P12-2004-193

А. В. Сабельников, О. Д. Маслов, М. В. Густова, А. Г. Белов, С. Н. Дмитриев

ПОЛУЧЕНИЕ 237 U В ФОТОЯДЕРНОЙ РЕАКЦИИ 238 U (γ,n) НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ — МИКРОТРОНЕ МТ-25

Направлено в журнал «Радиохимия»

Сабельников А. В. и др. Получение 237 U в фотоядерной реакции 238 U (γ , n) на ускорителе электронов — микротроне MT-25

²³⁷U был получен в реакции ²³⁸U(γ , n) на ускорителе электронов — микротроне МТ-25 ЛЯР ОИЯИ. Радиационный выход ²³⁷U в условиях облучения составил 1 кБк/мкА·ч·мг²³⁸U. Для отделения ²³⁷U от материала мишени был использован метод сбора ядер отдачи в системе твердое-твердое. В качестве акцептора ²³⁷U использовали фториды элементов I–III групп таблицы Менделеева. Очистку ²³⁷U от продуктов деления проводили с применением экстракции и ионного обмена. Получен препарат ²³⁷U с удельной активностью 49500 кБк/мг ²³⁸U. Содержание радиоактивных примесей в препарате не превысило 10^{-6} Бк/Бк. Химический выход ²³⁷U составил 70%.

P12-2004-193

P12-2004-193

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

Sabelnikov A. V. et al. Production of ²³⁷U in the ²³⁸U (γ , n) photonuclear reaction at the electron accelerator MT-25 microtron

 237 U was obtained in the 238 U(γ, n) reaction at the electron accelerator MT-25 microtron of the FLNR of the JINR. The 237 U radiation yield under experimental conditions amounted to 1 kBq/ μ A·h·mg 238 U. Capture of recoil atoms in a solid–solid system was used for isolation of 237 U from the target material. Fluorides of chemical elements from I–III series of the Periodic Table of the Elements were used as 237 U acceptors. The 237 U isolation from radioactive impurities was realized by means of extraction and ion exchange. Specific activity of the 237 U preparation was equal to 49500 kBq/mg 238 U. The radioactive impurity content did not exceed 10⁻⁶ Bq/Bq. The 237 U chemical yield amounted to 70%.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

Благодаря своим ядерно-физическим характеристикам ²³⁷U (T_{1/2}= 6,75 сут, β^- , $E_{\gamma} = 0,06$ МэВ (36%), 0,208 МэВ (23%)) [1] представляет значительный интерес для использования в качестве трассера при исследовании поведения урана в различных химических и биологических системах, изучения его состояния в ультранизких концентрациях методом горизонтального зонного электрофореза в свободном электролите. ²³⁷U используется в мессбауэровской спектроскопии в качестве источника резонансного γ -излучения. Однако из-за отсутствия подходящих ядерных реакций для его производства этот изотоп не нашел широкого практического применения.

Один из путей получения 237 U — использование генератора на основе 241 Pu [2–4], который является довольно редким изотопом. В работе [4] за один цикл выделения получают ~ 220 МБк (~ 6 мКи) 237 U при работе с большой удельной активностью плутония (~ 700 Ки/л), что приводит к повышенному тепловыделению и радиолизу раствора.

Уран-237 получают также при облучении ²³⁸U быстрыми нейтронами или ²³⁵U и ²³⁶U медленными нейтронами [2, 5, 6]. Этот изотоп может быть получен и на циклотроне в ядерных реакциях: ²³⁸U(d, t)²³⁷U, ²³⁸U($\alpha, \alpha n$)²³⁷U, ²³⁸U(p, pn)²³⁷U [7].

Реакция ²³⁸U(γ , n)²³⁷U была использована в работе для аналитического определения урана в геологических образцах [8,9], а в работе [10] — для получения ²³⁷U, который применяли в качестве трассера при аналитическом определении урана в почвах и природных водах. ²³⁷U, полученный в ²³⁸U(γ , n)²³⁷U реакции при облучении UO₃ на микротроне, был использован для изучения кинетики гетерогенного изотопного обмена в системе: водный раствор UO₂(NO₃)₂ — ионообменная смола Wofatit CA-20 в UO₂²⁺-форме [11].

Активность осколков деления, образующихся при облучении нейтронами или гамма-квантами ²³⁸U, на несколько порядков больше активности ²³⁷U. В результате очистки от осколков деления получают ²³⁷U в смеси с другими изотопами урана и с небольшой удельной активностью. В связи с этим является актуальным разработка метода получения ²³⁷U с высокой удельной активностью.

Целью данной работы является получение 237 U в фотоядерной реакции 238 U $(\gamma, n)^{237}$ U и повышение удельной активности препарата.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакция 238 U $(\gamma, n)^{237}$ U происходит без изменения заряда ядра, поэтому концентрирование в процессе облучения, т.е. увеличение удельной активно-

сти радиоизотопа ²³⁷U, необходимо проводить с использованием метода сбора ядер отдачи. Успешное применение этого метода возможно в том случае, когда облучаемый элемент обладает способностью существовать, по крайней мере, в двух достаточно устойчивых валентных состояниях и химические соединения, в которых стабилизируется радиоактивный изотоп, могут быть сравнительно легко отделены от исходного соединения мишени. Кроме того, используя большие пробеги ядер отдачи, возникающие при реакции (γ , n), можно проводить обогащение радиоактивных изотопов с помощью мелкодисперсных систем, например систем жидкость-твердое и твердое-твердое. При этом одна фаза действует как донор, а другая — как акцептор радиоактивного элемента.

Возможность применения системы жидкое–твердое для концентрирования продуктов реакции в процессе облучения гамма-квантами была показана на примере сбора ядер ⁵⁴Mn, получаемого в результате реакции ⁵⁵Mn(γ , n)⁵⁴Mn при облучении концентрированного раствора KMnO₄. При этом ⁵⁴Mn стабилизируется в четырехвалентной форме, образуя трудно растворимое соединение MnO₂ [12].

Ядра отдачи ²³⁷U концентрировали на двуокиси марганца при облучении раствора UO₂(NO₃)₂ в присутствии MnO₂ или KMnO₄ [13]. В этом случае ядра отдачи вбиваются в добавленную или образующуюся двуокись марганца. Растворы помещали в стеклянные пробирки и проводили облучение гамма-квантами с $E_{\gamma} = 24$ МэВ и средним током электронов, равным 15 мкА, в течение 1 ч.

№ п/п	Образец ²³⁸ U	Количество ²³⁸ U, мг	Выход ²³⁷ U, Бк/мкА∙ ч ∙мг ²³⁸ U
1	U-фольга	3,8	1100
2	UO ₂ -порошок	11	1000

Таблица 1. Результаты облучения образцов урана

Для определения выхода ²³⁷U в реакции ²³⁸U(γ , n)²³⁷U облучали мишени, состоящие из урановой фольги массой 3,8 мг и порошка диоксида урана (UO₂), содержащего 11 мг урана (табл. 1). Мишени помещали в цилиндрический алюминиевый держатель, описанный в работе [14]. Облучение проводили в течение 5 ч гамма-квантами с $E_{\gamma} = 24$ МэВ на микротроне МТ-25. Ток электронов был равен 15 мкА. Облученную мишень после 24-часового "охлаждения" измеряли на гамма-спектрометре. Такие же условия облучения были при проведении экспериментов по сбору ядер отдачи ²³⁷U в приведенных ниже системах твердое-твердое с содержанием урана в каждой мишени ~10 мг (табл. 2): 1. Смесь порошков карбида урана и хлорида натрия. Смесь обрабатывали раствором $(NH_4)_2CO_3$.

2. Смесь порошков карбида урана и лимонно-кислого натрия. Смесь обрабатывали раствором (NH₄)₂CO₃.

3. В серии опытов использовали смеси порошков UO_2Cl_2 или $UO_2(NO_3)_2$ с фторидами элементов I–III групп. Макрокомпонент UO_2Cl_2 ($UO_2(NO_3)_2$) отмывали раствором 0,1 M HCl, 0,1 M HNO₃ и растворами 0,1 M HCl в присутствии фторидов I–II групп.

№ п/п	Мишень	Условия разделения	Удельная активность ²³⁷ U, кБк/мг ²³⁸ U (мишень/препарат)
1	Раствор KMnO ₄	Фильтрация	⁵⁴ Mn —6 /30
2	Раствор $UO_2(NO_3)_2$ + MnO_2	[U] = 1мг/мл, V=2 мл	30/300
3	Раствор $UO_2(NO_3)_2$ + KMnO ₄	[U] = 1мг/мл, V=2мл	30/300
4	UC + NaCl	Раствор $(NH_4)_2CO_3$	75/630
5	UC + Na лимоннокислый.	Раствор $(NH_4)_2CO_3$	75/750
6	$UO_2Cl_2 + LaF_3 + CaF_2$	0,1 M HCl, центрифугирование	75/2000
7	$UO_2Cl_2 + LaF_3 + CaF_2$	0,1 M HCl + CaF ₂ , центрифугирование	75/4900
8	$UO_2(NO_3)_2 + LaF_3 + CaF_2 + NaF$	0,1 М НNO ₃ , фильтрация	75/49500

Таблица 2. Результаты экспериментов по сбору ядер отдачи 54 Mn и 237 U

Разделение осадков и растворов проводили фильтрацией через ядерный фильтр с диаметром пор 0,1 мкм или центрифугированием.

В веществе-сборнике концентрировали ²³⁷U (сечение реакции ²³⁸U(γ , n) \cong 300 мб) и продукты деления урана (сечение реакции ²³⁸U(γ , f) \cong 165–168 мб). Для очистки от продуктов деления при фторидном выделении радиоизотопов применяли схему разделения, представленную на рис. 1. ²³⁸U отмывали от вещества мишени раствором 0,1M HCl, затем осадок растворяли в 5M HNO₃ в присутствии борной кислоты при нагревании и стабилизировали уран в высшем валентном состоянии U(VI) при помощи KBrO₃. Затем к полученному раствору добавляли NH₄NO₃ до концентрации 6 моль/л и проводили экстракцию ²³⁷U 30%-м раствором ТБФ в керосине. Реэкстракцию осуществляли раствором 1 М CH₃COONa, который затем упари-

3

Рис. 1. Схема выделения и очистки ²³⁷U

вали до влажных солей и переводили осадок в форму хлорида добавлением 9M HCl с последующим упариванием раствора. Последнюю операцию повторяли три раза, предварительно добавляя 9M HCl. Затем осадок влажных солей растворяли в 9M HCl и раствор подавали на ионообменную колонку 40×2 мм с сильноосновным анионитом Wofatit SBW. Колонку промывали 1 мл 10%-го раствора 9M HCl в этаноле. После десорбции следов осколков деления уран-237 элюировали 0,5 мл раствора 3M HCl.

СПЕКТРОМЕТРИЯ ²³⁷U

Определение подлинности радионуклида проводили по энергиям гаммаи рентгеновского излучений, а также по периоду полураспада. Радионуклидные примеси, образующиеся в результате конкурирующих реакций, реакции 238 U(γ, f), а также в результате активации примесных элементов, присутствующих в исходном материале мишени, определяли по гамма-спектрам и рентгеновским спектрам одновременно с основным радионуклидом. Радионуклидную чистоту препарата оценивали как отношение активности примеси к активности основного радионуклида, выраженное в Бк/Бк, а удельную активность — как отношение активности препарата к его массе, нормированной на 1 мг.

Гамма-спектрометрические измерения различных фракций и конечного препарата проводили с использованием детектора из сверхчистого Ge с разрешением 1,5 кэВ на линии 1,33 МэВ (⁶⁰Co). Детектирование ²³⁷U производили по линиям с $E_{\gamma} = 0,06$ МэВ (36%); 0,114 МэВ (0,06%); 0,165 МэВ (2,0%); 0,208 МэВ (23%) [1]. Измерения рентгеновских спектров препаратов и определение в них содержания стабильных элементов проводили на Si(Li)детекторе с разрешением ~200 эВ на линии FeK_{α 1} (6,4 кэВ) с возбуждением рентгеновского излучения радиоизотопным источником ¹⁰⁹Cd.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты экспериментов представлены в табл. 1 и 2.

По результатам измерений был оценен выход 237 U, который соответствовал 1 кБк/мкА · ч · мг 238 U.

Из представленных результатов следует, что повышение удельной активности 237 U достигает двух-трех порядков при использовании для облучения смесей порошков UO₂Cl₂ (UO₂(NO₃)₂) с фторидами элементов I–III групп.

На рис. 1 дана схема очистки и выделения ²³⁷U из облученной мишени (табл. 2, пп. 6–8), а в табл. 3 представлено распределение продуктов деления и урана по схеме.

Выход ²³⁷U в результате переработки мишени ²³⁸U по схеме, представленной на рис. 1, составил 70%. На рис. 2 и 3 даны спектры рентгеновскогои гамма-излучений препарата ²³⁷U. Как видно из табл. 3, рис. 2 и 3, содержание примесей радионуклидов в препарате ²³⁷U не превысило величину 10^{-6} Бк/Бк. Удельная активность ²³⁷U равнялась 49500 кБк/мг ²³⁸U (табл. 2, п. 8).

Для представленных экспериментальных условий поток тепловых нейтронов 10^5-10^6 с⁻¹ · см⁻² оценен нами с использованием реакции ¹⁹⁷Au(n, γ)¹⁹⁸Au. При облучении природного урана фотонами до 25 МэВ и образовавшимися нейтронами [15, 16] не наблюдается реакций, приводящих к образованию такого количества изотопов урана, которое бы нарушало изотопную чистоту конечного продукта — ²³⁷U, и определяющим является разделение ²³⁷U и ²³⁸U.

5

Таблица 3. Распределение продуктов деления при очистке и выделении урана-237 из облученной мишени

Нуклид	$E_{\gamma},$	Активность	Активность	Активность
	кэВ	раствора перед	реэкстракта перед	урана после
		экстракцией, Бк	колонкой, Бк	колонки, Бк
²³⁷ U	208	$3,3 \cdot 10^5$	$3,0 \cdot 10^5$	$2,9 \cdot 10^5$
⁹¹ Sr	1024	$1,6 \cdot 10^3$	$< 2.8 \cdot 10^{-2}$	$< 2,8 \cdot 10^{-2}$
91m Y	556	$8,9 \cdot 10^2$	$< 2,3 \cdot 10^{-2}$	$< 2,3 \cdot 10^{-2}$
⁹⁵ Zr	756	$2,1 \cdot 10^{3}$	$< 1,3 \cdot 10^{-2}$	$< 1,3 \cdot 10^{-2}$
95 Nb	765	$7,4 \cdot 10^1$	$< 9.3 \cdot 10^{-3}$	$< 9,3 \cdot 10^{-3}$
⁹⁷ Zr	355	$1,2 \cdot 10^4$	$7,2 \cdot 10^1$	$< 9,9 \cdot 10^{-1}$
⁹⁷ Nb	658	$1,3 \cdot 10^4$	$9,2 \cdot 10^1$	$< 2.8 \cdot 10^{-2}$
⁹⁹ Mo	181	$2,3 \cdot 10^4$	$< 5.9 \cdot 10^{-1}$	$< 5,9 \cdot 10^{-1}$
^{99m} Tc	140	$2,2 \cdot 10^4$	$< 4.9 \cdot 10^{-2}$	$< 4,9 \cdot 10^{-2}$
103 Ru	497	$1,8 \cdot 10^3$	$< 1,2 \cdot 10^{-2}$	$< 1,2 \cdot 10^{-2}$
105 Rh	306	$7,7 \cdot 10^{3}$	$< 3.4 \cdot 10^{-1}$	$< 3,4 \cdot 10^{-1}$
^{131}I	285	$5,9 \cdot 10^3$	$< 2,3 \cdot 10^{-1}$	$< 2,3 \cdot 10^{-1}$
¹³² Cs	668	$1,5 \cdot 10^4$	$1,1 \cdot 10^1$	$< 7,2 \cdot 10^{-3}$
¹³² Te	228	$1,7 \cdot 10^4$	$1,3 \cdot 10^2$	$< 4,4 \cdot 10^{-2}$
140 La	1596	$7,0 \cdot 10^{3}$	$5,8 \cdot 10^1$	$< 1,5 \cdot 10^{-2}$
140 Ba	537	$8,2 \cdot 10^{3}$	$< 8.0 \cdot 10^{-2}$	$< 8,0 \cdot 10^{-2}$
¹⁴¹ Ce	145	$3,6 \cdot 10^{3}$	$< 6.9 \cdot 10^{-2}$	$< \overline{6,9 \cdot 10^{-2}}$
¹⁴³ Ce	293	$2,0.10^4$	$5,8 \cdot 10^{1}$	$< 3,3 \cdot 10^{-2}$
¹⁴⁷ Nd	531	$2,6 \cdot 10^4$	$< 5.3 \cdot 10^{-2}$	$< 5,3 \cdot 10^{-2}$

Рис. 2. Рентгеновский спектр ²³⁷U

Рис. 3. Гамма-спектр 237 U

ЗАКЛЮЧЕНИЕ

Разработан метод получения ²³⁷U в реакции ²³⁸U(γ , n)²³⁷U с выходом около 1 кБк/мкА · ч на 1 мг исходного ²³⁸U.

Получен препарат 237 U с удельной активностью 49500 кБк/мг 238 U и содержанием радиоактивных примесей $\leq 10^{-6}$ Бк/Бк.

ЛИТЕРАТУРА

- 1. Схемы распада радионуклидов. Энергия и интенсивность излучения: Рекомендации МКРЗ: В 2 ч. В 4 кн. / Под ред. А.А. Моисеева. Публикация 38-я. Пер. с англ. М.: Энергоатомиздат, 1987. ч.2. кн. 2. С. 320.
- Stone J. // Proc. IAEA Symp. "Application of the Mossbayer Effect in Chemistry and Solid State Physics". 1966. Rep. 50.
- Химия актиноидов. / Ред. Дж. Кац, Г. Сиборг и Л. Морсс. М.: Мир, 1991. Т.1. С. 188.
- 4. Александров Б.М. и др. // АЭ. 1978. Т. 45(1). С. 66.
- 5. Головня В.Я. и др. // Нейтронная физика. 1988. Т. З. С. 281.
- 6. Кривохатский А.С., Романов Ю.Ф. // Изв. Вузов. Физика. Изд. Томского ун-та. 1969. Т. 1. С. 28.

- Хайд Э., Перлман И., Сиборг Г. Ядерные свойства тяжелых элементов. Вып. 4. Изотопы тория, протактиния и урана. Естественная и искусственная радиоактивность. / Пер. с англ. под ред. Г.Н. Флерова. М.: Атомиздат, 1969. С. 100.
- Berthelot Ch., Eschbach H.L., Vergingh V., Verheyen F. // Proceedings of Modern Trends in Activation Analysis. V. I. Copenhagen, 1986. P. 663–670.
- 9. Гэрбиш Ш. и др. // ХТТ. 1992. № 3. С. 127.
- 10. Maslov O.D., Dmitriev S.N., Molokanova L.G., Gustova M.V., Sabelnikov A.V. Trace Element Analysis of Aktinides in Natural Waters and Soils Using (γ, f) Reaction // Radionuclides and Heavy Metals in Environment / Ed. Frontasyeva M.V. et. al. Kluwer Academic Publishers, 2001. P. 135–141.
- 11. Gosman A. et al. // J. Radioanal. Nucl. Chem. Articles. 1988. V. 121(2). P. 375.
- 12. Бреслер С.Е. // Радиоактивные элементы. М.: ГИТТЛ, 1957. С. 389.
- Sabelnikov A.V., Dmitriev S.N., Maslov O.D. // NRC5. Extended Abstracts. 5th International Conference on Nuclear and Radiochemistry, Sept. 3–8. Pontresina, Switzerland, 2000. P.692.
- 14. Дмитриев С.Н. и др. // Радиохимия. 1998. Т. 40, № 6. С. 533.
- 15. Центр данных фотоядерных экспериментов: http://cdfe.sinp.msu.ru/
- 16. Горбачев В.М., Замятнин Ю.С., Лбов А.А. // Взаимодействие излучений с ядрами тяжелых элементов и деление ядер. Справочник. М.: Атомиздат, 1976. С. 97.

Получено 9 декабря 2004 г.

Редактор М. И. Зарубина

Подписано в печать 17.02.2005. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,5. Уч.-изд. л. 0,61. Тираж 200 экз. Заказ № 54792.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/