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1. INTRODUCTION

At present, existence of three following families of leptons and quarks

u νe

d e
;

c νµ

s µ
;

t ντ

b τ
(1)

is established [1]. In the framework of the standard model of weak interactions
[2], i. e. at W ¨ Z0 boson exchanges, transitions between different families
of leptons or quarks do not take place. In the quark sector, mixings between
d, s, b quarks (i. e. transitions between different families of quarks) are described
by CabibboÄKobayashiÄMaskawa matrices [3]. In works [4], the dynamical
model of transitions between different quark families (model of dynamical analogy
of CabibboÄKobayashiÄMaskawa matrices) was proposed. In this model, these
transitions are realized by exchanges of four massive (B±, C±, D±, E±) bosons.

We have a problem with interpretation of the angle mixings. Consider K±,
which is produced in strong interactions, and we want to consider its decay. Since
K meson includes s quark, when we take into account the weak interaction, we
must use the Cabibbo matrix [3] mixing s, d quarks:

d1 = d cos θ + s sin θ,
s1 = −d sin θ + s cos θ; (2)

i. e. s quark transforms in superpositions of s, d quarks:

s → s1 = −d sin θ + s cos θ.

The matrix element of K meson decay [3] is proportional to sin θ, i. e. we
take into account only the sin θ part from the above expression, and then the term
proportional to cos θ remains. It means that only the part proportional to sin θ
decays. However, from the current experiments we know that K mesons decay
fully. It can happen only if K mesons decay through massive bosons B but
not W bosons as it takes place in the model of dynamical analogy of CabibboÄ
KobayashiÄMaskawa matrices [4]. In the framework of this model, the masses
and transition widths of these bosons were computed and other consequences of
quark mixings were also studied. In the lepton sector, the analogous transitions
are realized by introductions of the same matrices [5].

It is obvious that this problem must be solved in case quark mixings (or
oscillations) take place. Now consider the schemes of quark mixings (or oscilla-
tions) and in the subsequent works we will return to solution of this problem in
the framework of the suggested approach.
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In works [6], three schemes of neutrino mixings (oscillations) were proposed.
The essential difference between quark and lepton sectors is that quarks are in
combined states in hadrons while the leptons (neutrinos) are in free states. The
fact that there are transitions between neutrinos in free states is an indication of
the possibility that in the quark sector the same transitions between quarks will
take place. Besides it is necessary to remark that existence of hadronic oscillations
on examples of K0, K̄0 and B0, B̄0 oscillations is proven, and these oscillations
are real ones since masses of K0 and K̄0 (B0 and B̄0) are equal. Consider quark
mixings and oscillations in detail.

2. SCHEMES (TYPES) OF QUARK MIXINGS (OSCILLATIONS) AND
THEIR MIXING MATRICES

In common case there can be two schemes (types) of quark mixings (oscil-
lations): mass mixing schemes and charge mixing schemes (as it takes place in
the vector dominance model or vector boson mixings in the standard model of
electroweak interactions).

2.1. Two Schemes of Quark Mixings (Oscillations) and Their Mixing Ma-
trices. In the standard approach [7], it is supposed that quarks (hadrons) are once
created in superposition states, i. e. mass matrix is a nondiagonal one. If mass
matrix is nondiagonal initially, then we must diagonalize this matrix in order to
ˇnd eigenstates of quarks. Then eigenstates are d1, s1, b1 quarks (quark mixed
states), i. e. d1, s1, b1 quarks but not d, s, b quarks must be created there. It is
obvious that it cannot be coordinated with experimental data. In the strong and
weak interactions with W and Z0 bosons, only d, s, b quarks are created, i. e.
initially mass matrix is a diagonal one, and then at violation of the aromatic
numbers this matrix is transformed into nondiagonal one [6, 8]. We stress this
point for its fundamental importance.

If we work in the framework of the original approach [7], then these quark
transitions (oscillations) must be real transitions (oscillations), i. e. real transitions
between quarks must take place there. It is clear that this supposition violates the
law of energy-momentum conservation. But at K0 ↔ K̄0 transitions, oscillations
are real since masses of d and d̄, s and s̄ are equal. But at transitions between
different-mass hadrons (π± ↔ K±), these transitions will be virtual [4, 9].

We can also see that there are two cases of quark transitions (oscillations)
in the scheme of mass mixings by analogy with the neutrino transitions (oscilla-
tions) [9].

Use of the Standard Scheme of Neutrino Mixings (Oscillations) for Con-
sideration of the Quark Mixings (Oscillations). We can use the corrected stan-
dard scheme [6] of neutrino mixings (oscillations) for consideration of the quark
mixings (oscillations) since quarks as well as neutrinos are also fermions.
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The corrected standard scheme belongs to the so-called mass mixing scheme
since mixing parameters are expressed through elements of mass matrix. Mass
matrix of d, s quarks has the following form:(

md mds

msd ms

)
, (3)

d = cos θd1 − sin θs1,
s = sin θd1 + cos θs1.

In this case, the probability of d → s transition (oscillation) is described by the
following expression (for simpliˇcation we consider d, s quark mixings):

P (d → s, t) = sin2 2θ sin2

[
πt

| m2
d1

− m2
s1

|
2pd

]
, (4)

where pd is a momentum of d quark,

sin2 2θ =
4m2

d,s

(md − ms)2 + 4m2
d,s

, (5)

and

md1,s1 =
1
2

[
(md + ms) ±

(
(md − ms)2 + 4m2

ds

)1/2
]
. (6)

At these transitions (oscillations), quarks remain on their mass shell and these
transitions (oscillations) must be virtual.

It is interesting to remark that expression (5) can be obtained from the BreitÄ
Wigner distribution [11]

P ∼ (Γ/2)2

(E − E0)2 + (Γ/2)2
(7)

by using the following substitutions:

E = md, E0 = ms, Γ/2 = 2md,s, (8)

where Γ/2 ≡ W (...) is a width of d → s transition, then we can use a standard
method [10, 12] for calculating this value. Then the probability of d → s
transitions is deˇned by these quark masses and widths of their transitions.

Expression for length of these oscillations has the following form:

Lo = 2π
2pd

| m2
s1

− m2
d1

| . (9)
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Above, we considered the case of two quark transitions (oscillations). In
common case, we must consider three quark transitions (oscillations). For a
complete description of three quark oscillations we must have six parameters (we
suppose that this mass matrix is symmetric in respect to the diagonal one),

 md mds mdb

msd ms msb

mdb msb mb


 , (10)

three diagonal terms of this matrix are masses of three physical quarks md, ms, mb,
and three nondiagonal mass terms of this matrix are mds, mdb, msb-quarks transi-
tion widths. Since in the expression for quark transition probabilities the squared
mass differences are used in reality, we need only ˇve parameters (for further sim-
pliˇcation, physical quark masses are used). Besides, if mass matrix is complex,
there appears one parameter connected with CP violation.

These mixing angles can be connected with the CabibboÄKobayashiÄMaskawa
mixing matrix V [3]. We will choose a parameterization of the mixing matrix V
in the form proposed by Maiani [13]:

V =


 1 0 0

0 cγ sγ

0 −sγ cγ





 cβ 0 sβ exp(−iδ)

0 1 0
−sβ exp(iδ) 0 cβ





 cθ sθ 0

−sθ cθ 0
0 0 1


,

(11)

cds = cos θ, sds = sin θ, c2
ds + s2

ds = 1;

cdb = cosβ, sdb = sinβ, c2
db + s2

db = 1; (12)

csb = cos γ, ssb = sinγ, c2
sb + s2

sb = 1;

exp(iδ) = cos δ + i sin δ.

In our approximation, the value of δ can be considered equal to zero.
Equations for mixing angles expressed through elements of mass matrix has

the following form:

sds = sin θ =
1√
2

[
1 − | ms − md |√

(ms − md)2 + (2mds)2

]
, (13)

c2
ds = 1 − s2

ds;

sdb = sin β =
1√
2

[
1 − | mb − md |√

(mb − md)2 + (2mdb)2

]
, (14)
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c2
db = 1 − s2

db;

ssb = sinγ =
1√
2

[
1 − | mb − ms |√

(mb − ms)2 + (2msb)2

]
, (15)

c2
sb = 1 − s2

sb.
Analysis of Status of Quark Mixing Parameters in the Scheme of Mass Mix-

ings. With this aim we use the following data on mixing angles obtained in the
framework of CabibboÄKobayashiÄMaskawa matrices [1]:

1) tg θ ∼= sin θ = 0.218÷ 0.224;
2) tg β ∼= sin β = 0.032 ÷ 0.054;
3) tg γ ∼= sin γ = 0.002 ÷ 0.007.

(16)

Expressions for squared mass differences and their expansions have the following
form (d1 → 1, s1 → 2, b1 → 3):

∆m2
21 = m2

2 − m2
1 = (ms + md)

√
(ms − md)2 + (2mds)2, (17)

if 2mds �| ms − md |, then

∆m2
21 = (ms + md)2mds

[
1 +

(ms − md)2

2(2mds)2

]
, (17′)

and if 2mds �| ms − md |, then

∆m2
21 = (m2

s − m2
d)

[
1 +

(2mds)2

2(ms − md)2

]
; (17′′)

∆m2
31 = m2

3 − m2
1 = (mb + md)

√
(mb − md)2 + (2mdb)2, (18)

if 2mdb �| mb − md |, then

∆m2
31 = (mb + md)2mdb

[
1 +

(mb − md)2

2(2mdb)2

]
, (18′)

and if 2mdb �| mb − md |, then

∆m2
31 = (m2

b − m2
d)

[
1 +

(2mdb)2

2(mb − md)2

]
; (18′′)

∆m2
32 = m2

3 − m2
2 = (mb + ms)

√
(mb − ms)2 + (2msb)2, (19)
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if 2msb �| mb − ms |, then

∆m2
32 = (mb + ms)2msb

[
1 +

(mb − ms)2

2(2msb)2

]
, (19′)

and if 2msb �| mb − ms |, then

∆m2
32 = (m2

b − m2
s)

[
1 +

(2msb)2

2(mb − mνmu)2

]
. (19′′)

The current masses of d, s, b quarks are [1]:

md � 3 ÷ 9 MeV,

ms � 60 ÷ 170 MeV, (20)

mb � 4.0 ÷ 4.5 GeV.

Now using values of these masses we turn to consideration of the situation
with quark mixings (oscillations).

For d, s quarks we have (by diagonalization of mass matrix)

sin 2θ =
2mds√

(md − ms)2 + 4m2
ds

,

tg 2θ =
2mds

| md − ms | ,
(21)

d1 = d cos θ + s sin θ,
s1 = −d sin θ + s cosθ. (22)

For d, b quarks we have (by diagonalization of mass matrix)

sin 2β =
2mdb√

(md − mb)2 + 4m2
db

,

tg 2β =
2mdb

| md − mb |
,

(23)

d1 = d cosβ + b sinβ,
b1 = −d sin β + b cosβ.

(24)

For s, b quarks we have (by diagonalization of mass matrix)

sin 2γ =
2msb√

(ms − mb)2 + 4m2
sb

,

tg 2γ =
2mxsb

| ms − mb |
,

(25)
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s1 = s cosγ + b sin γ,
b1 = −s sin γ + b cosγ.

(26)

If we use angle values from (16) and quark masses from (20), then we can rewrite
expressions (21), (23) and (25) in the following form:

sin 2θ � 2mds

ms
, mds � 1

2
ms sin 2θ � 16.0 ÷ 16.35 MeV, (27)

sin 2β � 2mdb

mb
, mdb �

1
2
mb sin 2β � 172.0 ÷ 193 MeV, (28)

sin 2γ � 2msb

mb
, msb �

1
2
mb sin 2γ � 18 ÷ 20.2 MeV. (29)

In this approach we interpret nondiagonal mass terms of mass matrix as transition
widths between quarks. Then it is not clear how this value can be larger than
quark mass value as it takes place in (27). In any case such enormous values of
widths can arise only if s, b quarks are resonance states. Obviously this resonance
can originate only outside the standard weak interactions (see below).

If we compute values of nondiagonal mass terms (quark transition widths) of
mass matrix in the framework of the standard weak interactions, then using Eq.
(21) we get

mds � sin θms. (30)

It is interesting to compute this angle mixing in the standard model in the
framework of some consistent supposition on the analogy of K0, K̄0 or π±, K±
mixings [9]. To do it, we suppose that d ↔ s transitions are generated through
exchange of massive boson W ′. Then, formally, we can get

mds � 2W (d → s) �

� (GF )2
f ′2

πm3
s

8π
(
mW

mW ′
)4 = ms sin θ′. (31)

Even if we take mW ′ � mW and f ′
π ∼ a few GeV, we come to the following

result:

sin θ′ = (GF )2
f ′2

πm2
s

8π
� sin θ �

√
0.048. (32)

So, we see that the angle mixing sin θ′ obtained in the standard method is a very
small value and much less than sin θ in the CabibboÄKobayashiÄMaskawa matri-
ces. It is clear that we cannot obtain ˇt values for mixing angles in this approach.
Probably we must suppose that there must be a new leftÄright symmetrical inter-
action, which can generate masses of quarks, and moreover some quarks must be
resonances of this interaction (by analogy with the strong interactions).
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Impossibility of obtaining values for quark transition widths, which are of
the order of mds, mdb, msb in Eqs. (27)Ä(29), in the framework of the weak
interactions (see (32)) is an indication that the mass mixing schemes cannot ˇt
the description of quark mixings. Unfortunately the same situation can take
place in the neutrino mixing cases although this approach is used everywhere in
description of experiments on neutrino mixings and oscillations.

The Case of Quark Mixings without Mass Shell Changing. Above we
considered the case when virtual quark transitions take place with change of quark
masses. Another case is also possible, when d quark transits into s quark without
changing mass, i. e. m∗

s = md, then

tg 2θ = ∞, (33)

θ = π/4, and
sin2 2θ = 1. (34)

In this case, the probability of the d → s transition (oscillation) is described
by the following expression:

P (d → s, t) = sin2

[
πt

4m2
d,s

2pd

]
. (35)

Expression for length of oscillations in this case has the following form:

Lo = 2π
2pd

(2mds)2
.

In order to make these virtual oscillations real, their participation in quasi-
elastic interactions is necessary for their transitions to their own mass shells [10].

The KobayashiÄMaskawa-type matrix in this case is a trivial one, and it has
the following form:

V =


 1 0 0

0 cγ sγ

0 −sγ cγ





 cβ 0 sβ exp(−iδ)

0 1 0
−sβ exp(iδ) 0 cβ





 cθ sθ 0

−sθ cθ 0
0 0 1


,

(36)

ceµ = cos θ =
1√
2
, seµ = sin θ =

1√
2
;

ceτ = cosβ =
1√
2
, seτ = sin β =

1√
2
; (37)

cµτ = cos γ =
1√
2
, sµτ = sinγ =

1√
2
;
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exp(iδ) = 1.

In our approximation, the value of δ can be considered to be equal to zero.
In this case

sin2 2θ = sin2 2β = sin2 2γ = 1, (38)

we have
∆m2

21 = (2mds)2,

∆m2
31 = (2mdb)2, (39)

∆m2
32 = (2mds)2.

It is necessary to remark that in physics all the processes are realized through
dynamics. Unfortunately, in this mass mixing scheme the dynamics is absent.
Probably that is an indication of the fact that these schemes are incomplete ones,
i. e. these schemes demand a physical substantiation (see Sec. 2.2).

In principle we cannot exclude this type of quark mixings since lengths of
quark transitions (oscillations) in this case are much larger than it were in previous
case; therefore on the background of previous transitions it is hard to observe
these transitions.

Obviously, these schemes will work only if quark oscillations take place
in reality (it is clear that there also can be quark mixings in absence of quark
oscillations).

2.2. The Scheme of Quark Mixings (Oscillations) through Charges. The
third scheme (type) of mixings or transitions between quarks can be realized by
mixings of the quark ˇelds by analogy with the vector dominance model (γ −ρ0)
and Z0 − γ mixings as it takes place in the particle physics [2, 14]. Then in the
case of two quarks, we have

q1 = cos θd + sin θs,

q2 = −sin θd + cos θs.
(40)

In the case of three quarks, we can also choose parameterization of the mixing
matrix V in the form proposed by Maiani [13]:

V =


 1 0 0

0 cγ sγ

0 −sγ cγ





 cβ 0 sβ

0 1 0
−sβ 0 cβ





 cθ sθ 0

−sθ cθ 0
0 0 1


; (41)

ceµ = cos θ seµ = sin θ, c2
eµ + s2

eµ = 1;

ceτ = cosβ, seτ = sinβ, c2
eτ + s2

eτ = 1; (42)

cµτ = cos γ, sµτ = sinγ, c2
µτ + s2

µτ = 1.
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The charged current in the standard model of weak interactions for two quark
families has the following form:

jα =
(

ūc̄
)
L

γαV

(
d
s

)
L

,

V =
(

cos θ sin θ
− sin θ cos θ

)
, (43)

and then the interaction Lagrangian is

L =
g√
2
jαW+

α + h.c. (44)

and
d = cos θq1 − sin θq2,
s = sin θq1 + cos θq2.

(45)

Then, taking into account that the charges of q1, q2 quarks are g1, g2, we get

g cos θ = g1, g sin θ = g2, (46)

i. e.
cos θ =

g1

g
, sin θ =

g2

g
. (47)

Since sin2 θ + cos2 θ = 1, we have

g =
√

g2
1 + g2

2

and
cos θ =

g1√
g2
1 + g2

2

, sin θ =
g2√

g2
1 + g2

2

. (48)

If we suppose that g1
∼= g2

∼=
g√
2

, then

cos θ ∼= sin θ ∼=
1√
2
. (49)

It is not difˇcult to turn to consideration of the case of three quark types d, s, b.
Since the weak couple constants gd, gs, gb of d, s, b quarks are approximately
equal in reality, i. e. gd � gs � gb, the angle mixings are nearly maximal:

cos θ = cos θds
∼= sin θds

∼=
1√
2
,

cosβ = cos θdb
∼= sin θdb

∼=
1√
2
,

cos γ = cos θsb
∼= sin θsb

∼=
1√
2
.

(50)
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In expression (16), experimental data for quark mixing angles were given. This
values are in serious discrepancy with the same values in (50). This discrepancy
can be eliminated if we suppose that quark charges (or couple constants) of the
interactions, which violate quark aromatic numbers, are different from the weak
charges (couple constants) of d, s, b quarks. Then we can use Eq. (46)Ä(47) for
determination of q1, q2, q3 quark charges by using values from Eq. (16):

g′1 = g cos θ, g′2 = g sin θ,

g′′1 = g cosβ, g′′3 = g sin β,

g′′′2 = g cos γ, g′′′3 = g sin γ.

(51)

It is also possible to use expression (48) as an independent one and use it for
determination of q1, q2, q3 couple constants (it is a consequence of normalization
conservation and then there can be no connections between these couple constants
and the above-given quark couple constants).

As stressed above, in the case of mass mixing scheme we have no dynamical
basing in contrast to the case of charge mixing scheme, but these schemes may
be jointed if quark masses have the following form:

mqi = giv, i = d, s, b, (52)

where v is constant in the Higgs mechanism [15]. And then the problem of
dynamical substantiation in this scheme is solved. The problem of using the mass
mixing schemes for description of quark mixings (oscillations) is also solved,
but now nondiagonal terms of quark mass matrix cannot be interpreted as quark
transition widths.

3. CONCLUSION

Unfortunately, we do not know concrete mechanism of quark mixings or os-
cillations; therefore, it is necessary to consider all realistic schemes of quark mix-
ings and oscillations. In this work, three schemes of quark mixings (oscillations)
together with their mixing matrices (analogous to CabibboÄKobayashiÄMaskawa
matrices) were considered. In these schemes, quark transitions are virtual since
quark masses are different. Two of them belong to the so-called mass mixing
schemes (mixing parameters are expressed by elements of mass matrices), and the
third scheme belongs to the charge mixing ones (mixing parameters are expressed
through charges). For these schemes the expressions for transition probabilities
between d, s, b quarks were obtained. The analysis of situation with the quark
mixing parameters in these schemes was fulˇlled. It was shown that in principle it
is impossible to obtain values for quark transition widths given in Eqs. (27)Ä(29)
in the framework of the weak interactions (see (32)). It is an indication that the
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mass mixing schemes cannot ˇt the description of quark mixings (oscillations),
although if quark mass origin has a Higgs nature (see Eq. (52)) then this problem
is solved. In this case, we cannot consider the nondiagonal mass terms of quark
mass matrix as quark transition widths any longer.

So, expressions (4), (9), (13)Ä(15), (35)Ä(38), (50), (51) can be used for
interpretation of experimental data on quark mixings and oscillations. These quark
mixings and oscillations will manifest themselves as mixings and oscillations of
hadrons.
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