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Hep Bencrs Komm u cCOOTHOIIEHUS HEOIPENEIEHHOCTEH
JUIS CMEII HHBIX COCTOSTHHIA

Hep BenctBo Komm cBS3bIB €T CK JIIpHOE NMPOW3BECHHE OBYX BEKTOPOB U HX
HopMbl. Mcxond u3 Hero Lllpenunrep BbIBeI CBOE COOTHOLLIEHHE HEOIPEAEIEHHOCTEH.
VK 3 HBI Opyrue CXOAgHble HEp BEHCTB , U3 KOTOPBIX IOJYYEHBI COOTBETCTBYIOLHUE
P 3HbBIE COOTHOLIEHUS HeonpeeneHHocTel. I1ok 3 HO, YTO BCe OHM CIEAyIOT U3 IIpe-
nuHTepoBckoro. Ilomydensr nB  0000menus Hep BeHCTB Komm g cMell HHBIX
COCTOSIHUH, OMHUCHIB €MbIX M TPHIl MH IUIOTHOCTH. McXomd W3 HHUX I T KHX CO-
CTOSIHUIA BBIBEICHBI 1B P 3HBIX 00OOIIEHHS COOTHOIIEHHI HEONpedesIeHHOCTEeH, OT-
JIMY IoIIMecs: OT 0000OLIEH!s, U3BECTHOTO B JiuTep Type. Korm CcoCTOSHUS «4HCThIe»
(OnHMCHIB I0TCSI BEKTOP MH), BCE TPU OOOOILEHHUS NEPEXOIIT B IIPEAUHIEPOBCKOE CO-
OTHOIIEHHEe HeonpeneaeHHOCTH. OOCYXIeHbl UX OTIHYHS.

P 6ot Bbmomnnen BJI 6op Topuum Teopermueckoit usnku uM. H. H. Boromo6os
OUAN.
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Cauchy Inequality and Uncertainty Relations for Mixed States

Cauchy inequality (CI) relates scalar products of two vectors and their norms.
I point out other similar inequalities (SI). Starting with CI Schrodinger derived his
uncertainty relation (UR). By using SI other various UR can be obtained. It is shown
that they follow from the Schrodinger UR. Two generalizations of CI are obtained
for mixed states described by density matrices. Using them two generalizations of
UR for mixed states are derived. Both differ from the UR generalization known
from the literature. The discussion of these generalizations is given.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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INTRODUCTION

Heisenberg uncertainty relation (HUR) o202 > h?/4 is the most known
example of the quantum inequalities which are considered here. It is the corollary
of quantum postulates. The main postulate is the description of physical system
states by vectors of linear space with a scalar product (e.g., Hilbert space). For two
vectors a1 and aip one can also derive from these postulates the known Cauchy—
Bunyakowskii-Schwarz inequality (a1, a1)(az, as) > |(a1, az2)|?, which will be
called the Cauchy inequality (CI).

HUR restricts possible values of dispersions of observables. CI can also be
given in a physical sense: it is a premise for the probability interpretation of state
vectors, see Sec. 1 below.

Robertson and Schrodinger [6, 7] pointed out an uncertainty relation which is
more general than HUR. It is usually called the Schrodinger uncertainty relation
(SUR), see [2,9,10]. Schrodinger [7] derived SUR starting with CI and then
obtained HUR as a particular case of SUR.

Various modifications and generalization of CI and uncertainty relations (UR)
are known. For example, there exist inequalities which contain three and more
state vectors or observables, e.g., see [2,10,8]. Here we consider CI for two states
and UR for two observables, the states being described either by vectors (pure
states) or by density matrices (mixed states).

It is pointed out in Sec. 1 that along with CI many similar inequalities (SI)
can be written which turn out to be particular cases of CI. Starting with one of
these SI one can obtain HUR. From another SI one can derive other useful UR,
see Subsec. 1.3.

Two generalizations of CI are obtained in Sec. 2 for the case of two mixed
states described by density matrices W; and Wa. Both turn into CI in the case
of pure states. One of them allows one to introduce the notion «the probability
to find the mixed state W7 in the mixed state Wa».

The generalization of UR for the mixed state W is known (see, e.g., review
[2]). Two new generalizations are derived in Sec. 3. All these three generaliza-
tions are different consequences of quantum postulates. All turn into the same
SUR when W describes a pure state. For further discussion of these generaliza-
tions see the Conclusion.



1. CAUCHY INEQUALITY IN QUANTUM MECHANICS
AND UNCERTAINTY RELATIONS

1.1. Cauchy inequality (CI) follows from the postulates of the linear space
of vectors a, 3,... with a scalar product («,3) (e.g., see [1,3]). Further, the
following postulates are used:

a) (a,88) =&, B), (€, B) = £ (o, B);
b) (04761 + 62) = (aaﬁl) + (06762);

o) (op)=(8,a)%

d) (a,a) 20, Va.

Here £ is a complex number. The property (d) must hold for any two vectors
a1 and as and for their superposition a; + £ao with an arbitrary £. Let us call
this particular property postulate (dz). Cauchy inequality may be derived from
(a) — (d2) in the following way (e.g., see [3]). It is easy to verify that when
&= —(a2,01)/ (e, az) we have

(a1 +Eag, a1 + Eaz) = (a1, 1) — |(041,042)|2/(042,042)~ (D
As the 1.h.s. of Eq. (1) must be positive we obtain CI
|(a1)a2)|2 < (0&1,0&1)(0&2,0&2). (2)

The inequality can be rewritten

(a1, @2)]?/(a1, @1)(az, a2) < 1. ©)

This form allows us to give the known probability interpretation to the scalar
product (a1, an): the L h.s. of (3) may be called the probability to find state ay
in the state ay because this 1. h.s. does not exceed 1, being positive (usually one
supposes that (a1, 1) = (ag,a2) = 1).

1.2. Schrodinger [7] derived SUR from CI. Dr. O.V.Teryaev called my
attention to that his derivation needs some refinement which I shall consider now.

Let 1 be a state vector such that (¢),7)) = 1, and A and B are observables
(Hermitian operators). The latter may have different dimensions, e.g., A has the
dimension of length while B is momentum. Then vectors Ay and By have
different dimensions and cannot belong to one linear space (their sum is not
defined). Meanwhile vectors «, ao occurring in inequality (2) (which we are
going to start with) must have the same dimension, e.g., be dimensionless. Let
us assume

a; = d AAW,  AA = A= (0, Ag), i=1,2. @



Here d; and ds are arbitrary constants which have the same dimensions as A,
and As, respectively. The defined 1, oo are of the same dimension as
(e.g., are dimensionless). Substituting (4) into (2) we get

(dy 'y 2] (6, AA AALD) 2 = d 25> (b, (AAL2E) (W, (AA)2). (5)

Canceling by dfzdg 2 and using the notation

o7 = (¥, (A4;)%y) (6)
we obtain SUR for the dispersions o% and o% of the observables A;, As:
(1, AAL A AY)|? < o703, @)

In his derivation Schrodinger omitted the above dimensional constants. In order
to derive HUR from inequality (7) Schrédinger (1930) represented 1. h.s. of (7)
in the following manner:

. 1 o
R= J{AMAL + ALAAY, 0] = J[AAAL - AAAAL )

1
2
The first term in the r. h.s. of Eq. (8) is the average of Hermitian operator R and,
therefore, is a real number R. The second term is imaginary and is equal to ¢.J, J
being real (j denotes Hermitian operator). So we have (¢, AA; AAsy)) = R+4J,
and (7) can be represented as

R+ J% < o202 (10)
If (10) holds, then we have, of course, J? < 0203, i.e., HUR
1
71, [A1, A2J9)* < oo, (11)

Let us note that if 0202 = J2, then it follows from (10) that R? must be zero [7].

1.3. In Subsec. 1.1 CI has been derived from (a1 + Eaa, a1 +Eae) > 0 using
the special fitting of £: £ = —(aw, a1)/(a2, a2). However, the starting inequality
must hold for any &. Various & lead to various inequalities similar to CI, let
us call them SI. Using substitution (4) one may obtain from SI various UR. A
natural question arises: what information these inequalities provide as compared
to CI and SUR?

First of all, note that if ¢ differs strongly enough from the value
—(ag, 1)/ (2, a2), then we get from (o + o, 1 + £az) no real restric-
tions for (a1, 1), (@2,a2), (@1,a2). This follows from such easily verifiable
identity

(a1 + €az, a1 +Eaz) = (a1, a1) = (2 + 5°) / (a2, a2)

+(a2, a2){p +7/(a2, a2)}* + (a2, a2){n — j/ (o2, 2)}*.  (12)



Here £ = p 4+ i1 and
r=Re(a,a2), j=Im(aq,as). (13)

Indeed if the curly brackets in the r.h.s. of Eq. (12) are large enough, then the
positivity of (ay + g, a1 + £ag) is ensured at any (g, 1), (a2, ), (a1, az).

Now let us discuss two examples of SI which give nontrivial inequalities of
physical interest. At first, consider the case & = 7, i.e. p = 0. Then Eq. (12)
turns into

(ar+inag, on+inaz) = (o1, a1)—j5°/(az, on)+ (02, az){n—7j/(az, az)}. (14)
If n — j/(a2, a2) = 0, then it follows from (o + inae, a1 + inag) > 0 that
(a1, 0n)(a2,02) = j° 20, j=1Im(oq,0). (15)

Inequality (15) is of physical interest because one can obtain from it the HUR,
see (11), using substitution (4) (note that Im(v), AA; AAz1)) has been denoted
by J in Subsec. 1.2).

Similarly one may treat another particular case: £ = p, i.e. n = 0. Then one
gets instead of (15)

(a1,a1) (@, a) =12 =0, 7= Re(a1,az),

and instead of HUR the inequality
1
1@ {AA AL, + AAAA )P < ofo3. (16)

This UR means that the product of dispersions may be restricted from below
also in the case when observables A; and A commute and HUR turns into the
inequality 0?02 > 0 which is trivial: dispersions are positive by definition, see
Eq. (6).

Let us stress that CI is not only a necessary consequence of the postulate (ds)
but also is sufficient: the postulate (d2), i.e. (a1 + o, a1 + Eas) > 0, follows
from CI because squares of the curly brackets in Eq. (12) are positive at any &.
Meanwhile SI are not sufficient (being necessary, of course). For example, let
(15) holds. Then the r.h.s. of Eq. (12) may turn out to be negative because it
contains besides nonnegative contributions also the negative one —1r2/(az, az).

So CI is equivalent to (d2) and may replace it. Another proof of this equiv-
alency is presented in [8], Subsec. 2.1, the case n = 2.

1.4. The relation of SUR following from CI to other UR following from
SI (e.g., see (11) and (16)) can be formulated using a physical language: SUR
is the most restrictive inequality for dispersions. Other UR, e.g., (11) and (16),



follow from SUR. For example, the region of possible values of 0?02 which is
allowed by (11) is greater than the region allowed by SUR. In particular, when
Aj and A, commute inequality (11) turns into trivial one 0%05 > 0, while SUR,
see (10), shows that in this case 0?03 must be larger than a nonzero (generally)
quantity R?. However, HUR is simpler than SUR and, therefore, may be useful.
For example, if [4;, Ao] is equal to a number ic, then for any normalizable v the

product o303 is restricted from below by the known constant: ¢?/4 < 0202 .

2. CAUCHY INEQUALITIES FOR DENSITY MATRICES

Till now physical system states were supposed to be described by vectors of
linear space (e.g, Hilbert space). In this section the states are described by density
matrices. Two various inequalities for two density matrices will be obtained which
generalize CI, see (2).

2.1. The derivation of the first inequality uses the following definition of the
density matrices Wi and Wo:

Wi =Y pPlwi)w®], pi >0, i=1,2, (17)

where w,, are state vectors and p,, are their weights. The orthogonality of w,, is
not supposed. I do not suppose also that (wy,,w,,) = 1 and that SpW; = 1, as is
assumed by Messiah [5, v. 1, ch. VIII. 21]. Such a general definition of W; will
be needed below in Sec. 3. One has

SpWi = Dl (widwi), (18)
SPWiWa =) pl P (i [wiP) . (19)

Taking into account CI
[P 1w < (o Wi 0P W)

and Eq. (18) one gets
SpW1 W2 < SpW1SpW2. (20)
Equality in (20) is attained when vectors w,(,%) are parallel to vectors w,(f),

V' m,n. In particular, all w%) must be parallel to one vector, e.g., wf). This means

that vectors w(y) must be parallel to each other: w) Hw,(i) ||w$,p |I... Analogously

w,(f) must be parallel pairwise. However, W; and W, then describe pure states,
otherwise one has

0< SpW1W2 < SlespWQ



(the positivity of SpWiWs follows from Eq. (19)). So the ratio
SpW1 W, /SpW1SpWs being positive cannot be equal to unity if both states
W1 and Wy are mixed. This circumstance does not allow one to treat the ratio
as «the probability to find the state W7 in the state Wa». Indeed, it is natural
to expect that such a probability is unity when W7 = W5 but actually we have
Sp(W;)?/(SpW;)? < 1 for a mixed state W;.

In the particular case of pure states W; = |o;){«;| inequality (20) turns into
CI, see (2). So (20) may be considered as the generalization of CI.

2.2. To obtain another inequality for W; and Wb, let us consider the linear
space of Hermitian matrices and their superpositions Z with complex coefficients.
The scalar product of elements Z; and Z, (vectors) of the space is defined as
the number SpZI Z5 (T means Hermitian conjugation). One can verify that the
product has the properties

SpZ] Zy = (SpZi 2,)*, 1)
SpZ'Z > 0, (22)

i.e., postulates (c) and (d) (see Sec. 1) hold. Let us stress that the matrices Z
play the role of vectors of the space.

Let us substitute in inequality (22) the superposition Z = >, u;W;,
i =1,2,...,n, where W, are (Hermitian) density matrices and x; may be any
complex numbers. One has

SpZTZ = i SpWiW;. (23)
i3

The r.h.s. of Eq. (23) is of the form pf My = Zm iy Mz, where p is an
arbitrary n-vector with components p; and M is the n X n matrix with elements
M;; = SpW;W;. The 1.h.s. of Eq. (23) is nonnegative and, therefore, M/ must
be a positively (more exactly nonnegatively) defined matrix. The necessary and
sufficient condition of this property is nonnegativity of all principal minors of
M, e.g., see [4, ch.10.4, Theorem 4]. The minors of the first order are equal to
SpW72,i=1,2,...,n and they are nonnegative, see Eq. (19). The nonnegativity
of the second order minors gives in particular

[Sp(W1W2)]* < SpW{SpWs3 (24)

or
0 < [Sp(W1W5)]? /SpWSpWsy < 1. (25)

When W; = |a;){«a;| inequality (24) turns into «squared» CI
(a1, a2)|* < (o1, 01)* (a2, a2)?

which is equivalent to CI (see (2)) itself.



Unlike the above discussed ratio Sp(W;Ws)/SpW1SpWa the ratio
[Sp(W1W?2)]?/SpW2SpW3 occurring in (25) turns into unity if W; = Ws (even
if the state is mixed). This allows one to suggest the notion «the probability p;o
to find the state W; in the state Wo» defining it as

P12 = Sp(W1W2)/[SprSpW22]1/2 (26)

This quantity turns into the known probability |(a1, a2)|?/ (a1, 1) (a2, a2) when
W1 = |ag) (1| and Wa = |ag){az], see Subsec. 1.1.

3. UNCERTAINTY RELATIONS FOR MIXED STATES

In Sec. 1, uncertainty relations for pure states were considered. Here I shall
deal with various extensions of UR for the case of a mixed state described by a
density matrix. I call them mixed state uncertainty relations (MUR).

3.1. The first extension MUR 1 follows from the generalization (20) of CI
to the case of mixed states. Consider such density matrices

W = me|wm><wm|

m

(cf. Eq. (4), dimension constants d; are omitted here). I assume that (wy,,, wn,) =
1 and SpW =1, see [5, ch. VIIL. 21]. However, the vectors AA;w,, are not then
normalized. Density matrices W7 and W5 defined by Eq. (27)

W; = Z pm'AAin> <AAiwm|

are particular cases of those used in Sec. 2, Eq. (17). The spurs of W; and W»
are not supposed to be equal to unity.
Substituting W; defined by Eq. (27) in inequality (20) one obtains

SPAA;WAA AAWAA, < Sp(AA;)2WSp(AAs)2W. (28)

Here Sp(AA)2W is the dispersion of the observable A in the mixed state W,
One gets SUR, see (7), when W describes a pure state: W = [1))(¢)].

Let us obtain from (28) an inequality resembling HUR. For this purpose
represent the 1. h.s. of (28) as

SPWAAIAAWAANA, = SpW (R + i)Y W(R—1iJ)  (29)
= SpWRWR + SpWJW J,



for R and J see Eq. (9). Using Eq. (27) one can show that SpWRWR and
SpWJ WJ are nonnegatlve numbers (because R and J are Hermitian). Let us
denote them as 72 and j2, respectively. Then (28) can be rewritten as

r? +j% < 0?0l 30)

Inequality (30) resembles (10) but has different positive numbers in its 1. h.s.
If (30) holds, then, of course, j? < 0?02, j2 = SpWJW.J. If the commu-

tator [A, Ag] is equal to the number ic, then J = ¢/2 and ;> 1 c*Sp W2. One
obtains the inequality resembling HUR

2Sp(WQ) aios. 31)

3.2. Using substitution (27) one obtains from another generalization (24) of
CI the following extension of UR:
[Sp AAWAALAAWAA)? < [Sp(AAWAA;)?][Sp (AAWAAL)?]. (32)

This extension, MUR 2, is more cumbersome than the previous one. In the
particular case W = |¢) (v

(¢, AA1 AAY)|* < olos,

which is equivalent to SUR, see (7).

Inequality (32) does not contain dispersions. However, using the inequalities
Sp(W?2) < [SpW;)? for the density matrices W;, see Eq. (27), one obtains from
(32) the relaxed inequality

[Sp AAWAAAAWAA)? < ol (33)

which contains dispersions. It coincides with the «squared» inequality (28), i.e.,
with (28) itself. As far as the relaxation of (32) coincides with (28), one may
conclude that inequality (32) itself is more restrictive than (28).

3.3. Let us set forth the derivation of the known generalization of SUR for a
mixed state, cf. [1, ch.Il. 6], [2, ch.2]. I call it MUR 3.

Consider linear space of Hermitian matrices A; (observables) and their super-
positions Z = ). j1;A; with complex coefficients ;. The matrices play the role
of vectors of this space. Their scalar product (Z7, Z3) is defined in a different
way than in Subsec. 2.2.

(Z1,Z2) = SpW Z] Zs.
It has the properties (71, Z2) = (Z2, Z1)* and

(2,Z)=SpWZ'Z>0, VZ (34)



Inserting Z = ), p1;AA;, i = 1,2 into (34) one gets

SpWwztz = Z i Sp WAA;AA;. (35)

.3

Due to (34) the r.h.s. of (35) must be nonnegative. The necessary and sufficient
condition of this property is the nonnegativity of principle minors of the 2 x 2
matrix with the elements Sp WAA;AA;, cf. Subsec. 2.2. In particular, the
nonnegativity of the second order minor gives the desired MUR

ISP WAAIAA,|? < Sp(AA;)?WSp (AAR)*W (36)

(the property SpAAIWAA; = (SpAA;WAA;)* was used). Inequality (36)
turns into SUR, see (7) if W = ) (3].
The obtained MUR can be represented as

R?+J?<o%02, R=SpWR, J=SpWJ (37)

for R and J, see Eq. (9) (one must repeat the computations performed in Sub-
sec. 1.2 substituting Sp W ... for (¢, ...)). Inequality (37) is analogous to (30).
If [Ay, As] is equal to the number ic, one obtains from (37) omitting R?

icQ(SpWV < ool (38)
This inequality coincides with HUR for a normalized pure state, i.e., ¢?/4 < o203
if the mixed state W is also normalized: SpW = 1. As compared to (31) it is
more restrictive because Sp (W?) < (SpW)? = 1.

The obtained inequalities MUR 1 (28); MUR 2 (32), and MUR 3 (36), will
be discussed in Conclusion.

CONCLUSION

The known Cauchy inequality (CI) follows from postulates of linear space of
state vectors. Starting with CI Schrodinger [7] derived the uncertainty relation,
named here SUR.

Besides CI other similar inequalities (SI) follow from the mentioned postu-
lates (for their definition see Sec. 1). They also are of interest because they allow
one to obtain some UR, e.g., Heisenberg uncertainty relation (HUR). However,
these UR are less restrictive (informative) than SUR, being special cases of SUR.

All UR have a physical sense giving restrictions on dispersions of observ-
ables. Cauchy inequality also may be given a physical sense: it is the premise of
the known probability interpretation of state vectors, see Subsec. 1.1.



In Sec. 1, CI and UR for pure states (described by vectors) are discussed.
Two generalizations of CI to the case of mixed states (described by density
matrices) are obtained in Sec. 2. Both turn into the usual CI when the states are
pure.

Starting with these generalizations of CI I have derived in Sec. 3 two ex-
tensions of UR for mixed states (named MUR 1 and MUR 2). This was done
by means of the approach which Schrodinger [7] used for UR derivation from
CI in the case of pure states. The derivation of the extension of UR for mixed
states which is known in the literature (named MUR 3), does not use any CI, see
Subsec. 3.3.

So starting with the quantum postulates three UR for mixed states can be
obtained. All are necessary corollaries of the postulates. The corollaries are
different; e.g., MUR 1 and MUR 3 contain dispersions of observables while
MUR 2 does not; the 1. h.s. of MUR 3, see (36), contains SpAA; WAAs which
is linear in W while the 1. h.s. of MUR 1, see (28), and MUR 2, see (32), contain
Spur which quadratically depends upon W.

All these UR may be called generalizations of UR for mixed states because
they turn into the same SUR when the state is pure.

It was shown in Sec. 1 that SUR is the most restrictive UR in the case of
pure states. When the states are mixed MUR 3 seems to be more restrictive
than MUR 1: compare (31) with (38). It was also concluded in Subsec. 3.2 that
MUR 2 is more restrictive than MUR 1.

One may prefer MUR 3 because it has the following merit: quantities entering
it have the known physical sense: o? are dispersions, and Sp WR and SpW.J
are averages of the observables (Hermitian operators) R and J, see Eq. (9).
Meanwhile MUR 2, see (32), does not contain dispersions. Besides, both MUR 1
and MUR 2 contain Spurs which depend on W quadratically. Mathematical
means of quantum mechanics allow one to calculate such quantities. However,
their physical interpretation is unknown and still must be devised. For example,
one may suggest to interpret Sp W2 as a measure of «mixity» of the state W
(Sp W2 being unity when the state is pure).
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