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1 Introduction

Noncommutative gauge theories emerged in the context of string theory in the
presence of a nontrivial background of one of the massless states of closed string,
and has been extensively studied in the last six years.

One important aspect of quantum field theories is the violation of classical
symmetries of the theory due to quantum effects, anomalies. It has been found
that in noncommutative gauge theories anomalies have essential new aspects. In
this talk the most salient features of the axial anomaly in noncommutative QED
are discussed following [1, 2].

Anomalies also play a crucial role in derivations of effective actions for super-
symmetric gauge theories.

Utilization of the axial anomalies of noncommutative gauge theories and a cor-
responding anomaly in the supersymmetric version in the derivation of an effective
action of the N = 1 supersymmetric noncommutative U(1) gauge theory are briefly
reviewed [3].

2 Anomalies

2.1 Noncommutative U(1) gauge theory

Noncommutativity from string theory in the presence of background antisymmetric
field Bµν on a brane gives (only B12 6= 0 is assumed here)

[x1, x2] = iΘ , where Θ is related to B. (1)
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Then the low energy of the string theory gives a noncommutative gauge theory on
the brane, where products are substituted by ?–products defined by

f(x) ? g(x) ≡ f(x) exp

(

iΘµν

2

←
∂µ

→
∂ν

)

g(x) , (2)

with the properties

exp(ikx) ? exp(ipx) = exp
(

i(k + p)x
)

exp
(

− i
2 Θµνk

µpν
)

, (3)
∫

f ? g =

∫

f g , (4)

∫

f ? g ? h =

∫

h ? f ? g . (5)

The noncommutative U(1) gauge theory is given by the Lagrangian

L = − 1
4 Fµν ? F

µν + ψ̄ ? (iD/ −m) ? ψ , (6)

with
Dµψ = ∂µψ + igAµ ? ψ ,

Fµν = ∂µAν − ∂νAµ + ig (Aµ ? Aν −Aν ? Aµ) .
(7)

A most important property of noncommutative field theories is the UV/IR mixing,
where the better UV behavior due to the phase

exp

(

iΘµν

2
kµpν

)

,

comes back to haunt as IR singularity in the ”nonplanar” diagram [4]. The effective
cutoff

Λ−2
eff. = Λ−2 + p ◦ p , with p ◦ p ≡ pµΘµρΘρνp

ν , (8)

becomes finite as Λ → ∞, thus giving good UV behavior; while as p→ 0, singularity
as IR reappears.

2.2 Anomalies in commutative gauge theory

Generally symmetries of an action, e.g.,

I =

∫

ψ̄ (iD/ )ψ , (9)

under
ψ → eiαψ for α constant,

or ψ → eiγ5αψ for α constant,
(10)

are violated upon quantization. In the path integral formulation

Z =

∫

DψDψ̄ e−iI , (11)
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anomaly is the consequence of noninvariance of the measure; while invariance of
the action

δL = α ∂µj
µ , jµ = ψ̄γµψ , ∂µj

µ = 0 , (12)

(same with jµ
5 = ψ̄γµγ5ψ), leads to a conserved charge,

Q =

∫

j0d
3x , Q̇ = 0 . (13)

To find the anomaly it is convenient to consider a modified derivation, where α is
initially to depend on x,

δψ = iα(x)ψ(x) , (14)

then

δI =

∫

α(x)∂µj
µ(x) = −

∫

∂µαj
µ = 0 ;

if α is to be a constant,
∂µj

µ = 0 . (15)

Under this change of variable, measure changes as

Dψ̄Dψ → Dψ̄Dψ exp

(

−2i

∫

α(x)
∑

n

ϕ†n(x)ϕn(x)

)

, (16)

where
ψ =

∑

n

anϕn , iD/ ϕn = λnϕn . (17)

Regularization of the sum,

∑

n

ϕ†nϕn −→ lim
M→∞

∑

n

ϕ†nϕn exp

(

−
λ2

n

M2

)

, (18)

replaces the exponent in (17) by a gauge invariant expression

lim
M→∞

∑

n

ϕ†n exp

(

(iD/ )2

M2

)

ϕn , (19)

which gives no anomaly for the U(1) symmetry

∂µj
µ = 0 , (20)

while giving an anomaly

∂µj
µ
5 = −

g2

16π2
Fµν F̃µν , F̃µν = εµνλρF

λρ , (21)

to the axial symmetry
δψ = iαγ5ψ axial (chiral). (22)
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2.3 Anomalies in noncommutative gauge theory

The same can now be repeated for the noncommutative gauge theory, where

L = ψ̄ ? (iD/) ? ψ = ψ̄ ? (i∂/ + igA/) ? ψ . (23)

The transformation

ψ(x) → eiαγ5ψ(x) , (24)

leads to a classical symmetry,

⇒ ∂µj
µ
5 = 0 , j

µ
5 = ψ̄ ? γµγ5ψ , (25)

and

Q5 =

∫

j50 d3x , Q̇5 = 0 . (26)

To study its anomaly the modified procedure is used, which gives two distinct
currents in contrast to ordinary theory,

a) the transformation

ψ(x) → eiα(x)γ5 ? ψ(x), (27)

leads to a covariantly conserved current Jµ
5 ;

⇒ J
µ
5 = ψβ ? ψ̄

(

γµγ5
)

αβ
, DµJ

µ
5 ≡ ∂µJ

µ
5 + ig

[

Aµ, J
µ
5

]

?
= 0. (28)

b) the transformation

ψ(x) → ψ ? eiα(x)γ5 , (29)

leads to an invariant conserved current j5µ

⇒ j
µ
5 = ψ̄ ? γµγ5ψ, ∂µj

5
µ = 0. (30)

Here ψ transforms in the fundamental representation ψ → U ? ψ and ψ̄ → ψ̄ ? U †.
The measure of the path integral is again not invariant

Dψ Dψ̄ → Dψ Dψ̄ e
−2i
∫

α?A
, (31)

with A the corresponding anomaly.
Now the significant difference with the ordinary theory appears: The two choices

for the change of variables lead to distinct anomalies for DµJ
µ
5 and ∂µj

µ
5 ,

a) for J5
µ,

δψ = iα(x)γ5 ? ψ(x) , (32)

A =
∑

n

(ϕn)β ?
(

ϕ†n
)

α
(γ5)αβ . (33)
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After regularization,

A = lim
M→∞

∑

n

(

e
−D/2

/M2

? ? ϕn

)

β

?
(

ϕ†n
)

α
(γ5)αβ (34)

and noting that Jµ
5 , DµJ

µ
5 , and A are covariant under gauge transformation,

U : O → U ?O ? U−1 (35)

a tedious calculation [1, 2, 3] leads to

DµJ
µ
5 = −

g2

16π2
Fµν ? F̃

µν ; (36)

b) For j5µ,

δψ = ψ(x) ? iα(x)γ5 , (37)

A =
∑

n

ϕ†n ? γ
5ϕn , (38)

an invariant regularization is needed. Using Wilson line

A = lim
M→∞

∑

n

ϕ†n ? γ5

[

e(iD/ )2/M2
]

inv.
? ϕn(x) , (39)

where

[

O
]

inv.
≡

∫

dk eikx

∫

dy
∑

n

1

n!

n
∏

i=1

∫

dσiP?

[

W (y, k̂)O(y + σik̂)
]

? eiky , (40)

W (y, k̂) = exp

(

i

∫ 1

0

dσk̂ · A(x+ σk̂)

)

, (41)

k̂µ = Θµνk
ν ,

O → U ?O ? U−1 , but
[

O
]

→
[

O
]

, (42)

one gets for Θp→ 0

∂µj
µ
5 = −

g2

16π2
Fµν ?

′ F̃ µν (43)

with

f(x) ?′ g(x) ≡ f(x)
sin
(

1
2

←
∂ µ Θµν

→
∂ ν

)

1
2

←
∂ µ Θµν

→
∂ ν

g(x) . (44)

While covariant Jµ
5 anomaly involves the ?–product, the invariant jµ

5 anomaly in-
volves the ?′–product [2, 3].
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2.4 Konishi anomaly (noncommutative)

Similar considerations apply to the current of supersymmetric (SUSY) gauge the-
ory. In N = 1 SUSY gauge theory

I =

∫

d4x d2θ d2θ̄ Φ̄ ? eV
? ? Φ +

∫

d4x d2θWα ? W
α + h.c. , (45)

with Φ(x, θ) the hypermuliplet and V (x, θ, θ̄) the gauge field,

Wα(x, θ) = D̄2 e−V
? ? DαeV

? ,

D = ∂θ + i
(

σµθ̄
)

∂µ ;
(46)

the symmetry,
Φ → eiα(x,θ) ? φ ,

eV → eiᾱ ? eV ? e−iα , D̄α = 0 .
(47)

J = Φ ? Φ̄ ? eV ,

j = Φ̄ ? eV ? Φ
(48)

is anomalous. The anomaly is given by

−
1

4
D̄2J = −

1

32π2
Wα ? W

α ,

−
1

4
D̄2j = −

1

32π2
Wα ?

′Wα + · · · .

(49)

The calculation is the same as for nonSUSY gauge theory, except for the regulator
eL/M2

, where

L =
1

16
D̄2e−V

? D2 eV
? . (50)

Lowest SUSY multiplet component of L is D/ 2, regulator brings SUSY and gauge
invariance [3].

The regulator for j is the same as for the nonSUSY case with D/ 2 → L and a
corresponding Wilson line.

3 Superpotential

It is known that effective superpotential of SUSY gauge theories is the sum of
a perturbative and a nonperturbative part

Weff(S) = Wpert + Wnon-pert , (51)

Wpert is calculated from Konishi anomaly, and Wnon-pert from the axial anomaly.
Here

S = Wα ? W
α (52)

S′ = Wα ?
′Wα + · · · . (53)
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The ellipses are the contribution of the Wilson line attachment.

To get Wnon-pert, axial anomaly is used;

UA(1) : Φ(x, θ) → eiαΦ(x, θ) and Wα(x, θ) →Wα(x, θ) ,

UR(1) : Φ(x, θ) → eiαΦ
(

x, e−3iα/2θ
)

and Wα(x, θ) → e3iα/2Wα

(

x, e−3iα/2θ
)

(54)
⇒

δAL =











0 ,
p ◦ p

4
�

1

M2
,

2NfαA′ ,
p ◦ p

4
�

1

M2

(55)

and

δRL =











2αR(λ)A ,
p ◦ p

4
�

1

M2
,

2NfαR(ψ)A′ ,
p ◦ p

4
�

1

M2
,

(56)

Here A and A′ are the planar and nonplanar ABJ anomalies. They are defined

by A ≡ −
1

32π2
Fµν ? F̃

µν and A′ ≡ −
1

32π2
Fµν ?

′ F̃ µν + · · · with the extra terms

denoting the contribution of the open Wilson line.

In the ”small” Θp limit

Wnon-pert(T, S
′; ΛNf

,ΛΘ) = S′



log





S′Nf Λ
+(Nf+6)
Θ

Λ
+2(3+Nf )
Nf

detT



−Nf



 , (57)

with ΛΘ ≡ Θ−1/2.

In the ”large” Θp limit

Wdyn(S; ΛNf
,ΛΘ) = −S



log





SΛ
3−2Nf

Θ

Λ
+2(3−Nf )
Nf



− 1



 . (58)

Here ΛΘ = Θ−1/2, and Tij = Φ̃i ? Φj .

To get Wpert; choose

Wtree = mTii + λT 2
ii ; (59)

and use Konishi anomaly to solve for T in terms of S ′ (small Θp limit) and S (large
Θp limit):
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In the ”small” Θp limit

Weff

(

S′;m,λ; Λ̂0, Λ̂Θ

)

∣

∣

∣

∣√
Θ|p|�1

=

= 6S′ log
Λ̂Θ

Λ0
−
Nf

2
S′ −Nf

m2

8λ
+ (N+

f −N−f )
m2

8λ

√

1 +
8λS′

m2
+

+S′ log

[(

1

2
+

1

2

√

1 +
8λS′

m2

)N+

f
(

1

2
−

1

2

√

1 +
8λS′

m2

)N−

f
]

.

(60)

In the ”large” Θp limit

Weff

(

〈trT 〉 = −
Nfm

2λ
;m,λ; Λ̂0, Λ̂Θ

) ∣

∣

∣

∣√
Θ|p|�1

= −
Nfm

2

4λ
− S

(

log
SΛ̂3

Θ

Λ̂6
0

− 1

)

.

(61)
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