P12-2004-210

А. В. Сабельников, О. Д. Маслов, Л. Г. Молоканова, М. В. Густова, С. Н. Дмитриев

ПОЛУЧЕНИЕ ⁹⁹Мо И ^{99m}Тс В ФОТОЯДЕРНОЙ РЕАКЦИИ ¹⁰⁰Мо(γ , n) НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ — МИКРОТРОНЕ МТ-25

Направлено в журнал «Радиохимия»

Сабельников А. В. и др. P12-2004-210 Получение ⁹⁹Мо и ^{99m}Тс в фотоядерной реакции ¹⁰⁰Мо (γ, n) на ускорителе электронов — микротроне МТ-25

⁹⁹Мо был получен в реакции ¹⁰⁰Мо(γ , n) на ускорителе электронов — микротроне МТ-25 ЛЯР. В качестве мишени использовали фольгу из ^{nat}Мо (9,6 % ¹⁰⁰Мо) и ¹⁰⁰МоО₃ с 100%-м содержанием ¹⁰⁰Мо. Радиационный выход ⁹⁹Мо в условиях облучения составил 3,2 кБк/мкА·ч·мг ¹⁰⁰Мо. Очистку ^{99m}Тс от материала мишени и сопутствующих радиоактивных примесей проводили с применением ионного обмена. Исследована возможность использования генератора ^{99m}Тс на основе карбонила молибдена. Содержание радиоактивных примесей в конечных препаратах ^{99m}Тс не превышало 10⁻⁵ Бк/Бк.

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Sabelnikov A. V. et al.P12-2004-210Production of 99 Mo and 99m Tc in the 100 Mo(γ, n) PhotonuclearP12-2004-210Reaction at the Electron Accelerator — MT-25 MicrotronP12-2004-210

⁹⁹Mo was obtained in the ¹⁰⁰Mo(γ , *n*) reaction at the electron accelerator — MT-25 microtron of the LNR. A foil of ^{nat}Mo (9.6% ¹⁰⁰Mo) and ¹⁰⁰MoO₃ powder (100% ¹⁰⁰Mo) were used as targets. The ⁹⁹Mo radiation yield under experimental conditions amounted to 3.2 kBq/µA·h·mg of ¹⁰⁰Mo. The ^{99m}Tc isolation from the target material and other radioactive impurities was realized by means of ion exchange. A possibility of use of the ⁹⁹Mo/^{99m}Tc generator based on molybdenumcarbonyl was investigated. The radioactive impurity content in the final ^{99m}Tc preparations did not exceed 10⁻⁵ Bq/Bq.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

Радиофармацевтическая промышленность практически всех промышленно развитых стран использует молибден-99 для изготовления генераторов ^{99m}Tc, который применяется почти в 80% всех диагностических процедур ядерной медицины [1].

В настоящее время мировое потребление этого радионуклида превышает 2·10⁵ Ки (7,4·10¹⁵ Бк) в год [2] и производство ^{99m}Tc остается крайне актуальной задачей.

Реакторные методы являются основными для получения материнского нуклида ⁹⁹Мо, в которых используется реакция деления ²³⁵U под действием тепловых и быстрых нейтронов ²³⁵U(n, f)⁹⁹Mo [3, 4].

Производство молибдена-99, который является продуктом деления урана, сопровождается значительными экологическими проблемами. Поэтому в мировой практике рассматриваются альтернативные пути производства молибдена-99 и технеция-99*m*.

В литературе описаны способы получения ⁹⁹Мо при облучении природного и обогащенного молибдена протонами с $E_p = 30$ МэВ [5–7] и $E_p = 70$ МэВ [8, 9].

Получение ⁹⁹Мо возможно также в результате фотоядерной реакции ¹⁰⁰Мо(γ, n)⁹⁹Мо [10] на ускорителе электронов с удельным выходом порядка 90 Бк/мкА·ч·мг ¹⁰⁰Мо. При облучении 100 г мишени обогащенного молибдена ¹⁰⁰Мо (95–98 %) током электронов 20–25 мкА с энергией 20 МэВ в течение 100 ч можно наработать ~ 7,4·10⁹–1,1·10¹⁰ Бк (37–56 Бк/мкА·ч·мг) ⁹⁹Мо.

В работе [11] при облучении мишени из природного молибдена потоком фотонов на линейном ускорителе электронов был получен максимальный выход ⁹⁹Мо, равный 370 Бк/мкА·ч·мг ^{nat}Мо, что примерно в 40 раз выше данных работы [10].

В настоящей работе уточняются выходы ⁹⁹Мо в реакции ¹⁰⁰Мо(γ , n)⁹⁹Мо на компактном ускорителе электронов — микротроне МТ-25 ЛЯР ОИЯИ и рассматриваются некоторые варианты разделения ^{99m}Tc и ⁹⁹Мо.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Определение выхода ⁹⁹Мо. Облучение мишеней из молибдена проводили в мишенном блоке, описанном в работе [12]. В качестве мишени использовали фольгу из ^{nat}Mo (9,6 % ¹⁰⁰Mo) и ¹⁰⁰MoO₃ с 100%-м содержанием ¹⁰⁰Mo. В случае фольги мишень располагали непосредственно в мишенном блоке, а в случае оксида молибдена мишень помещали в цилиндрический алюминиевый контейнер, который затем закрепляли в мишенном блоке. Энергия электронов составляла 25 МэВ, ток электронов — 15 мкА.

Выделение ^{99m}**Тс.** Для выделения ^{99m}**Т**с использовали методику, предложенную Михеевым Н.Б. [13]:

1. Растворение 1 г ^{nat}MoO₃ (^{nat}Mo) в 10 мл раствора 2 М NaOH.

2. Осаждение Nb на гидроокиси железа (20 мг железа в виде $Fe(NO_3)_3$).

3. Разделение осадка и раствора.

4. Добавление 2 мл раствора гидрофосфата натрия с концентрацией 50 мг/мл.

5. Добавление 2 мл раствора 5 М HCl в процессе перемешивания на водяной бане.

6. Доведение рН раствора до 2-3.

7. Добавление 1 мл бромной воды и 10 г Al₂O₃ для хроматографии.

8. Перемешивание и нагревание на водяной бане в течение 1 ч.

9. Фильтрация осадка окиси алюминия и промывка 15 мл раствора 0,03 M HCl, смешанной с бромной водой в соотношении 10:1.

10. Перенесение окиси алюминия с сорбированным 99 Мо на колонку с 5 г Al₂O₃, обработанным 0,1 М HCl.

11. Промывка колонки 3 мл раствора 0,03 М HCl с бромом.

12. Промывка колонки 20 мл Н₂О.

13. Элюирование 99m Tc 0,85%-м раствором NaCl. Выход 99m Tc в данной методике составляет 80–90%, содержание радиоактивных примесей не превышает 10^{-5} Бк/Бк.

Получение ⁹⁹ Мо в реакции ^{nat} Мо(γ , n)⁹⁹ Мо на мишени из карбонила молибдена. Мишени, содержащие 60 и 37 мг кристаллического порошка ^{nat} Мо(CO)₆, облучали потоком фотонов МТ-25 с максимальной энергией электронов 25 МэВ. Время облучения составило 30 мин. Затем облученный порошок карбонила молибдена помещали в перегонную установку (рис. 1) и

Рис. 1. Схема перегонной установки

проводили отгонку карбонила молибдена из мишенного контейнера в приемный контейнер. Схема разделения Мо и Тс дана на рис. 2.

Рис. 2. Схема выделения ^{99т} Tc из облученной мишени

Температуру в процессе отгонки поддерживали в интервале 90–100°С. Приемный контейнер охлаждали жидким азотом. Время отгонки составило 1 ч.

Спектрометрия ⁹⁹Мо и ^{99m}Tc. Гамма-спектрометрические измерения исследуемых образцов проводили с использованием детектора из сверхчистого Ge с разрешением 1,5 кэВ на линии 1,33 МэВ (⁶⁰Co). Детектирование ⁹⁹Мо производили по линии $E_{\gamma} = 181,1$ кэВ (6,06%), ^{99m}Tc — $E_{\gamma} =$ 140,5 кэВ (88,9%), ⁹⁶Nb — $E_{\gamma} = 569$ кэВ (55,7%) [14]. Измерения рентгеновских спектров препаратов проводили на Si(Li)-детекторе с разрешением ~200 эВ на линии FeK_{α1} ($E_{\gamma} = 6,4$ кэВ).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 представлены условия облучения молибденовых мишеней гаммаквантами на микротроне МТ-25 и результаты выхода ⁹⁹Мо.

В табл. 2 даны выходы изотопов ниобия, образующихся по реакции Мо(γ , p).

Таблица 1. Условия облучения молибденовых мишеней гамма-квантами на микротроне МТ-25 и результаты выхода $^{99}{\rm Mo}$

Мишень	Ток, мкА	Время облучения, ч	Содержание ¹⁰⁰ Мо, мг	Выход ⁹⁹ Мо (кБк/мкА·ч·мг ¹⁰⁰ Мо)
^{nat} Мо-фольга	15	1,5	12,05	3,2
¹⁰⁰ MoO ₃	15	2	10,52	3,1

Таблица 2. Выходы изотопов ниобия, образующихся по реакции Мо(γ , p)

Ядерная реакция	$T_{1/2}$	$\sigma_m, m\sigma$ [10]	Выход изотопа, Бк
$^{100}{ m Mo}(\gamma,n)^{99}{ m Mo}$	66,02 сут	390	200
100 Mo $(\gamma, p)^{99}$ Nb	15 c	67	—
100 Mo $(\gamma, p)^{99m}$ Nb	2,6 мин	16	
98 Mo $(\gamma, p)^{97}$ Nb	72 мин	19	793
98 Mo $(\gamma, p)^{97m}$ Nb	1 мин	11	_
97 Mo $(\gamma, p)^{96}$ Nb	23,35 ч	21	11,6
96 Mo $(\gamma, p)^{95}$ Nb	35 сут	21	0,58
92 Mo $(\gamma, p)^{91m}$ Nb	64 сут	40	0,57

При облучении природного молибдена гамма-квантами с E_{γ} = 24 МэВ происходит наработка не только 99 Мо, но и накопление долгоживущих примесей ^(90,91,91m,93m)Мо в следующих пропорциях (отн. ед.): ⁹⁹Мо : ^{93m}Mo : ⁹¹Mo : ^{91m}Mo : ⁹⁰Mo = 1 : 6,4 : 2 : 1,2 : 0,4 [10], а также в результате реакции ^{nat}Mo(γ , p) ^{97,96,95,91m}Nb — ⁹⁹Mo : ⁹⁷Nb : ⁹⁶Nb : ⁹⁵Nb : ^{91m}Nb = $1: 4: 6 \cdot 10^{-2}: 3 \cdot 10^{-3}: 2,9 \cdot 10^{-3}.$ В этом случае необходимо проводить очистку молибдена от радиоизотопов ниобия при изготовлении ⁹⁹Mo (^{99m}Tc)генераторов. При применении в качестве мишени ¹⁰⁰Мо образуются нуклиды 99m Nb и 99 Nb с периодом полураспада 2,6 мин и 15 с соответственно, которые распадаются в ⁹⁹Мо. При взаимодействии электронов с материалом тормозной мишени, γ -квантов с облучаемым препаратом и конструкционными материалами мишенного блока образуются нейтроны. Для представленных экспериментальных условий поток тепловых нейтронов, равный 10⁵ см⁻² с⁻¹, оценен нами с использованием реакции ¹⁹⁷Au(n, γ)¹⁹⁸Au. Нуклиды, образующиеся в результате реакции 100 Mo $(n, \gamma){}^{101}$ Mo $(T_{1/2} = 14.6$ мин) $\xrightarrow{\beta-}$ 101 Tc $(T_{1/2} = 14,2$ мин) $\xrightarrow{\beta-}$ ¹⁰¹Ru (стаб.), через несколько часов после активации полностью распадаются в стабильный ¹⁰¹Ru. Таким образом, радиохимическая чистота препарата ^{99m}Tc определяется только изотопной чистотой ¹⁰⁰Mo.

Образцы молибдена-99 (см. табл. 1) после 20 ч «охлаждения» растворяли в 2 М NaOH и перерабатывали по схеме, описанной выше. Содержание ⁹⁹Мо во фракции ^{99m}Tc не превышало 10^{-5} Бк/Бк.

4

Из результатов опытов следует, что облучение 10 г 100 Mo (обогащение 100 %) в течение 100 ч при токе 25 мкА и энергии электронов 25 МэВ приведет к накоплению активности 99 Mo, равной 8·10¹⁰ Бк (80 ГБк).

Облучение 10 г природного молибдена (9,6 % ¹⁰⁰Мо) в тех же условиях приведет к накоплению активности ⁹⁹Мо, равной 7,7·10⁹ Бк (7,7 ГБк), что вполне соответствует характеристикам промышленных генераторов ^{99m}Tc [1]. Результаты опытов с мишенями из карбонила молибдена даны в табл. 3.

Образец, мг	Опыт	Содержание Мо, %	Содержание Тс, %
60	Куб. остаток	34	70
	Отгон	66	30
37	Куб. остаток	30	64
	Отгон	70	36

Таблица 3. Результаты опытов с Мо(СО)₆

После отгонки карбонила молибдена в кубовом остатке остаются ^{99m}Tc (~67 ± 3%), ~32 ± 2% активности ⁹⁹Mo (фактор обогащения ⁹⁹Mo — 10⁴), а также радиоизотопы ^{95–97}Nb, образовавшиеся по реакции ^{96–98}Mo(γ , p). После накопления ^{99m}Tc в приемном контейнере снова проводили отгонку карбонила молибдена. При этом в приемном контейнере оставался только ^{99m}Tc (70%), который смывали 0,9%-м раствором NaCl.

Кроме того, облученный карбонил молибдена растворяли в гексане, затем ⁹⁹Мо и ^{99m}Тс экстрагировали водой. Выход ⁹⁹Мо в воду равнялся 35%, ^{99m}Тс — 70%. Из ⁹⁹Мо (35%) была изготовлена колонка для выделения ^{99m}Тс по методике, описанной в работе [1].

Количество молибдена в полученных препаратах ⁹⁹Tc определяли рентгенофлуоресцентным методом [15]. Содержание молибдена в препаратах не превышало 10^{-6} г. Результаты измерения рентгеновских и гамма-спектров препаратов ^{99m}Tc, полученных в опытах, представлены на рис. 3, 4. Содер-

Рис. 3. Рентгеновский спектр препарата ^{99m}Тс

жание радиоактивных примесей в конечном продукте не превышало 10^{-5} Бк/Бк.

Рис. 4. Гамма-спектр препарата ^{99m}Тс

Полученные результаты не противоречат данным работ [16, 17], в которых изучали поведение карбонила молибдена, облученного нейтронами. Было показано, что 34 % ⁹⁹Мо не входит в состав карбонила молибдена и фактор обогащения при экстрагировании в водную фазу из хлороформенного раствора карбонила равен $3 \cdot 10^4$. В этом случае окончательной формой стабилизации радиоактивных атомов молибдена является MOQ_4^{2-} . ^{99m}Tc стабилизируется в формах комплексного катиона [^{99m}Tc(CO₅)]⁺, пертехната ^{99m}TcO₄ (~67%) и Tc₂(CO₁₀) (~33%), который является летучим соединением и не экстрагируется в водную фазу [18].

ЗАКЛЮЧЕНИЕ

1. Облучение 10 г 100 Мо (обогащение 100 %) в течение 100 ч при токе 25 мкА и энергии электронов 25 МэВ приведет к накоплению активности 99 Мо, равной 8·10¹⁰ Бк (80 ГБк).

6

Облучение 10 г природного молибдена (9,6 % ¹⁰⁰Мо) в тех же условиях приведет к накоплению активности ⁹⁹Мо, равной 7,7·10⁹ Бк (7,7 ГБк).

При использовании в качестве мишени ¹⁰⁰Мо получаемый продукт практически не содержит мешающих примесей и общая активность мишени определяется только активностью ⁹⁹Мо и ^{99m}Tc, что значительно снижает дозовые нагрузки при работе с мишенью и ^{99m}Tc.

2. Преимуществом использования фотоядерной реакции для получения ⁹⁹Мо является относительно большая доступность и меньшие энергозатраты ускорителей электронов. Этот метод имеет перспективы для регионального применения при создании центров на базе микротронов или линейных ускорителей электронов.

3. Применение высокообогащенных молибденовых мишеней требует разработки новых радиохимических методов разделения ^{99m}Tc и ⁹⁹Mo.

4. Возможно использование генератора ^{99m}Tc на основе карбонила молибдена.

5. Имеются возможности по увеличению выхода ⁹⁹Мо путем учета конкретных геометрических характеристик пучка фотонов и оптимизации геометрических параметров мишени.

ЛИТЕРАТУРА

- 1. Куренков Н. В. // Атомная техника за рубежом. 2001. № 11. С. 11-15.
- 2. Зыков М. П., Кодина Г. Е. // Радиохимия. 1999. Т. 41, № 3. С. 193–204.
- 3. Richards P. Report BNL № 9601. Brookhaven National Laboratory, 1965.
- 4. Tucker W. D. et al. // Atompraxis. 1962. № 5. P. 163.
- Beyer G. J., Hermann E., Molnar F. // Radioch. & Radioanal. Letters. 1972. V. 12. P. 259.
- 6. Poskanzer A. M., Foreman B. M. // J. Inorg. & Nucl. Chem. 1961. V. 16. P. 323-336.
- 7. Каралова З. К. и др. // Радиохимия. 1977. Т. 19, № 1. С. 4.
- 8. *Дмитриев С. Н., Зайцева Н. Г. //* Физика элементарных частиц и атомного ядра. 1996. Т. 27, вып. 4. С. 977–1042.
- 9. Lagunas-Solar M. C. et al. // Trans. Amer. Nucl. Soc. 1996. V. 74. P. 134-135.
- 10. Давыдов М.Г., Марескин С.А. // Радиохимия. 1993. Т. 35, № 5. С. 91-96.
- Dikiy N. P., Dovbnya A. N., Uvarov V. L. // Proceedings of the Conference. EPAC-98, 6th European Particle Accelerator Conference, Stockholm, 22–26 June 1998. P. 2389– 2391.
- 12. Дмитриев С. Н. и др. // Радиохимия. 1998. Т. 40, № 6. С. 533–537.
- 13. Михеев Н.Б. и др. // Радиохимия. 1971. Т. 13, № 4. С. 631.
- Схемы распада радионуклидов. Энергия и интенсивность излучения: Публикация 38 МКРЗ: В 1ч., 3 кн. / Под ред. А.А. Моисеева. Пер. с англ. М.: Энергоатомиздат. 1987. С. 283, 305.

- 15. Кудряшов В. И., Журавлева Е. Л., Маслов О. Д. // Зав. лаб. 1997. № 9. С. 15–19.
- 16. Нефедов В. Д., Торопова М. А. // ЖНХ. 1958. Т. 3, вып. 1. С. 175–180.
- 17. Нефедов В. Д., Торопова М. А. // ЖНХ. 1958. Т. 3, вып. 1. С. 231–234.
- 18. Нефедов В. Д., Микулай В. // Радиохимия. 1973. Т. 15, № 6. С. 845-852.

Получено 27 декабря 2004 г.

Корректор Е. В. Сабаева

Подписано в печать 18.02.2005. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,63. Уч.-изд. л. 0,76. Тираж 200 экз. Заказ № 54794.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/