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Ефимов А.Д., Коваль И.В., Изосимов И.Н. E4-2025-4
Сравнение описания ираст-полос в моделях Харриса и IBM
для четных ядер Th и U

Для четных ядер Th и U изучено описание энергий ираст-полос в модели
переменного момента инерции Харриса в ее феноменологическом применении.
Для некоторых из этих ядер приводятся результаты, полученные в мик-
роскопической версии IBM, в которой рассматриваются и высокоспиновые
моды возбуждений. Для других ядер в тех случаях, когда высокоспиновые
орбиты не столь существенны при описании свойств ираст-полос, помимо
модели Харриса применяется IBM с полным стандартным гамильтонианом,
построенным только из s-, d-бозонов. Так как модель Харриса рассматри-
вается не более чем с четырьмя параметрами, она как для тяжелых, так и
сверхтяжелых ядер может быть использована для аппроксимации энергий
высокоспиновых состояний. Исследование свойств ядер в различных моделях
позволяет выявить возможности описания различного поведения моментов
инерции в IBM и наметить дополнительные критерии относительно реализа-
ции пересечения полос.
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Comparison of the Description of Yrast Bands
in the Harris and IBM Models for Even Nuclei Th and U

For even Th and U nuclei, the description of the energies of yrast bands in
the Harris variable moment of inertia model is studied in its phenomenological
application. For some of these nuclei, the results obtained in the IBM microscopic
version are presented, in which high-spin excitation modes are also considered.
For other nuclei, in cases where high-spin orbits are not so significant in
describing the properties of yrast bands, in addition to the Harris model, IBM
with a full standard Hamiltonian constructed only from s, d bosons is utilized.
Since the Harris model is considered with no more than four parameters, it can
be used for both heavy and superheavy nuclei to approximate the energies of
high-spin states. The study of the properties of nuclei in various models will
reveal the possibilities of describing different behavior of the moments of inertia
in IBM and outline additional criteria for the implementation of band crossing.

The investigation has been performed at the Flerov Laboratory of Nuclear
Reactions, JINR.
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INTRODUCTION

Visualization of the behavior of the energies of states E in a band becomes
more qualitative if we move from energies to effective moments of inertia J .
This also allows us to improve the method of comparing experimental and
calculated energies of states of one band.

In addition, the backbending effect can be used to form judgments about
the spin values at which the bands cross. Comparison of the J(ω2) curves
obtained from experimental energies with those given by various nuclear
models, including microscopic ones, can reveal the capabilities of the corres-
ponding models and provide more reasoned judgments about the nature and
character of the states.

One of the methods of reproducing and predicting energies is based on
the expansion of the moment of inertia in powers of the rotation frequency ω,
as in the Harris model [1]. This is justified when the transition to a new
band has not yet occurred in the rotation band. As a rule, such a transition
occurs quite quickly in one or two states of the yrast band. In this case,
this is shown on the graph of the moment of inertia versus the square of
the rotation frequency in a specific way through backbending. Among heavy
nuclei, starting with thorium isotopes, three such nuclei are known today:
220Th, 242Pu, and 244Pu. This is why in [2], within the framework of the
IBM1 [3] phenomenology (hereinafter referred to as IBM), a good description
of the energies of yrast bands up to extremely high spins I in heavy nuclei
from Pu to No was obtained. The effective moment of inertia and the square
of the rotational speed are defined as

2J

h̄2
=

4I − 2
E(I → I − 2)

, (h̄ω)2 =

(
E(I → I − 2)

)2((
I(I + 1)

)1/2 − (
(I − 2)(I − 1)

)1/2)2 . (1)

This paper presents a description of the energies of yrast bands in
even–even heavy nuclei in the Harris model, considered not from the point of
view of the cracking model, but as a phenomenological model with a number of
parameters no more than four. The possibility of IBM in its phenomenological
aspect to describe moments of inertia is also considered. The moments of
inertia obtained in the two models are compared with each other. Finally,
the task is set to develop a criterion for determining the spin at which the
crossing of bands occurs. This can be done based on a comparison of the
behavior of J(ω2) according to experimental data and what the Harris model
gives. It should be noted that in some cases, although backbending may not
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be observed, the crossing of bands is still possible. This was revealed by
microscopic description of the chain of isotopes 220−236Th [4].

In order to increase the calculated moment of inertia at high-spin states
in deformed nuclei (162,164Er), in [5], a new term was incorporated into the
Hamiltonian of IBM1, so that the operator Î2 → Î2/(1 + f Î2). This part of
the Hamiltonian is always diagonal for any values of the parameters HIBM.
This addition is motivated by the fact that a decrease in superfluidity, the
gap parameter, leads to an increase in the moment of inertia, and the gap
parameter decreases with increasing rotation frequency. This should lead to
dJ/dI > 0 and dJ/dω > 0. Here, however, it should be kept in mind that the
growth of the moment of inertia from the rotation frequency is achieved with
arbitrary values of the traditional and full Hamiltonian of IBM, except for the
one that corresponds to the case of the SU(3) limit of IBM. In addition, with
the growth of the spin of the collective state, the influence of two-quasiparticle
states on the energy of this state increases. One example of a band built
on a two-quasiparticle mode is the S band. This also leads to an additional
increase in the moment of inertia or a decrease in the energies of intra-band
transitions.

Analysis of the dynamic moments of inertia of the lowest superdeformed
(SD) bands in even–even Hg, Pb, Gd, and Dy [6] and 192,194Hg, 152,154Dy [7]
isotopes led to the need to extend the coefficient f so that considering only
the relative excitation of the states in a rotational band, the energy of the
state with angular momentum I can be simply expressed as

E(I) =
C0

1+ f1I(I + 1) + f2I2(I + 1)2
I(I + 1).

Introduction of an additional modification of the Arima coefficient f shows
that J can change nonmonotonously with rotational frequency. Up to the point
that as the spin increases, the positive slope of the moment of inertia from
the rotation frequency can change to negative. The latter, by analogy with the
terms “backbending” and “upbending”, can be called downbending.

Calculations on this basis belong to semi-phenomenological approaches.
In [8], a novel modification is introduced, extending the Arima coefficient

to the third order. The computed outcomes of the rotational bands of 244Pu
and 248Cm demonstrate an exceptional degree of agreement with experimental
observations. Moreover, the used parameterization of the Arima term and
its modification successfully describes such behavior of the moment of
inertia from frequency as backbending, upbending, and the downturn (down
bending).

Commenting on the considered series of works [5–8], it should be kept
in mind that the phenomenon of backbending is traditionally associated with
the intersection of bands of different nature, namely, the collective one, built
on the ground state, and the one that has a two-quasiparticle pair with a
sufficiently high spin at its base.

The upbending phenomenon may be due to the fact that the crossing
of bands has not yet occurred completely, but the situation is close to it.
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In addition, the growth of the slope of the moment of inertia from frequency
within certain limits is reproduced within the framework of the traditional,
but at the same time complete IBM Hamiltonian.

From a microscopic point of view, as the spin of states increases, the
average number of quadrupole bosons increases, and this leads to some
weakening of pairing. Accordingly, the introduction of the Arima modification
of the IBM Hamiltonian was motivated by this decrease in pairing correlation
due to the increase in rotation. At the same time, this leads to an increase
in the energy of the quasiparticle vacuum or a decrease in the correspon
ding depth.

In this case, with an increase in the spin of the collective state, a
decrease in the microscopically calculated energy of the d boson εd occurs
(the corresponding term also arises when using only the Q̂ · Q̂ interaction
by reducing the last operator to the normal order over bosons). Since IBM
assumes that the energy of the boson vacuum is constant, a redistribution of
the variable part of the energy of the quasiparticle vacuum is made over two
boson parameters εd and k1 (see below (8)). This results in the d-boson energy
practically ceasing to change, and the energy of the boson vacuum remaining
unchanged. This procedure is described in [9–11] and clearly demonstra-
ted in [11].

Thus, the weakening of pairing during the unwinding of the nucleus by the
values of the parameters of the boson Hamiltonian is significantly leveled out.

There is one more effect left, this is the weakening of the growth of the
moment of inertia with frequency at high spins − downturn or downbending.
It can be assumed that the IBM specificity, namely, the finiteness of the
maximum number of quadrupole bosons, can reproduce this phenomenon [12]
without introducing the Arima modifications to the boson Hamiltonian.
Introducing the Arima modification is convenient if we remain in the SU(3)
approximation of the IBM limit. In this case, this modification approximates
a more complex dynamics of collective motions in the nucleus, described in
the general case by the SU(6) group.

In [13], the structure of yrast bands in the transuranium nuclei 242Pu and
244Pu was investigated within the framework of the projected shell model.
This approach is completely microscopic.

The description of rotational bands at ultra-high spins within the
framework of covariant density functional theory for the A � 242 actinides
was presented in [14].

The rotational bands properties of plutonium isotopes 236−246Pu were
studied [15] via projected shell model. The results of the calculated energy
levels of the yrast band were compared with experimental data and a good
agreement has been found. The crossing between two-quasiparticle (2qp)
excited bands and the ground state band (g-band) in the high-spin regions has
been analyzed in terms of band diagrams. The upbendings are observed in the
kinematic moments of inertia curves for 236−246Pu isotopes.
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The objectives of this work are defined as:
1) obtaining a precise description of the energies of yrast bands in

even–even heavy nuclei in the Harris model;
2) comparison of the behavior of J(ω2) in the Harris and IBM models both

in its phenomenological aspect and in the aspect of its extension by taking
into account high-spin modes;

3) development of a criterion for determining the spin at which the
crossing of bands occurs without resorting to microscopic calculations;

4) identification of the causes, conditions and values of the spins of
collective states when the downturn or downbending effect occurs.

1. PHENOMENOLOGICAL VARIANT OF THE HARRIS MODEL

We will use the Harris model [1] in its phenomenological aspect. If we
assume that the following decomposition is valid√

I(I + 1) = ω

(
J0 +

2
3
J1ω

2 +
3
5
J2ω

4 +
4
7
J3ω

6 + ...

)
, (2)

then the effective moment of inertia will have the form

J = J0 + J1ω
2 + J2ω

4 + J3ω
6 + ... (3)

With fixed values of parameters J0,J1,J2,J3, the rotation frequencies are
found from the equation

2J0
h̄2

+
2J1
h̄4

(h̄ω)2 +
2J2
h̄6

(h̄ω)4 +
2J3
h̄8

(h̄ω)6 =

=
2(2I − 1)(√

I(I + 1) −√
(I − 2)(I − 1)

)
h̄ω

. (4)

For each value of the spin of state I, the value ω = ωI is found. The energies
of the states of the main band are found as

EI = EI−2 +
(√

I(I + 1) −
√
(I − 2)(I − 1)

)
h̄ω, (5)

where E0 = 0.
The parameters that determine the moment of inertia (3) are found by

minimizing the value

χ2 =
∑
I

(E
(exp)
I − EI)

2 (6)

or standard deviation

σ =

√∑Ifit
I (E

(exp)
I − EI)2

Ifit/2
, (7)

where Ifit is the maximum spin of the states and the bands by which the
parameters J0,J1,J2,J3 are determined.
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The results obtained in the Harris model will be related to the results in
the IBM phenomenology. The parameterization of its Hamiltonian is taken as

HIBM = εd n̂d + k1(d
+ · d+ss+H.c.) + k2

(
(d+d+)(2) · ds+H.c.

)
+

+
1
2

∑
L

CL(d
+d+)(L) · (dd)(L), (8)

H.c. means Hermitian conjugation, the dot between the operators corresponds
to the scalar product, the quantities εd, k1, k2,C0,C2,C4 are the parameters of
the model. The total number of bosons or the maximum number of d bosons
will be denoted as Ω. For several nuclei, results will be presented within
the framework of the extended microscopic version of IBM, where high-spin
excitation modes are also considered, without disclosing its content here, but
only making a reference to the work [4].

The next section discusses the energies of the yrast band states of
even thorium isotopes in comparison with the results of the Harris model
phenomenology, and for several nuclei with IBM.

2. ANALYSIS OF MOMENTS OF INERTIA
FOR EVEN ISOTOPES OF Th

Figure 1 presents a visual systematics of the energies of the corresponding
states. It is evident that the energies of states with spins I � 10+ decrease
at first to A = 224 rather quickly, and at large nucleon values, the energies
decrease quite smoothly, so that E(2+1 ) = 48.4 keV for 236Th. The minimum
energy of states with spins I � 12+ is achieved in the 232Th nucleus.

In Fig. 2, for all even thorium isotopes considered, the effective moments
of inertia obtained from the experimental and calculated energies in the
variable moment of inertia model, designated as Harr, are compared. For two
nuclei, 220,222Th, the results of calculations in the IBM microscopic version,
extended by high-spin excitation modes up to spins 14+, are also given. The
parameters determining the values of the moments of inertia are given in
Table 1, where the standard deviations of the calculated values of energies
from the experimental ones are also given relative to the states for which
the parameters were selected, the spins of the states to which the parameters
were selected, and the maximum spin in the band.

For the lightest of the thorium isotopes under consideration, 220Th,
backbending is observed starting from spin 10+, and since the Harris model
does not claim to describe it, the parameters were determined from transitions
until the state with 8+. In this case, in the theory that explicitly considers
the elementary modes of two-quasiparticle excitations with high spins [4, 16],
the behavior of the moment of inertia associated with the first backward bend
is reproduced. This is demonstrated in Fig. 2 associated with this nucleus.
Figure 3 shows the composition of wave functions, whose components include
collective states constructed only from d bosons corresponding to the lowest
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Fig. 1. Energies of states of the yrast band in even isotopes of thorium

quadrupole excitations, as well as components including bosons with high
multipolarities. According to this figure, for the 8+ state, the collective
component composed only of d bosons is greater than 50%. The second
backbending, corresponding to the 18+ spin, should be attributed to the
four-quasiparticle excitation.

For the 222Th isotope, no manifestation of the bands crossing is observed.
However, the average discrepancy between the calculated energies within
the Harris scheme and the experimental ones is significantly larger than for
heavier thorium isotopes, as follows from Table 1. The reason for this is
that although no backbending is observed in this nucleus, a smooth crossing
of bands still occurs, as was shown in [4]. This is demonstrated in Fig. 2,
corresponding to 222Th, where the moments of inertia obtained on the basis
of microscopic calculation are also given. Figure 4 shows the composition of
the wave functions. According to this figure, for the 12+ state, ψ2(coll) is
approximately equal to 50%. Therefore, according to the Harris method, in
addition to calculations for all energy differences up to the state with spin
26+, calculations were made taking into account the states up to the state
with spin 10+. In the first case, the difference between the calculated and
experimental values up to spin 8+ is less than 1 keV, and for 10+, it is already
5.5 keV. In the second case, this difference for 2+, 4+ is about 2 keV, but
for the rest, up to 14+, it is less than 1 keV. Together with the previous
thorium isotope, this shows that the Harris energy calculation procedure can
be successfully applied if the collective component in the wave function is
definitely greater than 50%.

For all nuclei, starting with 224Th, there achieved such an accuracy
of reproduction of experimental energies that the difference between the
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Ta b l e 1. Parameters determining the effective moments of inertia for Th and
U isotopes

Nucleus 2J0/h̄2, 2J1/h̄4, 2J2/h̄6, 2J3/h̄8, σ,
Ifit ImaxMeV−1 MeV−3 MeV−5 MeV−7 keV

220Th –78.027 5627.16 –100806 1032727 0.14E-02 8 22
222Th 11.116 2788.26 865.45 0 9.59 26 26

17.465 3172.00 –85959.8 1995659.8 0.172 10 26
224Th 57.965 2058.09 –7175.0 9656.4 0.33 18 18
226Th 82.233 1369.23 4017.6 15137.6 0.33 20 20
228Th 102.731 1474.68 –12333.3 349536.8 0.59 22 22
230Th 112.141 1038.92 –2054.2 94199.8 0.175 24 24
232Th 121.107 928.66 10424.0 –50092.3 0.89 30 30
234Th 120.341 984.69 –10471.4 212984.7 0.63 24 24
236Th 123.400 844.93 772.3 0 0.18 10 10

226U 71.87581 1598.41785 6953.44873 –118350.98438 0.294 14 14
230U 115.33965 1119.44153 –3171.23999 121410.60156 0.262 22 22
232U 125.72275 944.34747 3252.86279 64539.00781 0.124 20 20
234U 137.59946 1030.29688 14549.98926 –126356.42969 0.35 30 30
236U 133.45268 385.92599 19432.23242 –89088.77344 1.90 30 30

132.30104 781.21796 –1048.02319 172107.54688 0.155 24 30
238U 133.00563 941.80017 –9015.27832 267665.18750 0.468 28 34
240U 132.39108 388.02209 14673.71387 0.00000 0.413 12 12

Fig. 3. The composition of the wave
functions of the states of the yrast band
obtained on the basis of the microscopic

model for 220Th

Fig. 4. The composition of the wave
functions of the states of the yrast band
obtained on the basis of the microscopic

model for 222Th

calculated energies and the experimental ones does not exceed 1 keV on
average, as can be seen from the σ values given in the same Table 1. This
corresponds to the work [4], where it was found that in thorium isotopes,
starting with this one, in all observed states of yrast bands, the collective
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component remains the main component. Table 2 presents the experimental
energies of states and the difference between the calculated and experimental
energies for 220−224Th. For 226, 228Th nuclei, a comparison of the experimental
and calculated ones is given in Table 3, for 230, 232Th — in Table 4, for
234, 236Th — in Table 5. In almost all of these nuclei, the difference between the

T a b l e 2. Comparison of experimental [17] and theoretical energy values in keV
for 220,222,224Th nuclei

Iπ
220Th 222Th 224Th

Exp. Ecal − Eexp Exp. Ecal − Eexp Exp. Ecal − Eexp

2+ 386.5(1) −0.001 182.9(2) −0.06 98.1(3) −0.12
4+ 759.80(15) 0.002 439.2(3) 0.22 284.1(5) 0.58
6+ 1166.03(17) −0.002 749.3(4) −0.29 534.7(5) −0.30
8+ 1598.16(20) −0.0005 1092.8(5) 0.09 833.9(6) −0.46
10+ 2012.73(23) 38 1460.8(5) −0.01 1173.8(6) −0.01
12+ 2441.9(3) 78 1850.6(5) −3.8 1549.8(6) 0.43
14+ 2885.0(3) 118 2259.7(6) −12 1958.9(7) 0.21
16+ 3376.4(6) 121 2688.0(6) −28 2398.0(7) −0.27
18+ 3867.1(6) 136 3133.9(6) −51 2864 0.01
20+ 4319.6(7) 198 3596.8(7) −82
22+ 4716.1(12) 324 4078.6(7) −124
24+ 4579.2(7) −177
26+ 5099.2(9) −244

T a b l e 3. Comparison of experimental [17] and theoretical energy values in keV
for 226,228Th nuclei

Iπ
226Th 228Th

Exp. Ecal − Eexp Exp. Ecal − Eexp

2+ 72.20(4) −0.27 57.773(3) 0.17

4+ 226.43(5) 0.36 186.838(3) 0.08

6+ 447.3(2) 0.69 378.195(12) −0.46

8+ 721.9(2) 0.38 622.5(3) −0.85

10+ 1040.3(3) −0.10 911.8(3) −0.78

12+ 1395.2(4) −0.24 1239.3(4) −0.21

14+ 1781.5(5) 0.02 1599.4(5) 0.55

16+ 2195.8(6) 0.22 1987.9(6) 0.64

18+ 2635.1(7) 0.32 2400.5(8) 0.23

20+ 3097.1(8) 0.15 2834.4 −1.2

22+ 3283.4 −0.15
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Ta b l e 4. Comparison of experimental [17] and theoretical energy values in keV
for 230,232Th nuclei

Iπ
230Th 232Th

Exp. Ecal − Eexp Exp. Ecal − Eexp

2+ 53.230(11) 0.04 49.369(9) 0.02
4+ 174.119(17) 0.019 162.12(2) 0.08
6+ 356.54(12) 0.01 333.26(8) 0.29
8+ 593.89(17) −0.27 556.9(1) 0.23
10+ 879.36(24) −0.39 826.8(1) −0.22
12+ 1206.7(5) 0.06 1137.1(5) −0.95
14+ 1571.9(6) −0.05 1482.2(6) −1.1
16+ 1969.6(7) 0.13 1858.5(7) −1.2
18+ 2396.4(9) 0.09 2262.4(9) −0.56
20+ 2848.7(10) 0.09 2691(1) 0.95
22+ 3324.1(11) −0.32 3144(1) 1.5
24+ 3819.1(15) −0.05 3620.0(15) 0.89
26+ 4117(2) −0.50
28+ 4633(2) −1.8
30+ 5164(3) −0.15

T a b l e 5. Comparison of experimental [17] and theoretical energy values in keV
for 234,236Th nuclei

Iπ
234Th 236Th

Exp. Ecal − Eexp Exp. Ecal − Eexp

2+ 49.55(6) 0.14 48.4(3) 0.09
4+ 163.05(12) 0.14 160.0(6) −0.36
6+ 336.45(24) −0.24 329.4(7) 0.14
8+ 564.7(3) −0.80 553.4(7) −0.06
10+ 842.5(4) −1.03 826.1(9) −0.04
12+ 1164.9(6) −0.81
14+ 1526.6(7) 0.11
16+ 1923.4(8) 0.80
18+ 2351.0(9) 0.72
20+ 2805.1(11) −0.13
22+ 3281.4(12) −1.04
24+ 3775.1(13) −0.15

calculated energies and the experimental ones does not exceed 1 keV, and for
the 224, 236Th nuclei, the calculated energy values differ from the experimental
ones by a smaller amount than the experimental errors. Therefore, anomalies
in the behavior of J(ω2) for 236Th in Fig. 2 should be attributed to the

10



experimental errors. This anomaly will disappear if the experimental value
E(4+) = 160 keV is reduced by a value from 0.358 to 0.37 keV. Such a high
quality of description of the energies of states in the model of variable moment
of inertia in heavy nuclei is achieved given that excitation energies can reach
up to 5 MeV, and the spin of states — up to 30+.

Heavy nuclei in the majority have a stable deformation, and the deviation
to the smaller side of the energies in the band from the dependence I(I + 1)
has a number of reasons, partly discussed earlier. This corresponds to the
growth of the moment of inertia from the rotation frequency. The monotony of
such a dependence at sufficiently large spins of states can be violated, leading,
for example, to backbending, and this invariably occurs in medium nuclei.
Also, an anomaly in the behavior of the moment of inertia can manifest itself
through upbending, when the intersection of bands is not fully completed.
And finally, downbending. This effect can manifest itself at spins of at least
26+ and in those cases when, for example, a state with the same spin, but
in the S band, turns out to be significantly higher and the observed state
remains mainly collective. Moreover, the energies of such high-spin collective
states may turn out to be somewhat higher than those that would be obtained
based on the trends corresponding to lower spins. There may be two reasons
for such a behavior of the energies of collective states at high spins. One is
associated with the reduction of the configuration space of two-quasiparticle
states that form the D phonon, in the presence of multibosons, which is
realized to a greater extent at high spins. To quantitatively evaluate this
phenomenon at the energy of collective states, it is necessary to carry out
self-consistent solutions for each of the collective states separately, as was
done for medium nuclei [9]. However, for heavy nuclei, such a procedure is
difficult to implement due to the high sensitivity of the calculated energies to
the IBM Hamiltonian parameters. Another reason for some additional growth
of energies of collective states at high spins, which is what downbending gives,
may be the specificity of the description of collective states in the general
case of the SU(6) symmetry, which consists in the finiteness of the maximum
number of quadrupole bosons Ω.

In the variable moment of inertia model, the growth of the slope J(ω2)
is effectively reproduced. One of the reasons for this growth is the gradual
increase of the noncollective component in the states of the yrast band. This
explains why in deformed nuclei the quality of the description of energies in
the Harris model is better than in the IBM phenomenology. The situation
regarding IBM changes if we move from its phenomenology to the microscopic
version, when the IBM parameters are calculated and high-spin excitation
modes are explicitly taken into account. This also allows us to determine
the limits of applicability of the Harris scheme in the region of spins where
the bands cross. For example, a microscopic calculation of the structure of
the states of the yrast band in 222Th showed [4] that the Harris scheme
successfully reproduces collective states in which the collective component
is noticeably larger than any of the others, and itself can be somewhat less
than 50%.
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3. ANALYSIS OF MOMENTS OF INERTIA
FOR EVEN ISOTOPES OF U

The parameters determining the moment of inertia for U isotopes are
given in Table 1. The corresponding moments of inertia are given in Fig. 5. In
addition to the experimental and calculated values of the moments of inertia
according to Harris, the results of calculations in accordance with the IBM
phenomenology are given, excluding high-spin modes.

The parameters of the boson Hamiltonian (8) for the U isotopes are given
in Table 6 and the corresponding moments of inertia with others are also
given in Fig. 5. The parameters of the boson Hamiltonian given in Table 6 are
given with an accuracy of 1 eV. To justify the need for such high accuracy,
the partial derivatives ∂EI/∂εd, ... , ∂EI/∂C4 were calculated in the vicinity
of the parameter values determined for 236U. They are given in Table 7. In
accordance with these values, the maximum deviations of the parameters
were obtained when the deviations of the calculated energies do not exceed
0.1 keV. These values are given in Table 8. The change in the Hamiltonian
parameter (8) k1 reacts most strongly to the energies of the states under
consideration. And as can be seen from Table 8, at high spins its values
should be given with greater accuracy than 1 eV, but since at high spins
the experimental uncertainty of energies exceeds 1 keV, this can be avoided
for now.

The IBM Hamiltonian parameters, including the Ω number, for 226−238U
were determined from states up to the limiting observed spins and are given
in Table 6. Let us discuss the quality of the description of the energies of
states consistently in all uranium isotopes under consideration.

T a b l e 6. IBM Hamiltonian parameters for even U nuclei

Nucleus εd k1 k2 C0 C2 C4 Ω
226U −0.080461 −0.030253 0.009227 0.005134 0.060668 0.001103 20
226U 0.036599 −0.038003 0.004841 −0.010224 0.033211 −0.034492 28
226U 0.040505 −0.036817 0.004122 0.136447 0.035798 −0.031713 34
226U −0.059896 −0.037406 0.004168 0.001010 0.011875 −0.020448 25
230U −0.614828 −0.058595 0.032967 0.899961 0.061097 0.045202 21
232U −0.725962 −0.058227 0.032505 0.739341 0.034253 0.054798 19
234U −0.594347 −0.049232 0.032013 0.674469 0.076536 0.039112 22
234U −0.580119 −0.049519 0.034100 0.637994 0.071404 0.038430 21
236U −0.626829 −0.059598 0.051147 0.713640 0.042979 0.019237 25
238U −0.634858 −0.060349 0.053701 0.687343 0.039218 0.016058 25
240U −0.634453 −0.059500 0.050521 0.717118 0.029825 0.022396 25

12
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For 226U, the experimental data show a practically linear dependence of
J(ω2) and this is naturally reproduced in the Harris scheme. This could not be
obtained in the description in IBM. The calculations were carried out in a wide
range of Ω from 14 to 34. In this case, if the quality of reproduction of energies
for states with I � 12+ is satisfactory, and this is evident from Table 9, where
the values of energies with Ω = 20 are given, then the energy of the state with
14+ turns out to be underestimated by 7 keV, and this leads to the calculated
increase in the value of J . If we degrade the quality of the energy description,
the linear dependence J(ω2) is approximately reproduced, which is reflected
in the corresponding Fig. 5. The question of the possibility of quantitative
reproduction of the energies of the 226U nucleus in IBM remains open. This
is despite the fact that the question concerns the description of states up to
relatively low spins. It should be borne in mind that the experimental errors
for this isotope are the highest of all those considered.

T a b l e 9. Comparison of experimental [17] and theoretical energy values in keV
for 226U nuclei; for IBM, Ω = 20

Iπ
226U

Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 81.3(6) 81.464 0.16 81.510 0.21

4+ 250.0(9) 249.682 −0.32 248.46 −1.54

6+ 483.2(9) 482.79 −0.41 482.24 −0.92

8+ 766.4(10) 766.51 0.11 768.45 2.05

10+ 1091.6(10) 1091.98 0.38 1095.9 4.3

12+ 1453.8(10) 1453.42 −0.38 1455.7 1.9

14+ 1847.0(13) 1846.93 −0.07 1840.1 −6.9

For the next nucleus, 230U, the description of energies in the Harris
scheme is precise and the difference between the calculated and experimental
values of energies, as can be seen from Table 10, does not exceed 0.4 keV.
Within the IBM framework, this is 1.4 keV, which also indicates a high quality
of the description. This is despite the fact that states are observed up to 22+.

For 232U, states are observed up to 20+ and the description of their
energies in the two calculations is quite satisfactory. Thus, in the Harris
scheme, the discrepancy is no more than 0.21 keV, and for IBM — no more
than 1.2 keV, as follows from Table 11. The quality of the energy description
is especially clearly manifested through the moments of inertia for 230U and
232U in Fig. 5.

For 234U, states are observed already up to 30+. In the Harris scheme,
the discrepancy is no more than 0.86 keV. Within the IBM framework, as can
be seen from Fig. 5, calculations were made with two values of Ω, these are
21 and 22. The results of the calculations of the moments of inertia closely
cover the moments of inertia from the experimental energies on both sides.
Taking into account the influence of high-spin modes on the energies of states,
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Ta b l e 10. Comparison of experimental [17] and theoretical energy values in keV
for 230U nuclei; for IBM, Ω = 21

Iπ
230U

Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 51.737(23) 51.797 0.060 51.623 −0.114

4+ 169.35(4) 169.356 0.006 169.17 −0.18

6+ 346.96(20) 346.85 −0.11 347.04 0.08

8+ 578.1(3) 577.76 −0.34 578.59 0.49

10+ 856.3(3) 855.91 −0.39 857.24 0.94

12+ 1175.6(4) 1175.68 0.08 1177.0 1.40

14+ 1531.5(4) 1532.07 0.57 1532.7 1.20

16+ 1921.0(5) 1920.65 −0.35 1920.1 −0.90

18+ 2337.6(6) 2337.56 −0.04 2335.9 −1.7

20+ 2779.6(11) 2779.47 −0.13 2777.6 −2.0

22+ 3243.6(15) 3243.54 −0.06 3243.7 0.1

T a b l e 11. Comparison of experimental [17] and theoretical energy values in keV
for 232U nuclei; for IBM, Ω = 19

Iπ
232U

Exp. Ecal Ecal −Eexp EIBM EIBM − Eexp

2+ 47.573(8) 47.590 0.017 47.533 −0.04

4+ 156.566(10) 156.545 −0.021 156.49 −0.076

6+ 322.69(7) 322.76 0.065 322.80 0.11

8+ 541.1(1) 540.97 −0.13 541.23 0.13

10+ 805.88(16) 805.68 −0.20 806.16 0.28

12+ 1111.6(2) 1111.59 −0.01 1112.1 0.50

14+ 1453.8(3) 1453.91 0.10 1454.1 0.30

16+ 1828.2(4) 1828.39 0.19 1828.0 −0.20

18+ 2231.6(6) 2231.39 −0.21 2230.4 −1.2

20+ 2659.8(9) 2659.78 −0.02 2659.3 −0.5

we give preference to Ω = 21 and it is with this value that the calculated
values are presented in Table 12, from which it is clear that the corresponding
differences are no more than 3.2 keV.

In the 236U nucleus, the observed states also extend to I = 30+. The
observed moments of inertia at I = 28+ and I = 30+ definitely give a decrease
in the slope of J(ω2). More precisely, starting from spin 26+, a slower growth
of the moment of inertia — downbending — is manifested. That is why the
parameters in the Harris scheme were determined by the states up to spin
I = 24+ and for these states, the difference between the experimental and

16



Ta b l e 12. Comparison of experimental [17] and theoretical energy values in keV
for 234U nuclei; for IBM, Ω = 21

Iπ
234U

Exp. Ecal Ecal −Eexp EIBM EIBM − Eexp

2+ 43.4981(10) 43.501 0.003 43.517 −0.195
4+ 143.352(4) 143.362 0.010 143.34 1.92
6+ 296.072(4) 296.12 0.046 295.89 0.97
8+ 497.04(3) 497.06 0.02 496.63 0.17
10+ 741.2(5) 741.13 −0.07 740.75 0.54
12+ 1023.8(7) 1023.56 −0.24 1023.6 0.60
14+ 1340.5(12) 1340.22 −0.28 1340.9 1.50
16+ 1687.8(16) 1687.70 −0.1 1689.1 1.90
18+ 2062.8(17) 2063.20 0.4 2064.9 2.20
20+ 2464.0(18) 2464.49 0.49 2465.9 2.30
22+ 2889.5(18) 2889.78 0.28 2890.3 2.0
24+ 3338.5(21) 3337.64 −0.86 3336.9 1.9
26+ 3807.5(23) 3806.98 −0.52 3805.0 3.2
28+ 4296.5(25) 4296.95 0.45 4294.8 3.2
30+ 4807 4806.98 −0.02 4807.1 3.2

T a b l e 13. Comparison of experimental [17] and theoretical energy values in keV
for 236U nuclei; for IBM, Ω = 25

Iπ
236U

Exp. Ecal Ecal −Eexp EIBM EIBM − Eexp

2+ 45.2431(20) 44.915 −0.33 45.204 −0.0391
4+ 149.480(5) 148.921 −0.56 149.43 −0.05
6+ 309.788(6) 309.85 0.062 309.87 0.082
8+ 522.26(4) 523.77 1.5 522.58 0.32
10+ 782.4(5) 785.39 2.99 782.93 0.53
12+ 1085.4(7) 1088.97 3.6 1086.0 0.6
14+ 1426.4(9) 1429.25 2.8 1426.8 0.4
16+ 1801.0(10) 1801.74 0.74 1800.8 −0.2
18+ 2204.0(12) 2202.78 −1.2 2203.7 −0.3
20+ 2631.8(13) 2629.43 −2.4 2631.7 −0.1
22+ 3081.0(14) 3079.34 −1.7 3081.9 0.9
24+ 3550.0(17) 3550.57 0.57 3552.0 2.0
26+ 4039.0(20) 4041.55 2.6 4040.9 1.9
28+ 4549.0(22) 4550.99 1.99 4548.4 −0.6
30+ 5077(4) 5077.80 0.8 5075.8 −1.2

calculated energies does not exceed 0.74 keV, as follows from Table 13.
The moments of inertia at high spins, as can be seen from Fig. 5, for this
nucleus significantly exceed the experimental values. The calculation in IBM
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reproduces this experimental trend and this is achieved at Ω = 25. This can
be associated with a decrease in the collective configuration space at the
corresponding spins, as well as the presence of s bosons or square roots, due
to which the closure of the SU(6) algebra of boson operators is realized in
comparison with other collective models. This is the case when the variable
moment of inertia model with the used parameterization cannot describe
this phenomenon, and the IBM phenomenology describes the corresponding
increase in the energies of collective states. Such a phenomenon is realized, as
can be judged by 236, 238U nuclei, starting with spin 28+. For all states of this
nucleus, the difference between the calculated IBM and experimental energy
values does not exceed 2 keV.

The effect observed in the 236U nucleus of weakening the growth of J
from ω2 at I = 28+, 30+ is even more pronounced in the 238U nucleus, since
the spins observed for it extend to I = 34+. The parameters in the Harris
scheme were determined by the states with I � 28+ and for these states,
as can be seen from Table 14, the difference between the experimental and
calculated energies does not exceed 0.76 keV. For large spins, this difference
grows rapidly, and the calculated energy values are noticeably lower than the
experimental ones. As can be seen from Fig. 5, for this nucleus, the calculation
in IBM reproduces the experimental situation and this is realized at Ω = 25. If
we use large values of Ω, for example, 30, then J will be significantly larger,
approaching those given by the Harris scheme. The difference between the

T a b l e 14. Comparison of experimental [17] and theoretical energy values in keV
for 238U nuclei; for IBM, Ω = 25

Iπ
238U

Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 44.916(13) 45.004 0.0883 44.785 −0.131
4+ 148.38(3) 148.394 0.014 148.10 −0.28
6+ 307.18(8) 307.12 −0.057 307.26 0.08
8+ 518.1(3) 517.45 −0.65 518.49 0.31
10+ 775.9(4) 775.32 −0.58 777.25 1.35
12+ 1076.7(5) 1076.38 −0.32 1078.7 2.0
14+ 1415.5(6) 1415.94 0.44 1417.9 2.4
16+ 1788.4(6) 1789.15 0.75 1790.1 1.7
18+ 2191.1(7) 2191.41 0.31 2191.0 −0.1
20+ 2619.1(8) 2618.62 −0.48 2616.7 −2.4
22+ 3068.1(9) 3067.34 −0.76 3064.1 −4.1
24+ 3535.3(12) 3534.76 −0.54 3530.7 −4.6
26+ 4018.1(16) 4018.57 0.47 4015.1 −3.0
28+ 4517 4516.92 −0.084 4517.1 0.1
30+ 5035.1(21) 5028.27 −6.83 5038.0 2.9
32+ 5581(3) 5551.37 −29.6 5580.7 −0.3
34+ 6146(4) 6085.16 −60.8 6149.9 3.9
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experimental and calculated energies within the IBM framework for all spins
does not exceed 4.6 keV.

It should be noted that the description of the energies of states in a number
of uranium nuclei is so good that the discrepancies with experimental values
sometimes give smaller values than the experimental uncertainties, especially
for calculations in the Harris scheme.

As a rule, the quality of description in the Harris model is higher than in
IBM, this is evident from 226,230,232,234U (there are no experimental data for
228U). This can be explained by the method of determining the parameters. For
the Harris scheme, they are determined by the least squares method, which
makes them clearly optimal, while for IBM, other methods for determining
the parameters have to be used, which are not so effective. For 236U, as can
be seen from Fig. 5, both models reproduce the energies equally qualitatively.

For 240U, states are known only up to spin 12+. In Fig. 5, for 240U, a
strong anomaly of the moment of inertia for the first excitation is visible. It
cannot be reproduced by any of the models and its presence is associated with
a large experimental error in the energy of the first excitation (see Table 15).
If, when describing energies within the IBM framework, the determination
of parameters is carried out without the 2+1 state, then its energy turns out
to be equal to 45.6 keV, that is, 0.6 keV higher than that suggested by the
experiment. In this case, the experimental error for this state is equal to
1 keV, i.e., such a correction is within the experimental corridor of admissible
values, and the anomaly in the effective moment of inertia is the result of a
large experimental uncertainty. If the moments of inertia are determined with
the corrected energy of the 2+ state, the value of σ will decrease significantly
and become equal to 0.08.

T a b l e 15. Comparison of experimental [17] and theoretical energy values in keV
for 240U nuclei; for IBM, Ω = 25

Iπ
240U

Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 45(1) 45.274 0.27 45.599 0.6
4+ 150.60(10) 150.112 −0.49 150.80 0.2
6+ 313.19(14) 312.41 −0.78 312.91 −0.28
8+ 528.69(18) 528.43 −0.26 528.12 −0.57
10+ 792.9(3) 793.00 0.1 791.95 −0.95
12+ 1100.5(4) 1100.32 −0.18 1099.6 −0.9

CONCLUSIONS

A comparison of the effective moments of inertia for heavy even nuclei,
namely, thorium and uranium isotopes, with the variable moment of inertia
model and IBM, both in its phenomenological aspect and in its microscopic
version, allowed us to draw the following conclusions.
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1. The Harris model effectively reproduces the experimental situation if the
collective component in the wave function remains at least 50%. The standard
boson model cannot do this; for this, it must be extended by explicitly taking
into account high-spin excitation modes up to J � 14+. However, the Harris
scheme does not reproduce the decrease in the slope of J from ω2.

2. If the energies of collective states increase significantly at spins greater
than 28+, this may be due to a reduction in the collective configuration
space. This situation is reproduced in the IBM phenomenology, but cannot be
reproduced in either the Harris model or classical geometric collective models.

In this paper, the Harris scheme is not considered through the use of the
cracking model, but only as one of the convenient and visual representations
of the excitation energies in the bands. In a number of cases for the lowest
states, when there are large experimental uncertainties, it can give clarifying
estimates. For large values of spins, when the experimental values of the
moments of inertia are noticeably greater than the Harris estimates, it is
possible to make judgments about the extent of the influence of noncollective
modes with high spins on these states.
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