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Cauchy inequality (CI) relates scalar products of two vectors and their norms.
I point out other similar inequalities (SI). Starting with CI Schréodinger derived his
uncertainty relation (UR). By using SI other various UR can be obtained. It is shown
that they follow from the Schréodinger UR. Two generalizations of CI are obtained
for mixed states described by density matrices. Using them two generalizations of
UR for mixed states are derived. Both differ from the UR generalization known
from the literature. The discussion of these generalizations is given.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004



INTRODUCTION

Heisenberg uncertainty relation (HUR) σ2
xσ2

y � �
2/4 is the most known

example of the quantum inequalities which are considered here. It is the corollary
of quantum postulates. The main postulate is the description of physical system
states by vectors of linear space with a scalar product (e.g., Hilbert space). For two
vectors α1 and α2 one can also derive from these postulates the known CauchyÄ
BunyakowskiiÄSchwarz inequality (α1, α1)(α2, α2) � |(α1, α2)|2, which will be
called the Cauchy inequality (CI).

HUR restricts possible values of dispersions of observables. CI can also be
given in a physical sense: it is a premise for the probability interpretation of state
vectors, see Sec. 1 below.

Robertson and Schréodinger [6, 7] pointed out an uncertainty relation which is
more general than HUR. It is usually called the Schréodinger uncertainty relation
(SUR), see [2, 9, 10]. Schréodinger [7] derived SUR starting with CI and then
obtained HUR as a particular case of SUR.

Various modiˇcations and generalization of CI and uncertainty relations (UR)
are known. For example, there exist inequalities which contain three and more
state vectors or observables, e.g., see [2,10,8]. Here we consider CI for two states
and UR for two observables, the states being described either by vectors (pure
states) or by density matrices (mixed states).

It is pointed out in Sec. 1 that along with CI many similar inequalities (SI)
can be written which turn out to be particular cases of CI. Starting with one of
these SI one can obtain HUR. From another SI one can derive other useful UR,
see Subsec. 1.3.

Two generalizations of CI are obtained in Sec. 2 for the case of two mixed
states described by density matrices W1 and W2. Both turn into CI in the case
of pure states. One of them allows one to introduce the notion ®the probability
to ˇnd the mixed state W1 in the mixed state W2¯.

The generalization of UR for the mixed state W is known (see, e.g., review
[2]). Two new generalizations are derived in Sec. 3. All these three generaliza-
tions are different consequences of quantum postulates. All turn into the same
SUR when W describes a pure state. For further discussion of these generaliza-
tions see the Conclusion.
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1. CAUCHY INEQUALITY IN QUANTUM MECHANICS
AND UNCERTAINTY RELATIONS

1.1. Cauchy inequality (CI) follows from the postulates of the linear space
of vectors α, β, . . . with a scalar product (α, β) (e.g., see [1, 3]). Further, the
following postulates are used:

a) (α, ξβ) = ξ(α, β), (ξα, β) = ξ∗(α, β);
b) (α, β1 + β2) = (α, β1) + (α, β2);
c) (α, β) = (β, α)∗;
d) (α, α) � 0, ∀α.

Here ξ is a complex number. The property (d) must hold for any two vectors
α1 and α2 and for their superposition α1 + ξα2 with an arbitrary ξ. Let us call
this particular property postulate (d2). Cauchy inequality may be derived from
(a) − (d2) in the following way (e.g., see [3]). It is easy to verify that when
ξ = −(α2, α1)/(α2, α2) we have

(α1 + ξα2, α1 + ξα2) = (α1, α1) − |(α1, α2)|2/(α2, α2). (1)

As the l. h. s. of Eq. (1) must be positive we obtain CI

|(α1, α2)|2 � (α1, α1)(α2, α2). (2)

The inequality can be rewritten

|(α1, α2)|2/(α1, α1)(α2, α2) � 1. (3)

This form allows us to give the known probability interpretation to the scalar
product (α1, α2): the l. h. s. of (3) may be called the probability to ˇnd state α1

in the state α2 because this l. h. s. does not exceed 1, being positive (usually one
supposes that (α1, α1) = (α2, α2) = 1).

1.2. Schréodinger [7] derived SUR from CI. Dr. O. V. Teryaev called my
attention to that his derivation needs some reˇnement which I shall consider now.

Let ψ be a state vector such that (ψ, ψ) = 1, and A and B are observables
(Hermitian operators). The latter may have different dimensions, e.g., A has the
dimension of length while B is momentum. Then vectors Aψ and Bψ have
different dimensions and cannot belong to one linear space (their sum is not
deˇned). Meanwhile vectors α1, α2 occurring in inequality (2) (which we are
going to start with) must have the same dimension, e.g., be dimensionless. Let
us assume

αi = d−1
i ∆Aiψ, ∆Ai ≡ Ai − (ψ, Aiψ), i = 1, 2. (4)
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Here d1 and d2 are arbitrary constants which have the same dimensions as A1

and A2, respectively. The deˇned α1, α2 are of the same dimension as ψ
(e.g., are dimensionless). Substituting (4) into (2) we get

(d−1
1 d−1

2 )2|(ψ, ∆A1∆A2ψ)|2 = d−2
1 d−2

2 (ψ, (∆A1)2ψ)(ψ, (∆A2)2ψ). (5)

Canceling by d−2
1 d−2

2 and using the notation

σ2
i = (ψ, (∆Ai)2ψ) (6)

we obtain SUR for the dispersions σ2
1 and σ2

2 of the observables A1, A2:

|(ψ, ∆A1∆A2ψ)|2 � σ2
1σ2

2 . (7)

In his derivation Schréodinger omitted the above dimensional constants. In order
to derive HUR from inequality (7) Schréodinger (1930) represented l. h. s. of (7)
in the following manner:

(ψ, ∆A1∆A2ψ) = (ψ, R̂ψ) + (ψ, iĴψ), (8)

R̂ ≡ 1
2
{∆A1∆A2 + ∆A2∆A1}, iĴ ≡ 1

2
[∆A1∆A2 − ∆A2∆A1]. (9)

The ˇrst term in the r. h. s. of Eq. (8) is the average of Hermitian operator R̂ and,
therefore, is a real number R. The second term is imaginary and is equal to iJ , J
being real (Ĵ denotes Hermitian operator). So we have (ψ, ∆A1∆A2ψ) = R+iJ ,
and (7) can be represented as

R2 + J2 � σ2
1σ

2
2 . (10)

If (10) holds, then we have, of course, J2 � σ2
1σ2

2 , i.e., HUR

1
4
|(ψ, [A1, A2]ψ)|2 � σ2

1σ2
2 . (11)

Let us note that if σ2
1σ

2
2 = J2, then it follows from (10) that R2 must be zero [7].

1.3. In Subsec. 1.1 CI has been derived from (α1 +ξα2, α1 +ξα2) � 0 using
the special ˇtting of ξ: ξ = −(α2, α1)/(α2, α2). However, the starting inequality
must hold for any ξ. Various ξ lead to various inequalities similar to CI, let
us call them SI. Using substitution (4) one may obtain from SI various UR. A
natural question arises: what information these inequalities provide as compared
to CI and SUR?

First of all, note that if ξ differs strongly enough from the value
−(α2, α1)/(α2, α2), then we get from (α1 + ξα2, α1 + ξα2) no real restric-
tions for (α1, α1), (α2, α2), (α1, α2). This follows from such easily veriˇable
identity

(α1 + ξα2, α1 + ξα2) = (α1, α1) − (r2 + j2)/(α2, α2)
+(α2, α2){ρ + r/(α2, α2)}2 + (α2, α2){η − j/(α2, α2)}2. (12)
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Here ξ = ρ + iη and

r = Re (α1, α2), j = Im (α1, α2). (13)

Indeed if the curly brackets in the r. h. s. of Eq. (12) are large enough, then the
positivity of (α1 + ξα2, α1 + ξα2) is ensured at any (α1, α1), (α2, α2), (α1, α2).

Now let us discuss two examples of SI which give nontrivial inequalities of
physical interest. At ˇrst, consider the case ξ = iη, i.e. ρ = 0. Then Eq. (12)
turns into

(α1+iηα2, α1+iηα2) = (α1, α1)−j2/(α2, α2)+(α2, α2){η−j/(α2, α2)}. (14)

If η − j/(α2, α2) = 0, then it follows from (α1 + iηα2, α1 + iηα2) � 0 that

(α1, α1)(α2, α2) − j2 � 0, j = Im (α1, α2). (15)

Inequality (15) is of physical interest because one can obtain from it the HUR,
see (11), using substitution (4) (note that Im(ψ, ∆A1∆A2ψ) has been denoted
by J in Subsec. 1.2).

Similarly one may treat another particular case: ξ = ρ, i.e. η = 0. Then one
gets instead of (15)

(α1, α1)(α2, α2) − r2 � 0, r = Re (α1, α2),

and instead of HUR the inequality

1
4
|(ψ, {∆A1∆A2 + ∆A2∆A1}ψ)|2 � σ2

1σ
2
2 . (16)

This UR means that the product of dispersions may be restricted from below
also in the case when observables A1 and A2 commute and HUR turns into the
inequality σ2

1σ
2
2 � 0 which is trivial: dispersions are positive by deˇnition, see

Eq. (6).
Let us stress that CI is not only a necessary consequence of the postulate (d2)

but also is sufˇcient: the postulate (d2), i.e. (α1 + ξα2, α1 + ξα2) � 0, follows
from CI because squares of the curly brackets in Eq. (12) are positive at any ξ.
Meanwhile SI are not sufˇcient (being necessary, of course). For example, let
(15) holds. Then the r. h. s. of Eq. (12) may turn out to be negative because it
contains besides nonnegative contributions also the negative one −r2/(α2, α2).

So CI is equivalent to (d2) and may replace it. Another proof of this equiv-
alency is presented in [8], Subsec. 2.1, the case n = 2.

1.4. The relation of SUR following from CI to other UR following from
SI (e.g., see (11) and (16)) can be formulated using a physical language: SUR
is the most restrictive inequality for dispersions. Other UR, e.g., (11) and (16),
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follow from SUR. For example, the region of possible values of σ2
1σ2

2 which is
allowed by (11) is greater than the region allowed by SUR. In particular, when
A1 and A2 commute inequality (11) turns into trivial one σ2

1σ
2
2 � 0, while SUR,

see (10), shows that in this case σ2
1σ

2
2 must be larger than a nonzero (generally)

quantity R2. However, HUR is simpler than SUR and, therefore, may be useful.
For example, if [A1, A2] is equal to a number ic, then for any normalizable ψ the
product σ2

1σ2
2 is restricted from below by the known constant: c2/4 � σ2

1σ2
2 .

2. CAUCHY INEQUALITIES FOR DENSITY MATRICES

Till now physical system states were supposed to be described by vectors of
linear space (e.g, Hilbert space). In this section the states are described by density
matrices. Two various inequalities for two density matrices will be obtained which
generalize CI, see (2).

2.1. The derivation of the ˇrst inequality uses the following deˇnition of the
density matrices W1 and W2:

Wi =
∑

m

p(i)
m |ω(i)

m 〉〈ω(i)
m |, p(i)

m > 0, i = 1, 2, (17)

where ωm are state vectors and pm are their weights. The orthogonality of ωm is
not supposed. I do not suppose also that (ωm, ωm) = 1 and that SpWi = 1, as is
assumed by Messiah [5, v. 1, ch. VIII. 21]. Such a general deˇnition of Wi will
be needed below in Sec. 3. One has

SpWi =
∑

m

p(i)
m 〈ω(i)

m |ω(i)
m 〉, (18)

SpW1W2 =
∑

m,n

p(1)
m p(2)

n |〈ω(1)
m |ω(2)

n 〉|2. (19)

Taking into account CI

|〈ω(1)
m |ω(2)

n 〉|2 � 〈ω(1)
m |ω(1)

m 〉〈ω(2)
n |ω(2)

n 〉

and Eq. (18) one gets
SpW1W2 � SpW1SpW2. (20)

Equality in (20) is attained when vectors ω
(1)
m are parallel to vectors ω

(2)
n ,

∀m, n. In particular, all ω
(1)
m must be parallel to one vector, e.g., ω

(2)
1 . This means

that vectors ω
(1)
m must be parallel to each other: ω

(1)
m ‖ω(1)

m ‖ω(1)
m ‖ . . . Analogously

ω
(2)
n must be parallel pairwise. However, W1 and W2 then describe pure states,

otherwise one has
0 � SpW1W2 < SpW1SpW2
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(the positivity of SpW1W2 follows from Eq. (19)). So the ratio
SpW1W2/SpW1SpW2 being positive cannot be equal to unity if both states
W1 and W2 are mixed. This circumstance does not allow one to treat the ratio
as ®the probability to ˇnd the state W1 in the state W2¯. Indeed, it is natural
to expect that such a probability is unity when W1 = W2 but actually we have
Sp(Wi)2/(SpWi)2 < 1 for a mixed state Wi.

In the particular case of pure states Wi = |αi〉〈αi| inequality (20) turns into
CI, see (2). So (20) may be considered as the generalization of CI.

2.2. To obtain another inequality for W1 and W2, let us consider the linear
space of Hermitian matrices and their superpositions Z with complex coefˇcients.
The scalar product of elements Z1 and Z2 (vectors) of the space is deˇned as
the number SpZ†

1Z2 († means Hermitian conjugation). One can verify that the
product has the properties

SpZ†
1Z2 = (SpZ†

2Z1)∗, (21)

SpZ†Z � 0, (22)

i.e., postulates (c) and (d) (see Sec. 1) hold. Let us stress that the matrices Z
play the role of vectors of the space.

Let us substitute in inequality (22) the superposition Z =
∑

i µiWi,
i = 1, 2, . . . , n, where Wi are (Hermitian) density matrices and µi may be any
complex numbers. One has

SpZ†Z =
∑

i,j

µ∗
i µjSpWiWj . (23)

The r. h. s. of Eq. (23) is of the form µ†Mµ =
∑

i,j µ∗
i Mijµj , where µ is an

arbitrary n-vector with components µi and M is the n × n matrix with elements
Mij = SpWiWj . The l. h. s. of Eq. (23) is nonnegative and, therefore, M must
be a positively (more exactly nonnegatively) deˇned matrix. The necessary and
sufˇcient condition of this property is nonnegativity of all principal minors of
M , e.g., see [4, ch. 10.4, Theorem 4]. The minors of the ˇrst order are equal to
SpW 2

i , i = 1, 2, . . . , n and they are nonnegative, see Eq. (19). The nonnegativity
of the second order minors gives in particular

[Sp(W1W2)]2 � SpW 2
1 SpW 2

2 (24)

or
0 � [Sp(W1W2)]2/SpW 2

1 SpW 2
2 � 1. (25)

When Wi = |αi〉〈αi| inequality (24) turns into ®squared¯ CI

|(α1, α2)|4 � (α1, α1)2(α2, α2)2

which is equivalent to CI (see (2)) itself.
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Unlike the above discussed ratio Sp(W1W2)/SpW1SpW2 the ratio
[Sp(W1W2)]2/SpW 2

1 SpW 2
2 occurring in (25) turns into unity if W1 = W2 (even

if the state is mixed). This allows one to suggest the notion ®the probability ρ12

to ˇnd the state W1 in the state W2¯ deˇning it as

ρ12 = Sp(W1W2)/[SpW 2
1 SpW 2

2 ]1/2. (26)

This quantity turns into the known probability |(α1, α2)|2/(α1, α1)(α2, α2) when
W1 = |α1〉〈α1| and W2 = |α2〉〈α2|, see Subsec. 1.1.

3. UNCERTAINTY RELATIONS FOR MIXED STATES

In Sec. 1, uncertainty relations for pure states were considered. Here I shall
deal with various extensions of UR for the case of a mixed state described by a
density matrix. I call them mixed state uncertainty relations (MUR).

3.1. The ˇrst extension MUR 1 follows from the generalization (20) of CI
to the case of mixed states. Consider such density matrices

Wi = ∆AiW∆Ai, ∆Ai ≡ Ai − SpWAi, i = 1, 2, (27)

W =
∑

m

pm|ωm〉〈ωm|

(cf. Eq. (4), dimension constants di are omitted here). I assume that (ωm, ωm) =
1 and SpW = 1, see [5, ch. VIII. 21]. However, the vectors ∆Aiωm are not then
normalized. Density matrices W1 and W2 deˇned by Eq. (27)

Wi =
∑

m

pm|∆Aiωm〉〈∆Aiωm|

are particular cases of those used in Sec. 2, Eq. (17). The spurs of W1 and W2

are not supposed to be equal to unity.
Substituting Wi deˇned by Eq. (27) in inequality (20) one obtains

Sp∆A1W∆A1∆A2W∆A2 < Sp(∆A1)2WSp(∆A2)2W. (28)

Here Sp(∆A)2W is the dispersion of the observable A in the mixed state W .
One gets SUR, see (7), when W describes a pure state: W = |ψ〉〈ψ|.

Let us obtain from (28) an inequality resembling HUR. For this purpose
represent the l. h. s. of (28) as

SpW∆A1∆A2W∆A2∆A1 = SpW (R̂ + iĴ)W (R̂ − iĴ) (29)

= SpWR̂WR̂ + SpWĴWĴ,
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for R̂ and Ĵ see Eq. (9). Using Eq. (27) one can show that SpWR̂WR̂ and
SpWĴWĴ are nonnegative numbers (because R̂ and Ĵ are Hermitian). Let us
denote them as r2 and j2, respectively. Then (28) can be rewritten as

r2 + j2 � σ2
1σ2

2 . (30)

Inequality (30) resembles (10) but has different positive numbers in its l. h. s.
If (30) holds, then, of course, j2 � σ2

1σ
2
2 , j2 ≡ Sp WĴWĴ . If the commu-

tator [A1, A2] is equal to the number ic, then Ĵ = c/2 and j2 = 1
4c2Sp W 2. One

obtains the inequality resembling HUR

1
4
c2Sp(W 2) � σ2

1σ2
2 . (31)

3.2. Using substitution (27) one obtains from another generalization (24) of
CI the following extension of UR:

[Sp ∆A1W∆A1∆A2W∆A2]2 � [Sp (∆A1W∆A1)2][Sp (∆A2W∆A2)2]. (32)

This extension, MUR 2, is more cumbersome than the previous one. In the
particular case W = |ψ〉〈ψ|, inequality (32) turns into the ®squared¯ SUR

|(ψ, ∆A1∆A2ψ)|4 � σ4
1σ4

2 ,

which is equivalent to SUR, see (7).
Inequality (32) does not contain dispersions. However, using the inequalities

Sp(W 2
i ) � [SpWi]2 for the density matrices Wi, see Eq. (27), one obtains from

(32) the relaxed inequality

[Sp ∆A1W∆A1∆A2W∆A2]2 � σ4
1σ4

2 (33)

which contains dispersions. It coincides with the ®squared¯ inequality (28), i.e.,
with (28) itself. As far as the relaxation of (32) coincides with (28), one may
conclude that inequality (32) itself is more restrictive than (28).

3.3. Let us set forth the derivation of the known generalization of SUR for a
mixed state, cf. [1, ch. II. 6], [2, ch. 2]. I call it MUR 3.

Consider linear space of Hermitian matrices Ai (observables) and their super-
positions Z =

∑
i µiAi with complex coefˇcients µi. The matrices play the role

of vectors of this space. Their scalar product (Z1, Z2) is deˇned in a different
way than in Subsec. 2.2.

(Z1, Z2) ≡ Sp WZ†
1Z2.

It has the properties (Z1, Z2) = (Z2, Z1)∗ and

(Z, Z) = SpWZ†Z � 0, ∀Z. (34)
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Inserting Z =
∑

i µi∆Ai, i = 1, 2 into (34) one gets

Sp WZ†Z =
∑

i,j

µ∗
i µjSp W∆Ai∆Aj . (35)

Due to (34) the r. h. s. of (35) must be nonnegative. The necessary and sufˇcient
condition of this property is the nonnegativity of principle minors of the 2 × 2
matrix with the elements Sp W∆Ai∆Aj , cf. Subsec. 2.2. In particular, the
nonnegativity of the second order minor gives the desired MUR

|Sp W∆A1∆A2|2 � Sp (∆A1)2WSp (∆A2)2W (36)

(the property Sp∆A1W∆A2 = (Sp∆A2W∆A1)∗ was used). Inequality (36)
turns into SUR, see (7) if W = |ψ〉〈ψ|.

The obtained MUR can be represented as

R2 + J2 � σ2
1σ

2
2 ; R = SpWR̂, J = SpWĴ (37)

for R̂ and Ĵ , see Eq. (9) (one must repeat the computations performed in Sub-
sec. 1.2 substituting Sp W . . . for (ψ, . . . ψ)). Inequality (37) is analogous to (30).
If [A1, A2] is equal to the number ic, one obtains from (37) omitting R2

1
4
c2(SpW )2 � σ2

1σ2
2 . (38)

This inequality coincides with HUR for a normalized pure state, i.e., c2/4 � σ2
1σ

2
2

if the mixed state W is also normalized: Sp W = 1. As compared to (31) it is
more restrictive because Sp (W 2) � (SpW )2 = 1.

The obtained inequalities MUR 1 (28); MUR 2 (32), and MUR 3 (36), will
be discussed in Conclusion.

CONCLUSION

The known Cauchy inequality (CI) follows from postulates of linear space of
state vectors. Starting with CI Schréodinger [7] derived the uncertainty relation,
named here SUR.

Besides CI other similar inequalities (SI) follow from the mentioned postu-
lates (for their deˇnition see Sec. 1). They also are of interest because they allow
one to obtain some UR, e.g., Heisenberg uncertainty relation (HUR). However,
these UR are less restrictive (informative) than SUR, being special cases of SUR.

All UR have a physical sense giving restrictions on dispersions of observ-
ables. Cauchy inequality also may be given a physical sense: it is the premise of
the known probability interpretation of state vectors, see Subsec. 1.1.
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In Sec. 1, CI and UR for pure states (described by vectors) are discussed.
Two generalizations of CI to the case of mixed states (described by density
matrices) are obtained in Sec. 2. Both turn into the usual CI when the states are
pure.

Starting with these generalizations of CI I have derived in Sec. 3 two ex-
tensions of UR for mixed states (named MUR 1 and MUR 2). This was done
by means of the approach which Schréodinger [7] used for UR derivation from
CI in the case of pure states. The derivation of the extension of UR for mixed
states which is known in the literature (named MUR 3), does not use any CI, see
Subsec. 3.3.

So starting with the quantum postulates three UR for mixed states can be
obtained. All are necessary corollaries of the postulates. The corollaries are
different; e.g., MUR 1 and MUR 3 contain dispersions of observables while
MUR 2 does not; the l. h. s. of MUR 3, see (36), contains Sp∆A1W∆A2 which
is linear in W while the l. h. s. of MUR 1, see (28), and MUR 2, see (32), contain
Spur which quadratically depends upon W .

All these UR may be called generalizations of UR for mixed states because
they turn into the same SUR when the state is pure.

It was shown in Sec. 1 that SUR is the most restrictive UR in the case of
pure states. When the states are mixed MUR 3 seems to be more restrictive
than MUR 1: compare (31) with (38). It was also concluded in Subsec. 3.2 that
MUR 2 is more restrictive than MUR 1.

One may prefer MUR 3 because it has the following merit: quantities entering
it have the known physical sense: σ2

i are dispersions, and Sp WR̂ and Sp WĴ

are averages of the observables (Hermitian operators) R̂ and Ĵ , see Eq. (9).
Meanwhile MUR 2, see (32), does not contain dispersions. Besides, both MUR 1
and MUR 2 contain Spurs which depend on W quadratically. Mathematical
means of quantum mechanics allow one to calculate such quantities. However,
their physical interpretation is unknown and still must be devised. For example,
one may suggest to interpret Sp W 2 as a measure of ®mixity¯ of the state W
(Sp W 2 being unity when the state is pure).
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