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1. INTRODUCTION

Assume that the spectrum of a self-adjoint operator A on a Hilbert space 9
consists of two disjoint components o_ and oy, i.e. spec(A) =o_Uoy and

d=dist(o_,04) > 0. (1.1)

Then $ is decomposed into the orthogonal sum $ = $H_ P H, of the spectral
subspaces )+ = RanEa(o), where EaA(8) denotes the spectral projection of A
associated with a Borel set 6 C R. It is well known (see, e.g. [18, §135])
that sufficiently small self-adjoint perturbation V of A does not close the gaps
between the sets o_ and o, which allows one to think of the corresponding
disjoint spectral components o’ and o/ of the perturbed operator L = A+V
as a result of the perturbation of the spectral sets of o_ and oy, respectively.
Moreover, the decomposition $ = §’ @ $H’, with !, = RanE_ (0%, ) is continuous
in V in the sense that the projections E| (07,) converge to Ep(0y) in the operator
norm topology as |[V| — 0.

Given a mutual disposition of the spectral components o1 of the operator A,
the problem of perturbation theory is to study variation of these components and
the corresponding spectral subspaces under the perturbation V. In particular, the
questions of interest are the following (see [12, 15]):

(i) Under what (sharp) condition imposed on ||V|| do the gaps between the
sets 0 and o} remain open, i.e. dist(c’,0’ ) > 0?

(il) Having established this condition, can one ensure that it implies inequality

|EL(6)) —Ea(0)|| <17 (1.2)

(Surely, (1.2) holds if and only if inequality ||E_(0’.) —Ea(04)| <1 does.)
In general, answer to the question (i) is well known: the gaps between o_
and o, remain open if

d
IVIF< 5. (1.3)

Among all perturbations of the operator A we distinguish the ones that are off-
diagonal with respect to the decomposition ) = RanEa(o_) ® RanEa(oy), ie.
the perturbations that anticommute with the difference

J=Ea(oy)— EA(OL) (1.4)



of the spectral projections Ea(oy) and Ea(o-). If one restricts oneself to pertur-
bations V of this class, then inequality dist(c”,c”,) > 0 is ensured by the weaker
condition

V3

VIl < —-d (1.5)

proven in [15, Theorem 1]. Similarly to (1.3), condition (1.5) is sharp.

For a review of the known answers to the question (ii), we refer to [12] in
case of the general bounded perturbations and to [15] in case of the off-diagonal
ones. Notice that complete answers to the question (ii) were found only by certain
additional assumptions on the mutual disposition of the sets o_ and oy. It is
still an open problem whether the corresponding conditions (1.3) and (1.5) imply
(1.2) under the only assumption (1.1) or not.

In the present paper, we are concerned with the off-diagonal perturbations
and restrict ourselves to two particular mutual dispositions of the spectral sets
o_ and o,. The first one corresponds to the case where the sets o and o are
subordinated, say

supo- <infoy. (1.6)

The second case under consideration corresponds to a disposition with one of the
sets o_ and o, lying in a gap of the other set, say

oyncov(o_) =9, (1.7)

where conv(o) denotes the convex hull of a set 0 C R.

In both these cases, the perturbed spectral sets 6’ and o/ are known to
remain disjoint under requirements on ||V || much weaker than that of (1.5).

In particular, if (1.6) holds then for any bounded off-diagonal perturbation V
the interval (supo_,info.) belongs to the resolvent set of the perturbed operator
L=A+V, and thus ¢’ C (—ee,supo_| and o) C [infoy,+e0) (see [2], [7];
cf. [14]). Moreover, in this case the following norm estimate holds [7]:

V2
-

a 2|V
IEL(6") — Ea(oL)| < sm(5 arctan %) <

This (sharp) bound on the difference of the spectral projection E; (6’ ) and Ea(0-)
is known as the Davis—Kahan tan20® Theorem, since it can be written in the

M
d

subspaces )" and $)_ (or between the subspaces )/, and $)). For definition of
the operator angle between two subspaces see, e.g. [13].

Our first principal result is an extension of the tan2® Theorem, which holds
not only for bounded but also for some unbounded off-diagonal perturbations V.

equivalent form |[tan20| < , where © is the operator angle between the



Theorem 1. Given a self-adjoint operator A on the Hilbert space ), assume that
spec(A) =o0_Uoy and supo- <info.

Suppose that a symmetric operator\V on $) with Dom(V) D Dom(A) is off-diagonal
with respect to the decomposition ) = RanEa(o_) ® RanEa(0.) and the closure
L=A+V of the sum A+V with Dom(A+V) = Dom(A) is a self-adjoint operator.
Then the spectrum of L consists of two subordinate components ¢’ and o such
that

0! C (—eo,supo_], o C[infoy,+o),

and the following inequality holds

. (1
|EL(6”) —Ea(o-)|| < sin (Earctan;f), (1.8)
where
. (% V)|
= inf sup =T
supo-<u<infoi v c pom(a) (X |A—ulx)
[IXl=1

with J given by (1.4).

Notice that throughout the paper we adopt the natural convention that
arctan(+o0) = /2. In particular, under this convention, inequality (1.8) for

V2

3 = +oo reads |EL(0”) —Ea(o-)]| < -

By Remark 4.6 (iii) below, the estimate (1.8) is sharp.

Theorem 1 is a corollary to a more general statement (Theorem 4.4) that is
valid even in the case where supo_ =info,. In its turn, the Davis—Kahan tan20
Theorem (Theorem 4.7) appears to be a simple corollary to Theorem 1.

We also remark that for a class of unbounded off-diagonal perturbations

studied in [1] (cf. [10], [17]), the rough estimate ||E| (0 ) —Ea(0-)] < gz can
be proven by combining [1, Theorem 5.3] and [16, Theorem 5.6]. Example 4.5 to
Theorem 1 shows that estimate (1.8) may hold (even with finite s) for unbounded
perturbations that do not fit the assumptions of [1].

As regards the spectral disposition (1.7), it has been proven in [15] (see
also [14]) that the gaps between o_ and oy remain open and the bound (1.2)
holds if the perturbation V satisfies condition

V] < vd.

The only known sharp bound [15, Theorem 2.4] for the norm of the difference
Earv(o’) —Ea(0-) involves the distance from the initial spectral set o to the
perturbed spectral set 0’ , and thus this bound is an a posteriori estimate.



Our second principal result just adds an a priori sharp bound for the norm
IEatv(0”) —Ea(o-)]| in the case where (1.7) holds and |V|| < d.

Theorem 2. Given a self-adjoint operator A on the Hilbert space ), assume that
spec(A) =0_Uoy, dist(or,0-)=d>0, and oynNcowv(o_)=y.

Let V be a bounded self-adjoint operator on $) off-diagonal with respect to the
decomposition $ = RanEa(o_) ® RanEa(oy.). Assume in addition that

V] <d.

Then the spectrum of L = A+V consists of two disjoint components ¢’ and o,
such that

o, cé, o cR\S, &= (info_—d,supo_+d), (1.9)
nd VI VI

E (6" )—Ea(o_)|| < sin(arctan = ) = ———. 1.10

IEL(0”) ~ Ealon)]| < sin(arctan "1 ) = 0

We conjecture that estimate (1.10) also holds for d < [|[V|| < v/2d.

The proofs of both Theorems 1 and 2 are performed by constructing the
direct rotation [6] from the subspace RanEa(o_) to the subspace RanE, (c”).

Recall that the direct rotation U from a closed subspace 9t of a Hilbert space
$ to a closed subspace M C § with dim(®MNNL) = dim(M-NMN) is a unitary
operator on $) mapping 9 onto D1 and being such that for any other unitary
W on 9 with RanW/|gp =N the following inequality holds: ||l —U|| < ||l =W,
where | is the identity operator on $). That is, the direct rotation is closer (in the
operator norm topology) to the identity operator than any other unitary operator
on $ mapping It onto N. The norm of the difference between the corresponding
orthogonal projections onto 9 and 91 is completely determined by location of
spec(U) on the unit circumference.

We extract information on the spectrum of the direct rotation from RanEa(o_)
to RanE (0”) using the following auxiliary result which, we think, is of inde-
pendent interest.

Theorem 3. Let T be a closed densely defined operator on a Hilbert space $)
with the polar decomposition T =W|T|. Assume that G is a bounded operator
on $ such that both GT and G*T* are accretive (resp. strictly accretive). Then
the products GW and WG are also accretive (resp. strictly accretive) operators.

Notice that in this theorem and below an operator T on the Hilbert space 9
is called accretive (resp. strictly accretive) if

Re(x,Tx) > 0 (resp. Re(x,Tx) >0) for anyx € Dom(T),||x|| = 1.



We also adopt the convention that the partial isometry W in the polar decompo-
sition T =W/|T]| is extended to Ker(T) by

Wlker (1) = O. (1.11)

In this way, the isometry W is uniquely defined on the whole space § (see,
e.g. [11, §VL.7.2]).

A convenient way to construct the direct rotation between two closed sub-
spaces of a Hilbert space is rendered by using a pair of self-adjoint involutions
associated with these subspaces. Although the relative geometry of two subspaces
is studied in great detail (see, e.g. [9, 11, 18]), for convenience of the reader we
give in Sec.2 a short but self-contained exposition of the subject reformulating
some results in terms of a pair of involutions.

The remaining part of the article is organized as follows. Section 3 contains
a proof of Theorem 3. The principal result of this section is Theorem 3.4, which
allows one to compare two involutions, one of which is associated with a self-
adjoint operator. Theorem 1 and some others related statements are proven in
Sec. 4. Section 5 contains a proof of Theorem 2.

We conclude the introduction with description of some more notations that
are used throughout the paper. The identity operator on any Hilbert space $) is
denoted by |. Given a linear operator T on $), by # (T) we denote its numerical
range,

#(T)={A €C|A = (X,TX) for some x € Dom(T),||x|| = 1}.

We use the standard concepts of commuting and anticommuting operators dealing
only with the case where at least one of the operators involved is bounded (see,
e.g. [5, §3.1.1]). Assuming that S and T are operators on ), suppose that the
operator S is bounded. We say that the operators S and T commute (resp.
anticommute) and write S— T or T— S (rtesp. S~T or T ~9 if STCTS
(resp. ST C —T9).

2. A PAIR OF INVOLUTIONS

2.1. An Involution. = We start with recalling the concept of a (self-adjoint)
involution on a Hilbert space. This concept is a main tool we use in the present
paper. Notice that in the theory of spaces with indefinite metric the involutions
are often called canonical symmetries (see, e.g. [4]).

Definition 2.1. A linear operator J on the Hilbert space §) is called an involution
if
J=J and JP=1I. (2.1)



In particular, if P~ and P™ = | — P~ are two complementary orthogonal
projections on §, then the differences P™ — P~ and P~ — P* are involutions.

By definition, any involution J is a self-adjoint operator. In fact, it is also
a unitary operator since (2.1) yields J* = J~1. Hence spec(J) = {—1,1} and the
spectral decomposition of J reads

J= / AEj(dA) = Ey({+1}) — Es({~1}),
R

which implies that any involution on $) is the difference between two comple-
mentary orthogonal projections. Obviously, the projections Ej({£1}) are equal

to
Ex({+1)= 30 +9) and Ex({-1})=5(1-) 22)

Definition 2.2. Let J be an involution on the Hilbert space $). The subspaces
$H_=RanE;({-1}) and $H; =RanE;({+1}) (2.3)

are called the negative and positive subspaces of the involution J, respectively.
The decomposition

H=H-DH+ 2.4)

of $ into the orthogonal sum of the subspaces (2.3) is said to be associated with
J.

Recall that a linear operator A on $) is called diagonal with respect to decom-
position (2.4) if the subspace $)_ (and hence the subspace §.) reduces A. A linear
operator V on § is said to be off-diagonal with respect to decomposition (2.4) if

$H-NDom(V) = Ran I:)_|Dom(v)7 $H+NDom(V) = Ran I:)4_|Dom(V)7
where P~ and P are orthogonal projections onto $_ and §), respectively, and

RanV|g_rpomyv) C 9+, RanV|g, npomyv) C H-- (2.5)

A criterion for an operator on $ to be diagonal or off-diagonal with respect
to the orthogonal decomposition of $) associated with an involution J can be
formulated in terms of a commutation relation between this operator and J.

Lemma 2.3. A linear operator A on the Hilbert space $) is diagonal with respect
to the orthogonal decomposition of $) associated with an involution J if and only
if J— A

Proof. This assertion is an immediate corollary to [5, Theorem 1 in §3.6]. O



Lemma 2.4. A linear operator N on the Hilbert space $) is off-diagonal with
respect to the orthogonal decomposition of $ associated with an involution J if
and only if J ~ V.

Proof. “Only if part.” Assume that V is off-diagonal with respect to an or-
thogonal decomposition of § associated with J. Let P* = Ej({£1}). Then
J=P* —P~ and P* +P~ = 1. By the hypothesis, one infers that P*x € Dom(V)
for any x € Dom(V). Hence x € Dom(V) implies Jx € Dom(V). Moreover, for
any X € Dom(V) the following chain of equalities holds

VIx=VP"x—VP x
=P VP'x—P'VP X
=P V(PT+P )x—PV(PT+P)x
= (P~ —P"Vx
= —-JVx,

since P"'VPT™x =P VP x=0 (cf. (2.5)). Thus J ~ V.

“If part.” Suppose that J ~V, which means that (i) x € Dom(V) implies
Jx € Dom(V) and (ii) VIx= —JVx for all xe Dom(V). Let 1 = RanEj({£}).
Condition (i) and equalities (2.2) imply that Ej({£1})x € Dom(V) whenever
x € Dom(V). Therefore, it follows from condition (ii) that if X_ € $5_NDom(V),
then Vx_ = —VJIx_ =JVx_. Hence Vx_ € $); for all x_ € H_NDom(V). In
a similar way one verifies that Vxy € $_ for all x; € H NDom(V). Hence V
is off-diagonal with respect to the decomposition of §) associated with J, which
completes the proof. o

Remark 2.5. Operators that are diagonal or off-diagonal with respect to the de-
composition (2.4) are often written in the block operator matrix form,

(A O (0 Vy
(o) (v o)
where Ay are the parts of the diagonal operator A in $+, and V. are the corre-
sponding restrictions of the off-diagonal operator V to 94,

Ar = AIDom(A)ﬁﬁia Vi = VIDom(V)ﬁs’)i-

In particular, if both A and V are closed operators and, in addition, V is
bounded, then the closed operator L = A+V with Dom(L) = Dom(A) admits the
block operator matrix representation

_ (A Vs
L(V A+>. (2.6)



In this case 1 1
A= E(L—i—JLJ)7 V= E(L—JLJ),

where J is the involution that corresponds to the decomposition (2.4).

Notice that the study of invariant subspaces for block operator matrices of
the form (2.6) is closely related to the question concerning existence of solutions
to the associated operator Riccati equations (see, e.g. [3] and references therein).

2.2. Involutions in the Acute Case.  Recall that two closed subspaces 9t
and 91 of a Hilbert space $) are said to be in the acute case if

MANt ={0} and M- NN ={0}.

To formulate the notion of the acute case in terms of the corresponding involu-
tions, we adopt the following definition.

Definition 2.6. Involutions J and J’ on the Hilbert space $ are said to be in the
acute case if
Ker (I +J/J) ={0}.

Remark 2.7. By inspection, Ker (I +J'J) = Ker(l +JJ’), which means that this
definition is symmetric with respect to the entries J and J'.

Lemma 2.8. If involutions J and J' are in the acute case and J— J, then J=17'.

Proof. Taking into account the self-adjointness of both J and J', the hypothesis
JJ =J'J implies that the unitary operator J'J is self-adjoint. Hence spec(J'J) C
{=1,1}. Then from the assumption that J and J’ are in the acute case it follows
that —1 ¢ spec(J'J). This yields JJ =1 and hence J=J'. O

Some criteria for a pair of involutions J and J' to be in the acute case are
presented in Lemma 2.9 below. In particular, this lemma justifies Definition 2.6
stating that J and J' are in the acute case if and only if their negative (resp.
positive) subspaces are in the acute case.

One of the criteria in Lemma 2.9 involves the numerical range % (J'J) of
the product J'J. Since J'J is a unitary operator, its numerical range is a subset of
the unit disc {A € C||A| < 1}. Equalities J'J = J(JJ')J = J(3J')J~! imply that
the products J'J and JJ' are unitarily equivalent. Hence % (J'J) = #(3J'). By
JJ = (J'J)* this means that the numerical range of J'J is symmetric with respect
to the real axis.

Lemma 2.9. Ler J and J' be two involutions on §). Assume that $ = RanEj({£1})
and $'. = RanEy ({+1}). The following four statements are equivalent:

i) $H-nH, ={0} and $H:NH_={0},



(i) Ker(1+J3)={0},
(i) || =IX| < 2|X| forall xe$, X#O,
(v) —1¢w (3.

Proof. We prove the implications (i) = (ii) = (iii) = (iv) = (i).
(i) = (ii). We prove this implication by contradiction. Suppose that Ker (I 4
JJ) # {0} and x € Ker (I +J'J) is a nonzero vector. Representing this vector as
X=X_+X4 with X_ € H_ and X} € H4, one obtains (I +J'I)x= (1 —I)x_+ (I +
J)x, and hence
(1= +(1+3)x =0 .7)

since (I +J'J)x=0. Applying (I —J') to both parts of (2.7) gives (I —J)?x_ =0
and thus J'’X_ = x_. Therefore, X_ is an eigenvector of the operator J' corre-
sponding to the eigenvalue +1, which means x_ € - N§’,. In a similar way,
by applying (I +J') to both parts of (2.7), one concludes that J’x; = —x; and
hence X4 € H4+N$H_. Then it follows from condition (i) that x_ = x; = 0 and
thus X = 0, which contradicts the assumption.

(ii) = (iii). It follows from condition (ii) that ||(I +J'J)x|| > O for any
nonzero X € §). Then by taking into account the identities

13 =32+ 13+ 3)x]2 = 42

and
[Q+I)X =13+ )| = [|(1 +II)x|

one easily concludes that (ii) implies (iii).
(iii) = (iv). By inspection,

1
X2+ Re(x.3'3%) = S{4lIx|2 = (3= 37}
Hence (iii) implies
IX/|? + Re(x,J’Jx) >0 for any nonzero X € .

In particular, this means that Re(x,J'Jx) > —1 for any x € §) such that ||| =1
and therefore —1¢ #(J'J).

(iv) = (i). Suppose that at least one of the subspaces $_N$’, and € H, NH"
is nontrivial. Pick up vectors X_ € H_NH’, and x4 € HLNH" in such a way
that at least one of them is nonzero. Clearly, JJI(X_ +X;) =J(—x_+X;) =
—(X_ +Xx4), which means that —1 is an eigenvalue of the operator J'J, and
thus —1 € #/(J'J). This contradicts the assumption (iv) and thus proves the
implication. O



Remark 2.10. Making use of relationship (2.2) between an involution and its
spectral projections yields

J-J

Pt—pPt=pP —P =
2 )

where P* = Ej({£1}) and P& = Ey({+1}).
Corollary 2.11. If
IP~=P ||<1 (or |P*-P*|<1)

holds, then the involutions J and J are in the acute case. Hence, the negative
(resp. positive) subspaces of J and J are also in the acute case.

2.3. The Direct Rotation. Let J and J' be involutions on §j. Assume that
$H_ and $H are the negative and positive subspaces of J, respectively. Similarly,
assume that $'_ and §’, are the negative and positive subspaces of J'. It is well
known (see, e.g. [6, Theorem 3.1]) that if

dim($_N§,) =dim(H;NH"), (2.8)

then there exists a unitary operator W on $) mapping $_ onto " and $; onto
$',. Clearly, this W satisfies the commutation relation

JW =WJ. (2.9)

In particular, by Lemma 2.9 such a unitary W exists if J and J’ are in the acute
case. The canonical choice of the unitary mapping of one subspace in the Hilbert
space onto another, the so-called direct rotation, was suggested by C. Davis in [6]
and T. Kato in [11, Sections 1.4.6 and 1.6.8]. The idea of this choice goes back
yet to B. Sz.-Nagy (see [18, §105]). We adopt the following definition of the
direct rotation.

Definition 2.12. Let J and J' be involutions on the Hilbert space §. A unitary
operator U on § is called the direct rotation from J to J' if

(i) Ju=UJ, (i) U?=JJ, (iii) ReU >0. (2.10)

Remark 2.13. The spectrum of any direct rotation is a subset of the unit cir-
cumference lying in the closed right half-plane symmetrically with respect to the
real axis. To see this, observe that equalities (i) and (ii) imply U* =JUJ by
taking into account that U is a unitary operator. Hence the operator U is unitary
equivalent to its adjoint and thus the spectrum of U is symmetric with respect to
the real axis. From (iii) it follows that this spectrum is a subset of the half-plane
{ze C|Rez> 0}. To complete the proof of the statement, it only remains to
recall that the spectrum of any unitary operator lies on the unit circumference.

10



We give a short proof of the existence and uniqueness of the direct rotation
for the instance where the corresponding involutions are in the acute case. For a
different proof of this fact see [7, Propositions 3.1 and 3.3].

Theorem 2.14. If involutions J and J' are in the acute case, then there is a unique
direct rotation from J to J'.

Proof. We divide the proof into two parts. In the first part, we prove the existence
of a direct rotation from J to J'. The uniqueness of the direct rotation is proven
in the second part.

(Existence.) Set T =1+ JJ. One easily verifies that T is a normal operator. By
hypothesis,

Ker(T) = Ker(T*) = {0} (2.11)

taking into account Remark 2.7. Hence the isometry U in the polar decomposition
T=U|T|=|T|U, (2.12)

is a unitary operator (see [18, §110]).
By inspection,
JT=TJ (2.13)

and thus
JTR =TT =TT =T*TI=T|?],
JTP=JTT =TIT* =TT"Y = T.

Hence J— |T| and J' — |T|. Then (2.12) and (2.13) yield |T|(JU —UJ) =0,
which implies that
JU=uUJ (2.14)

since Ker (|T|) =Ker(T) = {0}. Observing that J’JT* =T, by the same reasoning
one obtains |T|(U —JJU*) =0. Hence U = JJU* and thus

u2=JJ. (2.15)

Finally, T+ T* = |T|? and T+ T* = |T|(U +U*) imply |T|(U+U*—|T|)=0.
Therefore,

1
ReU = 3|T|>0. (2.16)

Comparing (2.14), (2.15), and (2.16) with (2.10), one concludes that U is the
direct rotation from J to J'.

11



(Uniqueness.) Suppose that U’ is another unitary operator such that U’> =U? and
ReU’ > 0. By inspection,

(ReU’)2 = %(| Re(U’Z)) - %(I + Re(UZ)) = (ReU)2.

Then it follows from the uniqueness of the positive square root of a positive
operator that ReU = ReU’. In addition, the requirement Im(U?) = Im(U’?) im-
plies ReU (ImU —ImU’) =0, which means that ImU = ImU’ since Ker (ReU) =
Ker(|T|) = {0} by combining (2.11) and (2.16). Thus U’ =ReU +ilmU =U,
completing the proof. O

Remark 2.15. In the nonacute case, the direct rotation exists if and only if (2.8)
holds (see [7, Proposition 3.2]). If it exists, it is not unique.

To specify location of the spectrum of a unitary operator on the unit circum-
ference, we introduce the notion of the spectral angle.

Definition 2.16. Let W be a unitary operator. The number

O(W) = sup Jargz, agze (-7,7),
zespec(W)

is called the spectral angle of W.

Remark 2.17. 9 (W*) = 3(W).

Remark 2.18. The (self-adjoint) operator angle between two closed subspaces
in a Hilbert space is expressed through the direct rotation U from one of these
subspaces to the other one by © = arccos(ReU) (see [7, Eq. (1.18)]). This
implies that ©(U) is nothing but the spectral radius of the corresponding operator
angle ©.

The next statement shows that the spectral angle ©(W) is a quantity that
characterizes the distinction of the unitary operator W from the identity operator.

Lemma 2.19. Let W be a unitary operator. Then

n—w] —Zsin<w). (2.17)

Proof. Observe that | —W is a normal operator. Then using the spectral mapping

12



theorem one concludes that the following chain of equalities holds:

[M=W[[= sup [A]
Aespec(l-W)
= sup |[1-7
zespec(W)

= sup 2sin <|ar%>

zespec(W)

1
=2sin{ = sup |agz
(2 zespec(W) | ‘)

e [(B(W)
=2sin (?) ,
where argz € (—m, 7l O

Remark 2.20. If U is the direct rotation from an involution J to an involution J’
then it possesses the extremal property

B(U) < FW),

where W is any other unitary operator satisfying (2.9). This can be easily seen
from (2.17) by using [6, Theorem 7.1], which states that ||| —U|| < ||l —W]|].

Remark 2.21. Again assume that U is the direct rotation from an involution J to
an involution J'. Then by (2.10) the spectral mapping theorem implies

ogﬂ(U)gg and 19(U):%19(J’J). (2.18)

Since ||J'—J|| = ||l =JJ]|, by (2.17) it follows from (2.18) that

8(3J)

|J’—J||—2$in< )—Zsinﬁ(u).

Hence by Remark 2.10,
[P —P*[| =P~ —P | =snd(U), (2.19)

where P* = Ej({£1}) and P'* = Ey({£1}).

In the proof of the next lemma, we will use the following notation. Assume
that . is a subset of the complex plane. Then €%.% denotes the result of rotation
of . by the angle ¢ C (—m, 7| around the origin, that is,

d?.7 ={zeC|z=¢€?¢ for some{ €.7}.

13



Lemma 2.22. Let Wy and Wb be two unitary operators on the Hilbert space $).
Then

|9 (Wh) — 3 (Wo)| < B (VWoWy) < 9(WAh) + & (Wa). (2.20)
Proof. First, we prove inequality
B (WWA) < B (W) + 9 (Wh). (2.21)

Denote by 1, ¥2 and U3 the spectral angles of Wi, Wb, and WoWj, re-
spectively. The case U1+ 92 > 7 is trivial since ¥3 < 7 by Definition 2.16.
If 91+ 392 <7, we prove (2.21) by contradiction. Suppose that the opposite
inequality holds, that is,

U3 > %1+ Oo.

Then there is a number ¢ € (—7, 7] such that €% € spec(WoW;) and
D1+ 02 <|o| < 7. (2.22)

Since WoW; is a normal (unitary) operator, there exists a sequence of vectors
Xn€$H, Nn=12, ..., such that

[Xa]| =1 and [WoWaxn — €9%n|| — 0, N — oo, (2.23)

Indeed, if €9 is an eigenvalue of WoWA, to satisfy (2.23) one simply takes X = Xps
n=1,2,..., where X, is a normalized eigenvector of WoW; corresponding to the
eigenvalue €%, ie. WoWix, = €9X,. Otherwise such a sequence exists by the
Weyl criterion for the essential spectrum.

Let 21 n = (X0, WiXn) and 2o n = (%0, W5'Xn). Clearly, (2.23) yields

|zin— €920 — 0, N— oo, (2.24)

since by the Schwartz inequality we have

210 — €922n] = | (X0, Wixn — €PW5 Xp) | <
Taking into account that z;n C #(Wy) and 2, C # (W), from (2.24) one con-

cludes that .
dist(# (Wa), €% (Wy)) = 0. (2.25)

Meanwhile, if W is a unitary operator with the spectral angle 9, the spectral
theorem implies
W (W)C Sy and #(W*)C Sy,

where
s ={ze C| Rez>cos® and |z] <1}
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is a segment of the closed unit disc centered at the origin. Therefore, # (W) C
Sy, and # (Wy) C Fp,. Obviously, €?# (W) C €97, and hence

dist(# (W), €97 (Wg)) > dist(Ss,,€9.5,). (2.26)

One easily verifies by inspection that by the assumption (2.22) we have

dist( 7y, €7-75,) :Zgn(m _21_192>Sm(|(p|+22_ﬂ1> >0

and thus by (2.26) we get
dist(# (Wh),€9# (W5)) >0,

which contradicts (2.25). This completes the proof of (2.21).
By Remark 2.17, inequality (2.21) implies

9 (Wo) = & (VWIS ) < 8 (VIOWh) + B (W) — 9 (WoL) + B (W), (2.27)
B (W) = 9 (WoWeW) < 9 (W) + 9 (WaWg) = (W) + 9 (W), (2.28)

Combining (2.27) and (2.28) yields the left inequality in (2.20). The proof is
complete. O

Remark 2.23. Setting Wy = €911 and Wb = €92| with ¥, O appropriate reals,
one verifies that both inequalities of (2.20) are sharp.

3. A PROPERTY OF THE POLAR DECOMPOSITION

In this section, we give a proof of Theorem 3. We also derive corollaries to
this theorem for the case where one of the involved operators is self-adjoint and
the other one is related to an involution.

We start with an auxiliary result.

Lemma 3.1. Let A be a positive operator on the Hilbert space $). Suppose that
X,y € §) are such that

Re(x, AA’+a) ly) >0 (>0) forany o>0. 3.1

Then
Re(x,Qy) >0 (>0), (3.2)

where Q is the orthogonal projection onto Ker (A)*.

15



Proof. By the spectral theorem

Re( AR+ 12)ly) — ),m(d/l)_/ Am(dA)

— = —7, 0 €eR,
R AZ4+N?  J04e) A2+ N2 71

where for any Borel set 6 C R the Lebesgue—Stieltjes measure m(8) reads
m(5) = Re(x,Ea(8)y)-

Hence for any € >0

1/e 1/e A d)L
mi
dn Re(x, A(A2 / /
/ n ( +n 0+oo },24‘7”2
1/e Adn
= m(dA —
(0,+22) (a4) e AZ+n?

by the Fubini theorem. Therefore,

1/e
[ dn Refx AR +n?) ) =

= (o&m)m(dl) [arctan<l—18> arctan(x)}. (3.3)

From (3.3) one immediately infers that

1/e
i 2, 221, _ -
Igllrg /dn Re(x, A(A“+n°)"ty) = 2m((0,—|— ). (3.4)

Notice that m((0,4<)) = Re(x,Qy) since Q = Ea((0,+<°)). Hence (3.4) yields

1/e
Re(x, Qy) = Ii[g % /dn Re(x, A(A2 +1?)~ly). (3.5)
€
€

Clearly, by (3.5) inequalities (3.2) follow directly from the corresponding as-
sumptions (3.1). The proof is complete. O

With Lemma 3.1 we are ready to prove Theorem 3.
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Proof of Theorem 3. First assume that the operators GT and G*T* are both ac-
cretive. To prove that GW is also an accretive operator, pick up arbitrary o > 0
and X € §) and set

g=(T'T+a) (3.6)

Taking into account that g € Dom(T), introduce
h=Tg=T(T'T+a) x (3.7)

Clearly, h € Dom(T*) and
X=ag+T*h. (3.8)

By using (3.6), (3.7), and (3.8), it is easy to verify that the following chain of
equalities holds

Re(W*G*x, |T|(|T|?+ o) "1x) = Re(G*x,W|T|g)

e(g, Ghy + Re(Gh, T*h)

R
R
= Re({ag+T*h,Gh)
a
oo Re(g,GTg) + Re(h,G*T*h). (3.9

O 0

Since by hypothesis both GT and G*T* are accretive, (3.9) implies that
Re(W*G*X,|T|(|T|?+ &) 1x) >0 forany a >0 and xe€ 9,
and hence by Lemma 3.1
Re(W*G"x, Qx) = Re(x, GWQX) > 0,

where Q is the orthogonal projection onto Ker (|T|)*. According to the convention
(1.11) we have Ker (|T|) = Ker(T) = Ker (W). Then one concludes that WQ =W
and hence

Re(x,GWx) >0 for all Xxe€ 9,

which proves that the operator GW is accretive.
Further, assume that GT and G*T* are both strictly accretive operators. In
particular, this implies that

Ker (T) = Ker (|T|) = {0}. (3.10)

In this case, if X # O then neither g nor h defined in (3.6) and (3.7) can be
zero vectors. Indeed, the equality g = 0 implies h= Tg = 0 and hence by (3.8)
it contradicts the assumption X # 0. Independently, the equality h = 0 yields

17



g € Ker(T) by taking into account (3.7). Then x € Ker(T) since X = axg by (3.8).
This is again a contradiction because of (3.10).

Therefore, if X # 0 and o > O, then necessarily g # 0, h 0. Hence, by (3.9)
now we have a strict inequality

Re(W*G*x, |T|(|T|?+ a) 1x) > 0.

Then by taking into account (3.10), Lemma 3.1 proves the strict accretiveness of
the operator GW.

The accretiveness (resp., the strict accretiveness) of the operator WG can be
proven in a similar way. O

Now assume that T is a self-adjoint operator on the Hilbert space $ and
Ker(T) = {0}. Then the isometry J' in the polar decomposition

T:J’|T| (3.11)
is an involution that reads
= E1((0,49)) — Er ((—20,0)).

Clearly, the negative and positive subspaces of this involution coincide with the
corresponding spectral subspaces of T:

9" =RanEr((~=,0)) and ', = RanEr((0,+)).

Below we will show that in some cases Theorem 3 allows one to determine the
spectral angle of the product J'J, where J is another involution on . The norm of
the difference between the orthogonal projections onto the corresponding positive
(or negative) subspaces of J' and J is then easily computed by using (2.19).

We study the two following cases.

Hypothesis 3.2. Let J be an involution on the Hilbert space $). Assume that T is
a self-adjoint operator on $) such that

(a) Ker(T) = {0} and the product JT is accretive
or

(b) the product JT is strictly accretive.

Obviously, if the assumption (b) holds, then the assumption (a) holds, too.
Therefore, both (a) and (b) assume that Ker(T) = {0}. Hence, any of these two
assumptions implies that the isometry J' in the polar decomposition (3.11) of T
is an involution.

To describe the accretive operators in some more detail, we introduce the
following definition.

18



Definition 3.3. Let S be an accretive operator on the Hilbert space $. Then the
finite or infinite number

[Imz]
K(S) = Ll
2w (9\fo} Rez

is called the sector bound of S

Clearly, if k(S) is finite, then Sis a sectorial operator (see [11, §V.3.10]) with
vertex 0 and semiangle 6 = arctank(S).
Main result of this section is the following.

Theorem 3.4. Assume Hypothesis 3.2 (a). Let T =J|T| be the polar decompo-
sition of T. Then the involutions J' and J are in the acute case, and

1 T
9(U) < 5 arctank(JT) (g Z) , (3.12)

where U is the direct rotation from J to J'.

Proof. Since JT is accretive and T = J|T|, it follows from Theorem 3 that the
operator J'J is also accretive. Hence —1 ¢ #/(J'J), and thus by Lemma 2.9 the
involutions J and J' are in the acute case.

If K(JT) =0 then # (JT) is a subset of the real axis, which means that JT is
a symmetric operator. This implies J— T since T is self-adjoint. Hence J' — J
(see, e.g. [11, Lemma VI.2.37]) and thus J=J by Lemma 2.8. In this case,
estimate (3.12) is trivial since 9 (U) =0.

Further, assume that k(JT) > 0. Set

0= g —arctank(JT), ¢ €[0,7/2),

and observe that the operators GT and G*T* with G = ei‘PJ are both accre-
tive. Then by Theorem 3 one concludes that the products €9J'J and €'°J'J
are also accretive operators. Hence #/(J'J) is a subset of the closed sector

{ze C ‘ |argz] < g—(p, argze (—72:,71’]}. Then from the inclusion spec(J'J) C

# (JJ) it follows that the spectral angle of the unitary operator J'J satisfies
¥ (J'J) < arctank(JT). (3.13)
Now (3.12) follows immediately from (3.13) and (2.18), completing the proof. [

In the two following statements, we present some uniqueness results con-
cerning the involution J' referred to in Theorem 3.4.
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Theorem 3.5. Assume Hypothesis 3.2 (). Let J be an involution on $ such that
(i) J and J are in the acute case, (i) J —T, and (iii) J#J,

where J is the involution in the polar decomposition of T. Then
~ T 1 s
> — — — > — .
dU) > 5 2arctank(JT) </ 4) , (3.14)

where U is the direct rotation from J to J.

Theorem 3.6. Assume Hypothesis 3.2 (D). Let T =J|T| be the polar decompo-
sition of T. Then J is a unique involution on $) such that

(i) Jand Y are in the acute case, (i) I —T, and (iii) 9(U)<

i

R

where U is the direct rotation from J to J.

Proof of Theorem 3.5. For the proof by contradiction suppose that instead of
(3.14) the opposite inequality holds. Then by (2.18) in Remark 2.21 we have

9(JJ) < m— arctank(JT). (3.15)
Similarly, Theorem 3.4 yields
9(3) < arctank(JT). (3.16)
By (3.15) and (3.16), Lemma 2.22 implies that
9(JY)=09((JINIY)) <8 +0JY) < 7.

In particular, this means that —1 ¢ spec(J’J’), which proves that the involutions
J and J' are in the acute case.

By hypothesis, J’ commutes with T and J’ is the isometry in the polar decom-
position of T. Hence [11, Lemma VI.2.37] implies J — J. Then from Lemma
2.8 it follows that J' = J', which contradicts the assumption (iii). Therefore,

9 (U) satisfies (3.14) completing the proof. O

Proof of Theorem 3.6. Arguing by contradiction, suppose that there is an involu-
tion J' distinct from J" and such that conditions (i)—(iii) are satisfied. In particular,
this implies that 9(J'J) < /2 and hence

Re(x,J7’x) >0 forall x€$.

Since JT is strictly accretive and T = J'|T|, by Theorem 3 the operator JJ' is
also strictly accretive, that is,

Re(x,JI'x) >0 forall x€§, Xx#0.
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Therefore,
Re(x,JI'X) + Re(x,JT'x) > 0 for all xe ), x#0. (3.17)

Now assume that there is y € Ker (I + J'J) such that y # 0. Then applying J
to both parts of the equality y+ J'J'y = 0 yields J'y+J'y = 0. Hence

Re(y,JJ'y) + Re(y,JJ'y) =0,

and it follows from (3.17) that y= 0. This proves that Ker (I +JJ) = {0}, i..
the involutions J' and J' are in the acute case.

Clearly, J — J since by hypothesis J commutes with T, and J' is the
isometry in the polar decomposition of T (see [11, Lemma VI1.2.37]). Hence, by
Lemma 2.8 J' = J', which contradicts the assumption that J’ is distinct from J'.

The proof is complete. O

4. AN EXTENSION OF THE DAVIS-KAHAN tan20 THEOREM.
PROOF OF THEOREM 1

Throughout this section we adopt the following hypothesis.

Hypothesis 4.1. Given a self-adjoint operator A on the Hilbert space %), assume
that
Ker(A—u)={0} for some uecR. (4.1

Let V be a symmetric operator on §) such that

(i) Dom(A) C Dom(V),

(i) V.~ J, where J = Ea((t4,+2°)) — Ea((—o0, 1)),
and

(iii) the closure L = Lg of the operator Lo = A+V with Dom(Lo) = Dom(A) is
a self-adjoint operator.

By this hypothesis, the product J(L — p) appears to be a strictly accretive
operator. Moreover, the sector bound k(J(L — ,u)) admits an explicit description
in terms of the perturbation V.

Lemma 4.2. Assume Hypothesis 4.1. Then J(L— ) is a strictly accretive operator

and
V)
k(J(L— = Su _— 4.2
Ql-w)= sp S A—u “2)
IX| =1
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Proof. Obviously, by Hypothesis 4.1
JA—p)=|A-u[>0.
Hence by items (ii) and (iii) of this hypothesis we have
Re(x,J(A+V — u)x) = (X,|A— u|x) for all x e Dom(A). (4.3)

Pick up an arbitrary y € Dom(L). By the assumption (iii), it follows that there
exists a sequence of vectors yn € Dom(A) such that y, — Yy and Loy, — Ly as
N — oo, and thus

Re(yn, J(Lo — 1)yn) — Re(y,J(L — n)y) as n— oo, 4.4)

Then (4.3) and (4.4) imply Re(y,J(L —u)y) > 0. Moreover, y € Ker (JA—u|) C
Dom(A) whenever Re(y,J(L — u)y) = 0. Taking into account that Ker (|JA—pu|) =
Ker (A— u) = {0}, one infers that

Re(y,J(L — u)y) > 0 for all nonzero y € Dom(L),

which means that the operator J(L — ) is strictly accretive.
Now observe

kQ(L—w) = (4.5)
where VX
X, JVX
x= sup ———T (4.6)
x € Dom(A) <X7|A_M‘X>
IXl=1
Indeed,
[Im(x I(L — wx)|
k(J(L—u))=  sup
(( )) x e Dom(L) Re(x,J(L—u)x>
[IXl=1
. ap  LIMIAV w0

x € Dom(A) Re(x,J(A+V - ,I.L)X>
[l =1

since by Hypothesis 4.1 (iii) Dom(A) C Dom(L) and L|pom(a) = A+ V. Then
(4.5) holds by (4.3), since Hypothesis 4.1 (ii) implies

IM(X,J(A+V — u)x) = (x,JVX) for any x € Dom(A). 4.7

Clearly, if 3z = oo, then (4.2) follows immediately from inequality (4.5). If
is finite, then by (4.3) and (4.7) from (4.6) we have

[Tm(x,J(Lo — u)x}| < »Re(x,I(Lo— u)x) for any x € Dom(Lg) = Dom(A).
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Since L is the closure of Lo, by continuity of the inner product the same inequality
holds for L, that is,

[ITm({x,J(L — u)x)| < »Re(x,J(L — p)x) for any x € Dom(L).
In particular, this means that

[ImxI(L— )|

sup =Kk(IJ(L—u)) < s (4.8)
x € Dom(L) Re<xv‘](L_M)X> ( ( ))

[IXl=1
Now combining (4.5), (4.6), and (4.8) completes the proof. O

Remark 4.3. Since J(L— ) is a strictly accretive operator, the isometry J' in the
polar decomposition L — u = J'|L— p| is an involution. Clearly, it reads

I = EL((1,+e0)) — EL((—o0,1)).

Theorem 4.4. Assume Hypothesis 4.1. Let L —u =J|L— u| be the polar decom-
position of L — . Then the involutions J and J' are in the acute case, and

1 [{(x, IVX)| b2
¥ (U) < - arctan sup —_ <=, 4.9)
( ) 2 ( x € Dom(A) <X7 |A—,u\x>) ( 4)
[IXl=1

where U is the direct rotation from J to J. Moreover, J is a unique involution
on $) with the properties

(i) J and J are in the acute case, (i) J — L, and (iii) 9(U) < % (4.10)

The spectral angle of the direct rotation u from J to any other involution J
distinct from 3 and satisfying (i) and (ii) is bounded from below as follows

~ _m 1 [{(x, IVX)| b2
S(U)>Z—Zactan( sup ——— >, (4.11)
( ) 2 2 (xeDom(A) <X,|A—‘u|X>) ( 4)
I =1

Proof. The operators J and T =L — u satisfy Hypothesis 3.2 (b) (and hence
Hypothesis 3.2 (a)). Then the assertion is proven simply by combining Theorems
3.4, 3.5, and 3.6 with Lemma 4.2. O

With Theorem 4.4 one can easily prove Theorem 1.
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Proof of Theorem 1. Pick up arbitrary u,v € (supo_,infoy), u < v. Clearly,
Hypothesis 4.1 holds for both pu and v with the same involution J = Ep(0y) —
Ea(o-). By Remark 4.3, the isometries JL and J), in the polar decompositions
L—u=J,L—puf and L—v =J;|L —v| are involutions. By Theorem 4.4, the
involutions J and JL are in the acute case, JL — L, and 9(Uy,) < /4, where U,
is the direct rotation from J to JL. The same holds for J}, and the corresponding
direct rotation Uy, from J to J,. Therefore, (4.10) is satisfied for both J' = JL
and J' = J. Hence, Theorem 4.4 implies J;, = J;,, which by Remark 4.3 yields
EL((1,v)) =0. Since u,v € (supo_,infoy) are arbitrary, then one concludes
that E ((supo_,info)) =0, and thus the interval (supo_,inf o) belongs to the
resolvent set of L. Hence,

Jy=EL(0})—EL(cl) forall wue(supo,infoy),

where 6’ and o, are the parts of the spectrum of L in the intervals (—eo,SUpO_]
and [inf oy, +o0), respectively. Since JL does not depend on u € (supo_,infoy),
the direct rotation Uy, does not, either. Then estimate (4.9) of Theorem 4.4 yields

. X, VX
tan29(U) < inf M,
Spo-<u<infor yepom(a) (X [A— 1[X)
[Ix =1

4.12)

where U is the direct rotation from the involution Ea(0y) — Ea(0-) to the invo-
lution E\ (0/.) —EL(0”). Now inequality (4.12) proves the bound (1.8) by taking
into account (2.19) in Remark 2.21. The proof is complete. O

Example 4.5. Let 95 = R\(—a,a) for some a> 0. Given s > 0, assume that A
and V are operators on the Hilbert space §) = LZ(Qa) defined by

(A () = [tix(=t),  (VX)(t) = »tX(t), teZa,

Dom(A) = Dom(V) = {x ] /Q t2[x(t)[2dt < +oo}. (413)
‘a

Both A and L = A+V are self-adjoint operators. The spectrum of the operator A
is purely absolutely continuous. For a> 0 it consists of two disjoint components
0_ = (—oo,—a] and 04 = [a@,+0) and for a= 0 it covers the whole real axis. Ob-
viously, the isometry J in the polar decomposition A= J|A| is the parity operator,
(IX)(t) =x(—t), X € $, and the absolute value of A is given by (JA|X)(t) = [t|x(t),
x € Dom(A). Clearly, J is an involution on $ such that J~— A and J ~V. There-
fore, for a> 0 (resp. for a=0) the operators A and V satisfy the hypothesis of
Theorem 1 (resp. the hypothesis of Theorem 4.4 for u = 0).

Our analysis of the subspace perturbation problem involving A and V given
by (4.13) is divided into three parts below.
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() For any x € Dom(A), ||x|| = 1, we have

X(—t) 2+ [x(t)[?
< %/9 tf =yt (4.14)

= t][x(t)[dlt
[t
= (X, |A|X).

Moreover, if x € Dom(A) is such that X(—t) = isign(t)x(t), then inequalities in
(4.14) turn into equalities. Hence, by taking this into account, (4.14) implies
X, VX
sup u = . (4.15)

x € Dom(A) <X7 |A‘X>
Xl =1

An explicit evaluation of the involution J' = E| ((+e0,0)) — E_ ((—0,0)) by using
the polar decomposition L = J'|L| yields

(JIX)(t) = X(t) +sign(t) X(—t). (4.16)

1 >
V1422 V142
From (4.16) it follows by inspection that the spectrum of the unitary operator J'J
consists of the two mutually conjugate eigenvalues,

1—izx 1+ix }
\/1—1—1«:27 V1432 .

This implies that ©(J'J) = arctansc and then the spectral angle of the direct

spec(J'd) = {

1
rotation U from J to J' is equal to 9 (U) = EarCtan%' Combining this with

(4.15) yields that in the case under consideration

1 Jv
dU)== arctan( sup M) for any a> 0. 4.17)
2 x € Dom(A) <X, |A‘X>
X[ =1

(ii) Now set J¥ = —J. Clearly, 9(J'J) = m — ©(J'J) and thus the spectral
angle of the direct rotation U from J to J' reads

8(0) =

[, V)| ) . (4.18)

1

— arctan ( sup —_

2 x € Dom(A) <X7 |A‘X>
[l =1

T
2
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Notice that the involution J/ commutes with L since J' does. By (4.16), it follows

that Ker (I —J'J) = {0} whenever s # 0. Hence, Ker (I +JJ) = {0} whenever

» # 0, which means that for > > O the involutions J and J are in the acute case.
(iii) For a> 0 we have

lul<a x e pom(A) <X7 |A_ u ‘X> x € Dom(A) <X7 |A‘X>
IxI=1 IXlI=1

Since siN®(U) = ||EL((—eo, —a]) — Ea((—2°,—a])||, by Theorem 1 the strict in-
equality in (4.19) implies
1 X, VX
B(U) < Earctan( sup u),

x € Dom(A) <X, |A‘X>
X =1

which contradicts (4.17). Hence only the equality sign in (4.19) is allowed and
thus

. \ \V
lul<a x e Dom(A) (% [A= %) x € Dom(A) (%, [Alx)
x[=1 X =1

Remark 4.6. Example 4.5 shows the following:
(i) Estimate (4.9) of Theorem 4.4 is sharp. This is proven by equality (4.17).

(ii) Estimate (4.11) of the same theorem is sharp. This is proven by equality
(4.13).

(iii) Estimate (1.8) of Theorem 1 is sharp. This is proven by combining equal-
ities (4.17) and (4.20).

The celebrated sharp estimate for the operator angle between the spectral
subspaces RanEa(o-) and RanE( (o’ ) known as the Davis—Kahan tan2@© Theo-
rem [7] (cf. [16]) appears to be a simple corollary to Theorem 1.

Theorem 4.7 (The Davis—Kahan tan20 Theorem). Given a self-adjoint operator
A on the Hilbert space %), assume that

spec(A)=0_Uoy, d=dist(o_,0:)>0, and supo_ <infoy.

Suppose that a bounded self-adjoint operator \V on %) is off-diagonal with respect to
the decomposition $ = RanEa(o_) ®RanEa(oy). Then the spectrum of L = A+V
consists of two disjoint components 6’ and o', such that

o/ C(—oo,supo_] and o Clinfoy,+),
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l V
E O'/ _ o < S' — arctan —— ).
|| L( —) EA( *)H ~ n(z d )

Proof. Hypothesis of Theorem 1 is satisfied and thus we only need to prove the

(4.21)

1 .
estimate (4.21). Set ug = E(SUpU+ +info_). Clearly,

- |(x, JVX)| (%, JVX)|
inf sup ———— K L '
supo—<u<infor < pom(a) <X7 |A_ ,LL‘X> x € Dom(A) (X, |A_ ‘LLO|X>
x| =1 [IXI=1
c ap VI
x € Dom(A) (X, |A_ ‘LLO|X>
[IXI=1
_2v|
~ d b
which immediately implies (4.21) by taking into account (1.8). O

5. PROOF OF THEOREM 2

In the proof of the main result of this section, we will use some auxiliary
statements. We start with the following lemma.

Lemma 5.1. Let T be a densely defined operator on a Hilbert space $) with
dim($)) > n for some n€ N. Assume that t(X,y) is a sesquilinear form on §) such
that

Dom(T) c Dom(t) and t(xy)= (X, Ty) forany Xxy€ Dom(T).

Suppose that there are orthogonal projections B #0, 1=212,....n, on § with the
properties

n
PP, =0 if i # ], .ZP' =1, and Px € Dom(t) whenever x € Dom(t).

i=1
Let & be a set of ordered n-element orthonormal systems in ) defined by
&={{a}L; cDom(t)| & € RanP and ||&| =1 forall i=1,2,...,n}.

Then
7 (T)c |J 7 (1), (5.1)
ecé
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where for any e € & the N x N matrix t€ is given by
(t%)ij = t(a,€j) with e,ej€e, i,j=12,...,n
If, in addition, Dom(t) = Dom(T), then

= 7). (5.2)

Proof. By hypothesis, Dom(T) = § and hence Dom(t) = §), too. Therefore, there
P

exists y € Dom(t) such that Ry #0 for all i=1,2,...,n. Set & = ”Py” Taking

into account that by hypothesis Py € Dom(t) and thus e € Dom(t), i=1,2,...,n,
one concludes that {g}]' ; € &. Hence, the set & is nonempty.

Assume that z€ #/(T). Then there exists X € Dom(T) such that (X, TX) =z
and |X|| =1. Pick up an arbitrary f = {fi}]'; € & and define the orthonormal
system g = {Gi}{L; by

Rx
gi =< IR’
fi, [IPX|| =

[[Rx]| # 0,

Obviously, g€ & and
n
Z (91, 9) [RX[[[PX]| = (x, Tx) = Z,

which implies z€ # (19) since 2
(5.1).

To prove the converse inclusion in the case where Dom(t) = Dom(T), pick
up an arbitrary h = {h}' ; € & and assume that z€ #/(t"). Then there are o; € C,
i=1,2,...,n, such that

1 [[PX||? = [|x||? = 1. This proves the inclusion

n
= 3 (b, Yl =

i,j=1 i=1

Set x = Zl 1 @ihi. Clearly, [[X|| =1 and x € Dom(t) = Dom(T). Hence z=
t(x,X) = (Tx,X). This yields z€ #/(T) and hence # (t") C #(T). One then
concludes that

U7 cw (1),

ecs
and hence (5.2) holds, completing the proof. O

The next simple result on the numerical range of a 2 x 2 numerical matrix is
well known (see, e.g. [8, Lemma 1.1-1]).
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Lemma 5.2. Given numbers o >0, § >0, and y € C, let M be a 2 x 2 matrix of

the form
_ ([« v
M_(y B)

The matrix M is strictly accretive and its sector bound reads

vl

NGT

The numerical range # (M) is a (possibly degenerate) elliptical disc with foci at
the eigenvalues of M.

k(M) =

Now we are in a position to prove the main statement of the section. We
only recall that by a gap of a closed set ¢ C R one understands an open finite
interval on the real axis that does not intersect this set but both its ends belong
to o.

Theorem 5.3. Given a self-adjoint operator A on the Hilbert space $), assume
that

spec(A) =0_Uoy, dist(or,0-)=d>0, and oynNcowv(o_)=y.

Denote by A the gap of o4 that contains o_, and by |A| the length of A. Suppose
that V is a bounded self-adjoint operator on $) anticommuting with J = Ep(0y) —

Ea(o-) and such that
VI < vd(jA] = d). (5.3)

Then the spectrum of L = A+V consists of two disjoint components o' and o,
such that
ol CA, ol CR\A, (5.4)

and the involutions J and Y = E_(0!) —EL(0") are in the acute case. The
spectral angle of the direct rotation U from J to J satisfies the bound

1 T
9(U) < Zactank (V) (< Z)’ (5.5)

where the function K (V) is defined for 0 < v < \/d(|A| —d) by

K(V)=q |Al Al 2
vl Jdial o [(S-d) ]
: \/d<|A|—d>—2v2 7>z (7 -9)
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Moreover, J is a unique involution on $) with the properties

(i) J and J are in the acute case, (i) I —L, and (iii) 9(U)<

INES

The spectral angle of the direct rotation U from J to any involution J distinct
from ¥ and satisfying (i) and (ii) is bounded from below as follows

9(0) > g—%arctanK(HVH). 5.7)

Proof. One may assume without loss of generality that the gap A is centered at
the point zero. Under this assumption we set

A= (—b,b) with b= '%'.

Then
oy CR\(=b,b) and o_ C [-a,4], (5.8)

where A
a= u—d, O0<a<h.

By Remark 2.5, the operator L admits the matrix representation (2.6) with
respect to the decomposition $ = $_ @ $H, where

$- =RanEp(o-) and $H =RanEa(oy)
are the negative and positive subspaces of J, respectively. Then [14, Theorems 1

(i) and 3.2] imply that the intervals (—b,—a’) and (&,b) with

1 2|V
a =a+|V|tan —arc’[anM <b
2 a+b

are in the resolvent set of L. Hence the interval (a2,b?) lies in the spectral gap
of L2, and also the inclusions (5.4) hold. Taking into account (5.3), one verifies
by inspection that a? < a4 ||V||? < b?. Therefore, the interval (a2+ ||V||?,b?)
belongs to the resolvent set of L2. Thus, the spectral projections Eiey ((—oo,O)
and B2, ((0,%°)) do not depend on

p e (a4 ||V||2,b?). (5.9)
Moreover,

ELZ—M((_va)) = EL(Gi)a ELZ—M((OaOO)) = EL(GJ,r)v
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and hence

Erz,((0,00)) —Epz_,((—e0,0)) = . (5.10)
Now for any u satisfying (5.9) set
T, =J(L?~u), Dom(T,)=Dom(L?), (5.11)
and
tu(X,y) = (LIx,Ly) — u(x,Jy), x,y € Dom(t,)=Dom(L). (5.12)

Clearly, Dom(T,) C Dom(t,) and t,(x,y) = (X, Tuy) for any X,y € Dom(Ty).
Further, introduce the set & of ordered orthonormal two-element systems in ) by

&={{e_,e;} cDom(ty) | e: € Hx, [lex|| =1}.

Then by Lemma 5.1 the following inclusion holds

7 (Tu) c U7 (t), (5.13)

ecé

where tﬁ are 2 X 2 matrices given by

e _ t (e,,e,) t (ei,e+) B
= ( tﬁ(e-‘rve—) tZ(e+,e+) )’ e={e_.,e }€¢.

By taking into account that A~— J and V —~ J, one observes

€ — ( u— ||Ae—||2_ Hve—”Z _(<Ae+aV2e—> + (Vezr,Ae_>)> . (5.14)
HT\(Aey Ve )+ (Ve Ae ) e |2+ Ve |2~ u

From (5.8) it follows that for {e_,e;} € &
|Ae_|| <a and ||Aei| >b. (5.15)

Hence, by the assumption (5.9) by Lemma 5.2 it follows from (5.14) and (5.15)
that for all e € & the numerical ranges V/(tﬁ) are elliptical discs that lie in the
open right half-plane {z€ C|Rez > 0}. Then (5.13) implies that the numerical
range V/(TM) also lies in the open right half-plane, that is, the operator T, is
strictly accretive. Hence, taking into account (5.10) and (5.11), Theorem 3.4
yields that the involutions J and J' are in the acute case. Moreover, for the direct
rotation U from J to J' the following inequality holds

B (U) < %arctank(T“), (5.16)
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where u is an arbitrary point from the interval (5.9). In its turn, inclusion (5.13)
implies
k(Tu) < supk(ty). (5.17)
ecé

Since
[(Ae...Ve_) + (Ve Ae_)| < A, [[Ve_ | + lAe_|[Ve.]l, e={e e} eé&,
by Lemma 5.2 it follows from (5.14) that
k(ti) < f,u(a—va-‘rvv—av-‘r)v (518)

where
O_Vi + 0V
(1 — 0% )72 2 — )12
with o = ||Aes|| and vi = |[Ve4|.
By (5.15), we have

fﬂ(a—va-‘rav—vv-‘r) =

O0<o_<aand oy > b, (5.19)
while
O0<v_ <|V| and O< vy <||V]. (5.20)

A direct computation shows that the supremum of the function f, over the set in
R# constrained by (5.19) and (5.20) equals

[V][(a+b)
(u—a2=|V[[2)Y2(02 + [[V||2 — u) /2
[0%(|V/ |2+ a(b? — )]
(=~ [VIP)2(02 — )2
Then by (5.16)—(5.18) one infers that

if a(b?— u) > bV

s(u) =
if a(b®—u) <b|V|%

1
?9(U) < Earctan%(u) for any u € (a®+||V||?,b?).

In particular,
1
9(U) < > arctan s¢min, (5.21)

where
Hmin = in (). 5.22

mn a?+||V|2<pu<b? (1) ( )

By inspection, the function »(ut) is continuously differentiable on the interval
(@®+ ||V|%,b%). The (global) minimum of s on this interval is just equal to
k(|[V]). By (5.21), the equality semin =k (|[V||) proves the bound (5.5).

The uniqueness of an involution J’ with the properties (i)—(iii) follows from
Theorem 3.6. Estimate (5.7) is an immediate corollary to Theorem 3.5.

The proof is complete. O
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Remark 5.4. Notice that in the case where the operator A is bounded, the estimate

2
IEL(c”) —Ea(o-)|| < g (or equivalently ©9(U) < m/4) may be obtained by
combining [14, Theorem 1 (ii)] and [16, Theorem 5.6].

Theorem 2 is an immediate corollary to Theorem 5.3.

Proof of Theorem 2. The inclusions (1.9) follow from [15, Theorem 4].

Let A be the gap of the set oy that contains 6_. Obviously, |A| > 2d, where
|A] is the length of A, and thus ||V| < d < /d(|A| —d). By Theorem 5.3, one
concludes that

|Ew(0”) ~Ealo)]| < sin( S arctanx (V)

with k(Vv) given by (5.6). Observing that for 0 < v< d

2vd

K(V) < Py tan <2arctan g)

completes the proof. O

Example 5.5. Let A be a self-adjoint operator on $) = C* defined by
A=diag{—b,—a,a,b}, O0<a<h.

Divide the spectrum of A into the two disjoint sets o = {—a,a} and oy =
{—=b,b}. Clearly, d=dist(o_,0) =b—a> 0. The interval A = (—b,b) appears
to be the gap of the set o} containing the set o_. The involution J = Ea(0y) —
Ea(o-) reads

J=diag{+1,—-1,-1,+1}.

Assume that V is a 4 x 4 matrix of the form

0 vi » O
vi 0 0 w
vo 0 0 wvi|’
0 w vi O

(5.23)

where v,V > 0. By inspection, V anticommutes with J and ||V|| =v1+Vo. The
involution J' = E| (R\A) — E| (A) is computed explicitly as soon as the eigenvec-
tors of the 4 x 4 matrix L = A+V are found. By the assumption that (5.3) holds,
that is, for ||[V||? < b?— a2, the explicit evaluation of the spectral angle of the
direct rotation U from J to J' results in

1 2a(v1 — Vo) + 2b||V||
d(U) = arCtan<b2—a2—|V||2+(vl—v2)2 .

2
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Taking into account that the value of vi — V5 for different matrices (5.23) with the
same norm ||V runs through the interval [—||V||,||V]|]], one easily verifies that
the maximal possible value Omax of 3(U) is equal to

1
Omax = EarctanK(HVH) (5.24)

with k(Vv) given by (5.6). In particular, if a= 0 then

Umax = arctan <|\d/—”> . (5.25)

Remark 5.6. Example 5.5 shows the following:
(i) Estimate (5.5) of Theorem 5.3 is sharp. This is proven by equality (5.24).

(il) Estimate (1.10) of Theorem 2 is also sharp. This is proven by equality
(5.25).
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