
T=%1 j=1
l = 2, , N + m — 1 B l # n,
M1
1= J] e =A") e + a0 x
j=1
Mn=1)
< [T et =28y ey (™ + a1y,
j=1
M)
e 1 () = = IT ez =2 20 + 285y es A =A%) e (A + 289
j=1
MFE=1)
x H eot (A =AY e AP ATy Dk =m 4. (36)

Note that these equations are the Bethe ansatz equations of the osp(2m + 1|2n)
case (see e.g. [4]) apart from the last equation.
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B. s1(2m|2n) superalgebra

The first n +m — 1 equations are the same as in the previous case, but the last
equation is modified, with again k = m + n, to

M)

e (AP = H s = Ay (A 4 AP x
M(k 1)
k (k— k k—
x H 2 (A ATy 2 (A Ay (37)

With a non trivial diagonal reflection matrix K—

In the case of a non trivial diagonal reflection matrix K~ with € = 1, i.e.
K~ (\) = diag(k1, ..., kpyn) with Eygniioj = kj, (38)
the g—functions entering the new pseudo—vacuum eigenvalue are modified as:

B M+N-1
D) = kg, 0sls ——F—, (39)

where g;(\) are given by (26). The remaining g are defined by requiring the crossing
relation

gruN-1(=A=ip) = Gi(A) . (40)

The dressing functions (34) and (36) keep the same form, but the LHS of /! Bethe
ansatz equation (given in (36) and (37)) is multiplied by k¢/ke+1.
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