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Diverse N=(4, 4) Twisted Multiplets in N=(2, 2) Superspace

We describe four different types of the N=(4, 4) twisted supermultiplets in two-
dimensional N=(2, 2) superspace R(1,1|2,2). All these multiplets are presented by
a pair of chiral and twisted chiral superˇelds and differ in the transformation prop-
erties under an extra hidden N=(2, 2) supersymmetry. The sigma model N=(2, 2)
superˇeld Lagrangians for each type of the N=(4, 4) twisted supermultiplets are real
functions subjected to some differential constraints implied by the hidden supersym-
metry. We prove that the general sigma-model action, with all types of N=(4, 4)
twisted multiplets originally included, is reduced to a sum of sigma-model actions
for separate types. An interaction between the multiplets of different sorts is possible
only through the appropriate mass terms, and only for those multiplets which belong
to the same ®self-dual¯ pair.
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INTRODUCTION

An important class of 2D supersymmetric sigma models is constituted by
N=(2, 2) and N=(4, 4) supersymmetric models with torsionful bosonic target
manifolds and two independent mutually commuting left and right complex struc-
tures [1Ä6]. These models and, in particular, their group manifold WZNW rep-
resentatives can provide nontrivial backgrounds for 4D superstrings [7Ä9] and be
relevant to 2D black holes in stringy context [10,11]. Manifestly supersymmetric
formulations of N=(2, 2) models in terms of chiral and twisted chiral N=(2, 2)
superˇelds, as well as in terms of semi-chiral superˇelds, have been studied
in [2, 12Ä16]. For N=(4, 4) models with commuting structures there also exist
manifestly supersymmetric off-shell formulations in the projective [8, 10, 17, 18]
and ordinary [19, 20] N=(4, 4), 2D superspaces. The basic object of these for-
mulations is the N=(4, 4) twisted multiplet. In N=(2, 2), 2D superspace, the
latter amounts to a pair of chiral and twisted-chiral superˇelds.

On the other hand, an adequate framework for 4D theories with extended
supersymmetry, e.g., with N=2 one, is provided by the harmonic superspace
(HSS) approach [21, 22]. The N=(4, 4), 2D sigma models which can be ob-
tained via a direct dimensional reduction of N=2, 4D sigma models constitute
a subclass in a more general variety of N=(4, 4), 2D sigma models. Indeed,
their bosonic target manifolds are hyper-Kéahler or quaternionic-Kéahler, and so
are torsionless and exhibit only one set of complex structures. In order to de-
scribe 2D supersymmetric theories with torsion one needs a more general type
of the harmonic superspace as compared to that one which is of use in the 4D
case. This new type of harmonic superspace, the SU(2) × SU(2) bi-harmonic
superspace, has been constructed in our paper [23]. Its key feature is the pres-
ence of two independent sets of harmonic variables which are associated with two
mutually commuting automorphism SU(2) groups in the left and right light-cone
sectors. In [23] we showed how to describe one type of the N=(4, 4) twisted
supermultiplets in the SU(2)×SU(2) bi-harmonic superspace and wrote the most
general off-shell action of this multiplet as an integral over an analytic subspace
of the full superspace. This action corresponds to a general N=(4, 4) super-
symmetric sigma models with torsion and mutually commuting sets of left and
right complex structures∗. Later on, a more general class of off-shell torsionful
N=(4, 4) sigma-model actions with non-commuting left and right complex struc-

∗Some other off-shell N=(4, 4) multiplets and the conformal N=(4, 4) supergravity were
presented in the SU(2) × SU(2) HSS in Refs. [24] and [25], respectively.
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tures was constructed within the same SU(2) × SU(2) bi-harmonic superspace
approach [26,27].

In the most previous cases the general sigma-model actions with N=(4, 4)
supersymmetry were written for arbitrary number of twisted multiplets of one
ˇxed type, i.e., for those having the same transformation properties under the
SO(4)L ×SO(4)R automorphism group of N=(4, 4) , 2D Poincar�e superalgebra.
In N=(2, 2) superspace, this basically means that each pair of chiral and twisted-
chiral superˇelds one deals with has the same transformation properties under
the extra N=(2, 2) supersymmetry. On the other hand, as we shall explicitly
show in this paper, the extra supersymmetry can be realized in different ways on
different such pairs. As found in [28Ä30], in fact there are four essentially distinct
types of the twisted N=(4, 4) multiplets (up to additional twists related to space-
time parities [29, 31, 32]). The basic distinction between them, in the N=(4, 4)
superˇeld formulations, is the different realization of the above automorphism
group [29, 30]. One of the purposes of the present paper is to demonstrate that
it is a freedom in deˇning the extra N=(2, 2) supersymmetry transformations on
a pair of chiral and twisted chiral N=(2, 2) superˇelds, which is responsible for
this diversity of N=(4, 4) twisted multiplets from the N=(2, 2), 2D superspace
perspective.

In our previous paper [30], the description of four basic different types of
the N=(4, 4) twisted multiplets in the SU(2) × SU(2) bi-harmonic superspace
has been presented and general sigma-model actions for all of them have been
constructed. We also discussed the special case of the SU(2) × SU(2) group
manifold WZNW sigma model for one of these multiplets. We have shown that
the general sigma-model action of any pair of different multiplets is reduced to a
sum of sigma-model actions of separate multiplets.

In many aspects, the N=(2, 2) superspace formulations of N=(4, 4) super-
symmetric models are more transparent than the N=(4, 4) superspace ones. In
the present paper we give the description of different types of twisted multiplets
in the N=(2, 2), 2D superspace R(1,1|2,2). This N=(2, 2) superspace approach
is used to unravel some proofs and conclusions of Ref. [30].

In Sec. 1 we review how N=(4, 4) twisted multiplets are described in the
conventional N=(4, 4), 2D superspace R(1,1|4,4). Then, in Sec. 2, we reformu-
late the irreducibility conditions for these multiplets in N=(2, 2), 2D superspace
R(1,1|2,2) and show, keeping only one N=(2, 2) supersymmetry manifest, that
in all cases they are equivalent to the chirality and twisted chirality conditions
for the pair of constituent N=(2, 2) superˇelds. The difference between various
N=(4, 4) twisted multiplets proves to be attributed to a difference in the trans-
formation properties of these pairs with respect to the extra hidden N=(2, 2) su-
persymmetry. The actions for the twisted multiplets are constructed as N=(2, 2)
superspace integrals of some real functions of the constituent N=(2, 2) super-
ˇelds. These functions are subjected to the appropriate differential constraints
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implied by the hidden supersymmetry. In Sec. 3 we examine the N=(2, 2) su-
perspace actions of two types. The Lagrangians in these actions depend either on
the N=(4, 4) twisted multiplets belonging to a ®self-dual¯ pair, or on those from
different such pairs∗. We ˇnd that in both cases the sigma-model-type actions
are reduced to a sum of such actions for separate multiplets, and this property
extends to the cases when a larger number of non-equivalent twisted multiplets
is originally involved. This conˇrms the analogous result of Ref. [30] obtained
within the bi-harmonic N=(4, 4) superspace approach. We also show that the
only possibility to gain an interaction between different twisted multiplets is to
add N=(4, 4) supersymmetric potential (or mass) terms mixing up multiplets
from the same ®self-dual¯ pair. The multiplets from different such pairs cannot
interact at all, once again in the full agreement with Ref. [30]. Our results are
summarized in Conclusions.

1. TWISTED MULTIPLETS IN N=(4, 4), 2D SUPERSPACE

We begin by recapitulating some necessary facts about N=(4, 4), 2D su-
persymmetry, basically following our papers [23, 30]. In the light-cone parame-
trization, the standard real N=(4, 4), 2D superspace is deˇned as the set of the
light-cone coordinates

R(1,1|4,4) = (ZL , ZR) = ( z++, θ+i k, z−−, θ−a b ). (1.1)

Here +,− are light-cone indices and i, k, a, b are doublet indices of four com-
muting SU(2) groups which constitute the full automorphism group SO(4)L ×
SO(4)R of N=(4, 4), 2D Poincar�e superalgebra. The anticommutators of the
corresponding spinor derivatives read

{Di k , Dj l } = 2i εi j εk l ∂++, {Da b, Dc d } = 2i εa c εb d ∂−−, (1.2)

where

Di k =
∂

∂θi k
+ iθi k ∂++, Da b =

∂

∂θa b
+ iθa b ∂−−. (1.3)

We shall use both the quartet notation for spinor derivatives and the Grassmann
coordinates and their complex doublet form. To make the presentation more
concise, we omit the light-cone indices in the quartet notation. The precise

∗The deˇnition of ®dual¯ twisted multiplets is given in [20, 29] and [30] (see also the end of
Sec. 1 below).
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relation between these two notations is as follows:

(θ+i, θ̄+i) ≡ θi k, (θi k)† = εi l εk n θl n,

(θ−a, θ̄−a) ≡ θa b, (θa b)† = εa c εb d θc d,

(D+i, D̄+i) ≡ Di k, (Di k)† = −εi l εk n Dl n,

(D−a, D̄−a) ≡ Da b, (Da b)† = −εa c εb d Dc d.

(1.4)

Here the symbol † means the complex conjugation.
The torsionful N=(4, 4) supersymmetric sigma models can be formulated

either in terms of pairs of N=(2, 2) chiral and twisted chiral superˇelds, or via
the properly constrained N=(4, 4) superˇelds. Both superˇeld sets represent
off-shell twisted N=(4, 4) multiplets.

In N=(2, 2), 2D superspace these models are described by an action which is
an integral of some real potential [2,8,10] depending on several pairs of N=(2, 2)
chiral and twisted chiral superˇelds. This function satisˇes a set of differential
constraints which ensure the off-shell invariance of the action under an extra
N=(2, 2) supersymmetry. The latter mixes up chiral superˇelds with the twisted
chiral ones and, together with the manifest N=(2, 2) supersymmetry, constitute
the full N=(4, 4) supersymmetry.

On the other hand, in the superspace R(1,1|4,4) the same N=(4, 4) twisted
multiplet is described by a real quartet superˇeld subjected to the proper irre-
ducibility constraints [1,2,4,33]. These constraints reduce the full set of the ˇeld
components of this superˇeld to the off-shell ˇeld content (8 + 8) of the twisted
multiplet.

In the most previous studies, the general sigma-model actions with N=(4, 4)
supersymmetry, both in the R(1,1|2,2) [2] and R(1,1|4,4) [23] superspace ap-
proaches, were constructed in terms of only one kind of N=(4, 4) twisted mul-
tiplet. However, in fact there are a few types of these multiplets which differ
in the transformation properties of their component ˇelds with respect to the
full R-symmetry (or automorphism) group SO(4)L × SO(4)R of N=(4, 4) , 2D
Poincar�e superalgebra. This degeneracy of the twisted multiplets was ˇrst noticed
in [19,28,29].

Following Refs. [28,30], one can consider four types of twisted multiplets in
the superspace R(1,1|4,4), in accord with the four possibilities to pair the doublet
indices of various SU(2) factors of the left and right SO(4) subgroups in the full
SO(4)L × SO(4)R automorphism group

q̂ i a, q̂ i a, q̂ i a, q̂ i a. (1.5)

The reality properties of these multiplets in R(1,1|4,4) are deˇned by the rules

(q̂ i a)† = εi k εa b q̂ k b , (q̂ i a)† = εi k εa b q̂ k b,

(q̂ i a)† = εi k εa b q̂ k b, (q̂ i a)† = εi k εa b q̂ k b.
(1.6)
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The irreducibility constraints leaving just total of (8+8) independent components
in every such a superˇeld read as

D( k k q̂ i ) a = 0, D( b b q̂ i a ) = 0, (1.7)

D( k k q̂ i ) a = 0, Db ( b q̂ i a ) = 0, (1.8)

Dk ( k q̂ i ) a = 0, D( b b q̂ i a ) = 0, (1.9)

Dk ( k q̂ i ) a = 0, Db ( b q̂ i a ) = 0, (1.10)

where ( ) means the symmetrization in the appropriate indices. The natural
description of these twisted multiplets is achieved [23,30] in N=(4, 4), SU(2)×
SU(2) HSS with the double sets of harmonic variables. The corresponding
general off-shell sigma-model actions for each kind of these multiplets can be
written in the analytic bi-harmonic superspace [23, 30], which is a subspace of
the HSS just mentioned.

As shown in [30], in this analytic superspace one can generalize the sigma-
model actions of twisted multiplets of one given type to the cases when the
superˇeld Lagrangian bears a dependence on two or even more different species
of such a multiplet. The basic goal of the present paper is to rephrase these
results in terms of N=(2, 2) chiral and twisted chiral superˇelds, making them
more tractable and transparent.

To close this Section, let us recall the deˇnition of the ®self-dual¯ and
®non-self-dual¯ pairs of the multiplets from set (1.5). The ®self-dual¯ pairs are
comprised by those superˇelds which have no SU(2) doublet indices in common,
i.e., by (q̂ i a , q̂ i a) and (q̂ i a, q̂ i a). Their distinguishing feature is that the physical
bosonic ˇelds of one superˇeld within the given pair have the same SU(2) content
as the auxiliary ˇelds of the other. Any other pair is by deˇnition ®non-self-dual¯.

2. VARIOUS TWISTED MULTIPLETS IN N=(2, 2), 2D SUPERSPACE

In this Section we show how different types of N=(4, 4) twisted multiplets
can be described in the N=(2, 2), 2D superspace and how the difference between
them manifests itself in this N=(2, 2) superspace setting. We ˇnd that each
type is represented by a pair of chiral and twisted chiral N=(2, 2) superˇelds
having, however, different properties under the extra N=(2, 2) supersymmetry
transformations. Then we demonstrate that the general N=(4, 4) supersymmet-
ric sigma-model actions of separate multiplets can be constructed in N=(2, 2)
superspace as integrals of real functions subjected to some differential constraints.
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2.1. Supersymmetry Transformations and Constraints. Let us pass to the
equivalent notation for the R(1,1|4,4) Grassmann coordinates and spinor deriva-
tives (1.1), (1.4)

θ+i = (θ+, η+), θ̄+
i = (θ̄+, η̄+), θ−a = (θ−, ξ−), θ̄−a = (θ̄−, ξ̄−), (2.1)

D+i = (D+, d+), D̄i
+ = (D̄+, d̄+), D−a = (D−, d−), D̄a

− = (D̄−, d̄−). (2.2)

In what follows, the coordinates θ's and spinor derivatives D refer to the manifest
N=(2, 2) supersymmetry, while the coordinates η's, ξ's and the derivatives d to
the extra hidden N=(2, 2) one (see Appendix A for the precise relation between
the N=(4, 4) superspace covariant derivatives (1.4) and these N=(2, 2) ones).

The standard real N=(2, 2), 2D superspace R(1,1|2,2) is parametrized by the
following set of coordinates:

R(1,1|2,2) = (z++, θ+, θ̄+, z−−, θ−, θ̄−). (2.3)

Now we wish to see what the irreducibility conditions (1.7)Ä(1.10) look like
in the superspace R(1,1|2,2) . Keeping in mind the reality conditions (1.6) for
twisted multiplets in R(1,1|4,4), we introduce the following complex N=(4, 4)
superˇelds:

q̂ 1 1 = A, q̂ 1 2 = B, q̂ 2 1 = −B̄, q̂ 2 2 = Ā, (2.4)

q̂ 1 1 = a, q̂ 1 2 = b, q̂ 2 1 = −b̄, q̂ 2 2 = ā, (2.5)

q̂ 1 1 = A, q̂ 1 2 = B, q̂ 2 1 = −B̄, q̂ 2 2 = Ā, (2.6)

q̂ 1 1 = A, q̂ 1 2 = B, q̂ 2 1 = −B̄, q̂ 2 2 = Ā. (2.7)

Expanding these N=(4, 4) superˇelds with respect to the extra Grassmann co-
ordinates η±, ξ± (and their conjugates) and using constraints (1.7)Ä(1.10), one
ˇnds that only the ˇrst components of each N=(4, 4) superˇeld are independent
N=(2, 2) superˇelds deˇned on the superspace R(1,1|2,2). The N=(2, 2) coefˇ-
cients of the higher η, ξ monomials are expressed as spinor D derivatives of the
coefˇcients associated with the lower-order monomials. The leading lowest-order
components satisfy the chirality and the twisted chirality conditions in R(1,1|2,2).

Thus for the multiplet q̂ i a these conditions read (see Appendix A for the
analogous conditions for other types of twisted multiplets)

D̄+A = 0, D̄−A = 0, D̄+B = 0, D−B = 0,

D+Ā = 0, D−Ā = 0, D+B̄ = 0, D̄−B̄ = 0.
(2.8)

Here

A = A|η=ξ=0 , Ā = Ā
∣∣
η=ξ=0

, B = B|η=ξ=0 , B̄ = B̄
∣∣
η=ξ=0

. (2.9)
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To see how the difference between non-equivalent N=(4, 4) twisted multi-
plets manifests itself in this approach, let us explicitly quote the extra Grassmann
coordinate expansions for those N=(4, 4) superˇelds which have as the ˇrst
component the N=(2, 2) chiral ˇeld

(i) A = A − η̄+D̄+B̄ + ξ̄−D̄−B + ..., A = a + η+D̄+b̄ − ξ−D̄−b + ...,

(ii) a = a − η̄+D̄+b̄ − ξ−D̄−b + ..., A = α + η+D̄+β̄ + ξ̄−D̄−β + ...,

A = A|η=ξ=0 , a = a|η=ξ=0 , α = A|η=ξ=0 , a = A|η=ξ=0 . (2.10)

In the superspace R(1,1|4,4) the supersymmetry transformation of the N=(4, 4)
superˇeld Φ are generated by differential operators Q the explicit form of which
is given in (A.9)

δΦ = i
(
ε+kQ+k − ε̄+

k Q̄k
+ + ε−aQ−a − ε̄−

a Q̄a
−

)
Φ. (2.11)

When we reduce the superspace R(1,1|4,4) to its subspace R(1,1|2,2) , half of su-
persymmetries become non-manifest and their transformations explicitly involve
spinor derivatives. These extra supersymmetries mix different N=(2, 2) super-
ˇelds which are the ˇrst components of the N=(4, 4) superˇelds deˇned in
Eqs. (2.9), (A.10)Ä(A.12).

Substituting the expansions, such as (2.10), for each N=(4, 4) superˇeld
into the transformation law (2.11) and singling out the subset with k = a = 2
there (the corresponding generators and inˇnitesimal parameters are associated
just with the hidden N=(2, 2) supersymmetry), one ˇnds the extra N=(2, 2)
supersymmetry transformation laws of the ˇrst components of these superˇelds

δA = ε̄+D̄+B̄ − ε̄−D̄−B, δa = −ε+D̄+b̄ + ε−D̄−b,

δĀ = −ε+D+B + ε−D−B̄, δā = ε̄+D+b − ε̄−D−b̄,

δB = −ε̄+D̄+Ā − ε−D−A, δb = ε+D̄+ā + ε̄−D−a,

δB̄ = ε+D+A + ε̄−D̄−Ā, δb̄ = −ε̄+D+a − ε−D̄−ā, (2.12)

δa = ε̄+D̄+b̄ + ε−D̄−b, δα = −ε+D̄+β̄ − ε̄−D̄−β,

δā = −ε+D+b − ε̄−D−b̄, δᾱ = ε̄+D+β + ε−D−β̄,

δb = −ε̄+D̄+ā + ε̄−D−a, δβ = ε+D̄+ᾱ − ε−D−α,

δb̄ = ε+D+a − ε−D̄−ā, δβ̄ = −ε̄+D+α + ε̄−D̄−ᾱ. (2.13)

In (2.12) and (2.13) we collected, respectively, the transformation laws of N=(2, 2)
superˇelds belonging to the ®self-dual¯ pairs of the N=(4, 4) twisted multiplets,
i.e., (q̂ i a, q̂ i a) and (q̂ i a, q̂ i a).
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Looking at the sets of transformation laws (2.12) and (2.13), we come to
the conclusion that the only difference in the description of various N=(4, 4)
twisted multiplets in the superspace R(1,1|2,2) lies in the transformation laws of
their chiral and twisted chiral N=(2, 2) constituents under the extra N=(2, 2)
supersymmetry. These laws are speciˇc for each multiplet.

Thus, in the superspace R(1,1|2,2), each type of the N=(4, 4) twisted mul-
tiplets is represented by a pair of chiral and twisted chiral N=(2, 2) superˇelds.
Despite this common feature, the extra N=(2, 2) supersymmetry is realized dif-
ferently on the N=(2, 2) superˇelds from non-equivalent twisted multiplets. For
N=(2, 2) superˇelds of one kind (chiral or twisted chiral) belonging to different
N=(4, 4) twisted multiplets one cannot simultaneously bring the hidden N=(2, 2)
supersymmetry transformation laws into the same form by any redeˇnition of the
transformation parameters and/or involved superˇelds.

Note that the full automorphism group SO(4)L × SO(4)R of the N=(4, 4),
2D Poincar�e superalgebra has different realizations on diverse N=(4, 4) twisted
multiplets in the N=(2, 2), 2D superspace formulation, precisely as in the
N=(4, 4) superspace one. However, only an U(1)L × U(1)R subgroup of this
automorphism group is manifest in the N=(2, 2) setting. So it is the difference
in the realizations of hidden N=(2, 2) supersymmetry which is the basic distin-
guishing feature of non-equivalent twisted multiplets in the N=(2, 2) superˇeld
description.

2.2. Action for q̂ i a Multiplet. The general action of k chiral superˇelds Ck

and n twisted chiral superˇelds T n can be written in R(1,1|2,2) as an integral of
some real function K

S(2,2) =
∫

µ K(Ck, C̄k, T n, T̄ n), (2.14)

where

µ = d2xd2θ+ d2θ− = d2xdθ+ dθ̄+ dθ− dθ̄− (2.15)

is the integration measure. The superpotential K is deˇned modulo a generalized
Kéahler transformation

δK = f (Ck, T n) + g (Ck, T̄ n) + f̄ (C̄k, T̄ n) + ḡ (C̄k, T n). (2.16)

When this action describes a theory with only N=(2, 2) supersymmetry, the
numbers of chiral and twisted chiral superˇelds are not obliged to coincide,
k �= n. One can also add, without introducing any central charges, scalar potential
interaction terms to Eq. (2.14), which involve two holomorphic functions P1(Ck)
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and P2(T n)

S pot
(2,2) = i m

∫
µ

{
(θ̄+θ̄−)P1 (Ck) + (θ+θ−)P̄1 (C̄k)+

+ (θ̄+θ−)P2 (T n) + (θ+θ̄−)P̄2 (T̄ n)
}

. (2.17)

Despite the presence of explicit θ's, these terms are invariant under the manifest
N=(2, 2) supertranslations as a consequence of the chirality and twisted-chirality
constraints for the corresponding superˇelds. After elimination of the auxiliary
ˇelds in the sum of actions (2.14) and (2.17), the resulting component actions
acquire some scalar potentials of physical bosonic ˇelds.

Let us ˇrstly assume that the chiral C (antichiral C̄ ) and twisted chiral T
(twisted antichiral T̄ ) superˇelds comprise one kind of N=(4, 4) twisted multi-
plet. Then, requiring action (2.14) to possess an extra N=(2, 2) supersymmetry
implies, ˇrst, that the numbers of chiral and twisted chiral superˇelds must co-
incide, k = n, and, second, gives rise to some differential constraints on the
function K . These constraints read [2]

∂2K

∂Cl∂C̄k
− ∂2K

∂Ck∂C̄l
= 0,

∂2K

∂T l∂T̄ k
− ∂2K

∂T k∂T̄ l
= 0, (2.18)

∂2K

∂C( k∂C̄l )
+

∂2K

∂T ( l∂T̄ k )
= 0. (2.19)

In particular, if the potential K involves only one chiral and one twisted chiral
multiplet (m = 1), the set of constraints (2.18), (2.19) amounts to the single
four-dimensional Laplace equation

∂2K

∂C∂C̄
+

∂2K

∂T∂T̄
= 0. (2.20)

Thus for any real K obeying (2.18), (2.19) the action

S(4,4) =
∫

µ K(Cm, C̄m, T m, T̄ m) (2.21)

is N = (4, 4) supersymmetric.
It can be also checked that, for the potential (or mass) terms (2.17) to

preserve N=(4, 4) supersymmetry, the functions P1, P2 should be linear in the
corresponding superˇelds

S m
(4,4) = i m

∫
µ

{
(θ̄+θ̄−)C + (θ+θ−) C̄ + (θ̄+θ−)T + (θ+θ̄−) T̄

}
. (2.22)

Although in the component form action (2.22) contains only terms linear in the
auxiliary ˇelds, the elimination of the latter in the full action including also a
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sigma-model part can give rise to non-trivial scalar potentials of physical bosonic
ˇelds (provided that the target space bosonic metric is non-trivial) [1, 4, 19,23].

This consideration can be extended to any other type of N=(4, 4) twisted
multiplet. If the action bears dependence only on those chiral and twisted chiral
N=(2, 2) superˇelds which comprise the same type of N=(4, 4) twisted multi-
plets, the extra N=(2, 2) supersymmetry differential constraints for the relevant
potential K have the same form (2.18), (2.19), whatever the twisted multiplet is.
The structure of the off-shell potential terms in this case is also uniquely ˇxed by
the requirement of extra N=(2, 2) supersymmetry. They are given by a sum of
actions (2.22).

3. ACTIONS FOR A PAIR OF TWISTED MULTIPLETS

3.1. Preface: the Free Actions. In the previous Section we have found
that the chiral and twisted chiral superˇelds forming one or another type of
the N=(4, 4) twisted multiplet have different transformation properties under
the hidden N=(2, 2) supersymmetry. Now we are going to construct, in the
superspace R(1,1|2,2), the supersymmetric sigma-model actions of two types, with
the dependence on either a ®non-self-dual¯ or ®self-dual¯ pair of the N=(4, 4)
twisted multiplets. We will show that in both cases the corresponding sigma-
model actions are reduced to a sum of sigma-model actions for the separate
twisted multiplets. The results presented below are in full agreement with those
obtained in Ref. [30] within the harmonic superspace approach.

Before turning to the general case, let us recall the HSS description of two
instructive examples of the action with two twisted multiplets, viz. the actions
which are bilinear in the corresponding superˇelds [30]. The ˇrst option is the
general quadratic actions depending only on one kind of the twisted multiplet
and �a priori including some harmonic constants. Requiring it to be N=(4, 4)
supersymmetric leads to the conditions on these constants and, as a result, the
corresponding actions are reduced to the relevant free actions. In the second
case, the bilinear actions involve different sorts of the twisted multiplets. The
inspection of such actions in HSS [30] leads to the conclusion that the requirement
of invariance under the N=(4, 4) supersymmetry implies them to vanish.

These results can be easily reproduced in the R(1,1|2,2) superspace formalism
in terms of chiral and twisted chiral superˇelds. It is easy to show that the
bilinear sigma-model action which contains chiral and twisted chiral superˇelds
comprising one sort of the twisted N=(4, 4) multiplet,

Sfree
(4,4) =

∫
µ (CmC̄m − T mT̄ m), (3.1)
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is equivalent to the N=(4, 4) supersymmetric free actions of such twisted multi-
plets, while the R(1,1|2,2) actions constructed bilinear in chiral and twisted chiral
superˇelds from different types of the N=(4, 4) twisted multiplets are vanishing
as a consequence of extra N=(2, 2) supersymmetry. Note, that the relative sign
between two terms in (3.1) is uniquely ˇxed by hidden N=(2, 2) supersymmetry
(the component Lagrangian is positive-deˇnite despite this sign minus in (3.1)).

Below we shall repeat in R(1,1|2,2) our general analysis of sigma-model ac-
tions for both the ®non-self-dual¯ and ®self-dual¯ pairs of twisted multiplets [30].
The unique form of free action (3.1) and the property that the actions bilinear in
the N=(2, 2) superˇelds from different kinds of N=(4, 4) twisted multiplets are
vanishing will follow from this general analysis.

3.2. Action for Non-Dual Twisted Multiplets. We start from the action for
the multiplets q̂ i a and q̂ i a belonging to different ®self-dual¯ pairs. It is given as
an integral of some real function K over the superspace R(1,1|2,2)

S(4,4) =
∫

µ K(A, Ā, B, B̄, a, ā, b, b̄). (3.2)

Since K is a function of N=(2, 2) superˇelds, action (3.2) is evidently invariant
under the manifest N=(2, 2) supersymmetry. It is also invariant under generalized
Kéahler gauge transformations

δK = f (A, B, a, b) + g (A, B̄, a, b̄) + f̄ (Ā, B̄, ā, b̄) + ḡ (Ā, B, ā, b). (3.3)

Using the chirality and twisted chirality conditions for the involved superˇelds
and the deˇnition of the integration measure on the superspace R(1,1|2,2), it is
easy to show that the gauge functions in (3.3) indeed do not contribute into the
N=(2, 2) superˇeld action.

We require this action to admit an extra N=(2, 2) supersymmetry which is
realized on superˇelds according to Eqs. (2.12), (2.13). This requirement amounts
to some additional constraints on K . The general condition of the invariance of
action (3.2) under these transformations is as follows:

δS(4,4) =
∫

µ
{

ε+D+F − ε̄+D̄+F̄ + ε+D̄+G − ε̄+D+Ḡ

+ ε−D−H − ε̄−D̄−H̄ + ε−D̄−P − ε̄−D−P̄
}
, (3.4)

where, for the moment, the functions in the r.h.s. are arbitrary. Explicitly
computing the variation δS(4,4) and comparing both parts of (3.4), as the result
of equating the coefˇcients before independent inˇnitesimal parameters we obtain

ε+ ⇒ ∂K

∂B̄
=

∂F

∂A
,

∂K

∂Ā
= −∂F

∂B
,

∂K

∂b̄
=

∂F

∂a
,

∂K

∂ā
= −∂F

∂b
,

ε̄+ ⇒ ∂K

∂B
=

∂F̄

∂Ā
,

∂K

∂A
= −∂F̄

∂B̄
,

∂K

∂b
=

∂F̄

∂ā
,

∂K

∂a
= −∂F̄

∂b̄
, (3.5)
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ε− ⇒ ∂K

∂B
= −∂H

∂A
,

∂K

∂Ā
=

∂H

∂B̄
,

∂K

∂b̄
= −∂P

∂ā
,

∂K

∂a
=

∂P

∂b
,

ε̄− ⇒ ∂K

∂B̄
= −∂H̄

∂Ā
,

∂K

∂A
=

∂H̄

∂B
,

∂K

∂b
= −∂P̄

∂a
,

∂K

∂ā
=

∂P̄

∂b̄
. (3.6)

Along with these constraints, we ˇnd that the functions in the r.h.s. of (3.4)
should obey the additional analyticity-type conditions

ε+ ⇒ G = 0, ε̄+ ⇒ Ḡ = 0, (3.7)

ε− ⇒ ∂H

∂a
= 0,

∂H

∂b̄
= 0,

∂P

∂Ā
= 0,

∂P

∂B
= 0,

ε̄− ⇒ ∂H̄

∂ā
= 0,

∂H̄

∂b
= 0,

∂P̄

∂A
= 0,

∂P̄

∂B̄
= 0. (3.8)

The integrability conditions for K following from constraints (3.5) read

∂2K

∂A∂Ā
+

∂2K

∂B∂B̄
= 0,

∂2K

∂a∂ā
+

∂2K

∂b∂b̄
= 0,

∂2K

∂a∂B̄
− ∂2K

∂b̄∂A
= 0,

∂2K

∂ā∂B
− ∂2K

∂b∂Ā
= 0,

∂2K

∂a∂Ā
+

∂2K

∂b̄∂B
= 0,

∂2K

∂ā∂A
+

∂2K

∂b∂B̄
= 0. (3.9)

Analogously, from Eqs. (3.6), (3.8) one ˇnds further constraints on K

∂2K

∂a∂B
= 0,

∂2K

∂b̄∂B
= 0,

∂2K

∂a∂Ā
= 0,

∂2K

∂b̄∂Ā
= 0,

∂2K

∂ā∂B̄
= 0,

∂2K

∂b∂B̄
= 0,

∂2K

∂ā∂A
= 0,

∂2K

∂b∂A
= 0 (3.10)

and, in addition, the same two Laplace equations as in the ˇrst line of (3.9).
To ˇnd a solution to these constraints, it is convenient to introduce doublets

of N=(2, 2) superˇelds as follows:

aα = (a, b̄), Aα = (Ā, B), āα = (ā, b), Āα = (A, B̄), (3.11)

where α, β = 1, 2. With this new notation the set of Eqs. (3.9), (3.10) takes the
more concise form

∂2K

∂A∂Ā
+

∂2K

∂B∂B̄
= 0,

∂2K

∂a∂ā
+

∂2K

∂b∂b̄
= 0, (3.12)

∂2K

∂aα∂Aβ
= 0,

∂2K

∂āα∂Āβ
= 0, (3.13)

εα β ∂2K

∂aα∂Āβ
= 0, εα β ∂2K

∂āα∂Aβ
= 0. (3.14)
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The solution of Eqs. (3.13), (3.14) is as follows (see Appendix B for details):

K(Aα, Āα, aα, āα) = T (Aα, Āα) + h(aα, āα). (3.15)

In addition, each term in the r.h.s. of (3.15) obeys its own four-dimensional
Laplace equation, so constraints (3.12) are also satisˇed.

3.3. Action for Dual Twisted Multiplets. In the general case the ®test¯ action
of multiplets q̂ i a and q̂ i a can be written in the superspace R(1,1|2,2) as

S(4,4) =
∫

µ K(a, ā, b, b̄, α, ᾱ, β, β̄). (3.16)

Action (3.16) is invariant under both manifest N=(2, 2) supersymmetry and
generalized Kéahler gauge transformations

δK = f (a, b, α, β) + g (a, b̄, α, β̄) + f̄ (ā, b̄, ᾱ, β̄) + ḡ (ā, b, ᾱ, β). (3.17)

As in the previous case, the requirement that this action possesses an extra
N=(2, 2) supersymmetry leads to some differential constraints on the function
K . To ˇnd them we exploit the general invariance condition (3.4) (denoting
the relevant functions by the same letters) and the superˇeld transformation laws
(2.13). The resulting constraints are:

ε+ ⇒ ∂K

∂b̄
=

∂F

∂a
,

∂K

∂ā
= −∂F

∂b
,

∂K

∂β
=

∂G

∂ᾱ
,

∂K

∂α
= −∂G

∂β̄
,

ε̄+ ⇒ ∂K

∂b
=

∂F̄

∂ā
,

∂K

∂a
= −∂F̄

∂b̄
,

∂K

∂β̄
=

∂Ḡ

∂α
,

∂K

∂ᾱ
= −∂Ḡ

∂β
,

ε− ⇒ ∂K

∂b̄
= −∂P

∂ā
,

∂K

∂a
=

∂P

∂b
,

∂K

∂β
= −∂H

∂α
,

∂K

∂ᾱ
=

∂H

∂β̄
,

ε̄− ⇒ ∂K

∂b
= −∂P̄

∂a
,

∂K

∂ā
=

∂P̄

∂b̄
,

∂K

∂β̄
= −∂H̄

∂ᾱ
,

∂K

∂α
=

∂H̄

∂β
. (3.18)

In addition to these equations, there arise analyticity-type conditions for the func-
tions in the r.h.s. of Eq. (3.4)

ε+ ⇒ ∂G

∂ā
= 0,

∂G

∂b̄
= 0,

∂F

∂α
= 0,

∂F

∂β
= 0,

ε̄+ ⇒ ∂Ḡ

∂a
= 0,

∂Ḡ

∂b
= 0,

∂F̄

∂ᾱ
= 0,

∂F̄

∂β̄
= 0,

ε− ⇒ ∂H

∂a
= 0,

∂H

∂b̄
= 0,

∂P

∂ᾱ
= 0,

∂P

∂β
= 0,

ε̄− ⇒ ∂H̄

∂ā
= 0,

∂H̄

∂b
= 0,

∂P̄

∂α
= 0,

∂P̄

∂β̄
= 0. (3.19)
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From Eqs. (3.18) , (3.19) one ˇnds that the potential K satisˇes the following
integrability conditions:

∂2K

∂ā∂β
= 0,

∂2K

∂b̄∂β
= 0,

∂2K

∂ā∂α
= 0,

∂2K

∂b̄∂α
= 0,

∂2K

∂a∂β̄
= 0,

∂2K

∂b∂β̄
= 0,

∂2K

∂a∂ᾱ
= 0,

∂2K

∂b∂ᾱ
= 0,

∂2K

∂a∂β
= 0,

∂2K

∂b̄∂ᾱ
= 0,

∂2K

∂ā∂β̄
= 0,

∂2K

∂b∂α
= 0. (3.20)

Besides this, the potential K should also obey two independent Laplace equations

∂2K

∂a∂ā
+

∂2K

∂b∂b̄
= 0,

∂2K

∂α∂ᾱ
+

∂2K

∂β∂β̄
= 0. (3.21)

Introducing the doublet notation for superˇelds like in the previous case

aα = (a, b̄), Γα = (ᾱ, β), āα = (ā, b), Γ̄α = (α, β̄), (3.22)

we cast set (3.20) in the following compact form:

∂2K

∂aα∂Γβ
= 0,

∂2K

∂āα∂Γ̄β
= 0, (3.23)

εα β ∂2K

∂aα∂Γ̄β
= 0, εα β ∂2K

∂āα∂Γβ
= 0 (3.24)

(no summation over repeating indices). Equations (3.21), (3.23), (3.24) form the
full set of differential constraints on the function K . The solution of Eqs. (3.23),
(3.24) shows up the same separation as in the previous case (i.e., for a pair of
non-dual N=(4, 4) twisted multiplets)

K(aα, āα, Γα, Γ̄α) = T (Γα, Γ̄α) + h(aα, āα). (3.25)

Then Eqs. (3.21) imply that T and h should satisfy their own Laplace equations.
Thus we have demonstrated that the general sigma-model actions of both

®self-dual¯ and ®non-self-dual¯ pairs of the twisted N=(4, 4) multiplets are re-
duced to the proper sums of N=(4, 4) supersymmetric actions of single multi-
plets. In other words, each action in a sum involves only those N=(2, 2) chiral
and twisted chiral superˇelds which belong to one N=(4, 4) twisted multiplet.
From these results it follows that chiral and twisted chiral N=(2, 2) superˇelds
belonging to different N=(4, 4) twisted multiplets and hence having different
transformation properties under the hidden N=(2, 2) supersymmetry cannot in-
teract with each other via the sigma-model-type actions.
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Our N=(2, 2) superspace analysis conˇrms the results obtained for dif-
ferent types of N=(4, 4) twisted multiplets in the biÄharmonic superspace ap-
proach [30] . In that paper the separation property was proved for the actions
depending on arbitrary number of N=(4, 4) twisted multiplets of various kind.
The above analysis can be also extended to this general case, with the same
ultimate conclusions.

3.4. Potential Terms. In Sec. 2, on the example of the twisted multiplets
q̂i a, we showed how to construct N=(4, 4) supersymmetric potential (or mass)
terms for such multiplets in the superspace R(1,1|2,2). In our previous paper [30]
we found that for the N=(4, 4) twisted multiplets belonging to a ®self-dual¯ pair
one can write invariant mixed mass terms. These terms are in fact of the same
form as those given in [1, 4, 19,20].

The results of Ref. [30] can be easily reformulated in terms of the N=(2, 2)
chiral and twisted chiral superˇelds. Indeed, for a ®self-dual¯ pair of the twisted
multiplets, e.g., q̂ i a and q̂ i a , the corresponding ®test¯ potential term bilinear in
superˇelds can be written as

S M
(4,4) = i M

∫
µ

{
l (θ+θ−) ᾱ ā+k (θ̄+θ̄−)α a+n (θ+θ̄−) β̄ b̄+p (θ̄+θ−)β b

}
,

(3.26)
while for the case of ®non-self-dual¯ pair, e.g., q̂i a and q̂i a, it has the following
form:

S M̃
(4,4)=iM̃

∫
µ
{

l′ (θ+θ−) ā Ā+k′ (θ̄+θ̄−) a A+n′ (θ+θ̄−) b̄ B̄+p′ (θ̄+θ−) b B
}
.

(3.27)
In Eqs. (3.26), (3.27), l, l′ etc. are some numerical coefˇcients unspeciˇed for
the moment. These coefˇcients have the same meaning as the harmonic constants
C p,q with the U(1) × U(1) charges p and q introduced in [30]. Computing the
variation of action (3.26) with respect to the extra N=(2, 2) supersymmetry, it is
easy to ˇnd that (3.26) is invariant provided that these constants are equal

l = k = n = p . (3.28)

At the same time, requiring potential action (3.27) of non-dual multiplets to be
invariant under this extra N=(2, 2) supersymmetry implies the relevant constants
to identically vanish

l′ = k′ = n′ = p′ = 0, (3.29)

which forbids mixed mass terms for such a pair. Analogous results were obtained
in [30], where the harmonic constants in the ®probe¯ potential terms for a pair of
non-self-dual twisted multiplets were found to vanish as the result of imposing the
requirement of N=(4, 4) supersymmetry, whereas in the mass terms for a ®self-
dual¯ pair of the twisted multiplets these constants proved to be non-vanishing,
with properly constrained dependence on harmonics.
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Note that the most general N=(4, 4) supersymmetric off-shell potential term
is a sum of mixed terms (3.26) with condition (3.28) and linear terms (2.22) (for
each twisted multiplet involved). A net effect of eliminating the auxiliary ˇelds in
the full component action is the generation of some potential and mass terms for
the physical bosonic ˇelds [30] (plus some Yukawa-type couplings of physical
fermions).

CONCLUSIONS

In this paper we presented the description of four different types of N=(4, 4)
twisted multiplets in N=(2, 2), 2D superspace R(1,1|2,2). We showed that each
type amounts off-shell to a pair of chiral and twisted chiral N=(2, 2) superˇelds,
with essentially different transformation properties under the extra N=(2, 2) su-
persymmetry which completes the manifest one to the entire N=(4, 4) super-
symmetry. The general off-shell sigma-model action for the N=(4, 4) twisted
multiplet of any ˇxed kind can be written as an R(1,1|2,2) integral of real func-
tions K which depend on the relevant pairs of the N=(2, 2) superˇelds and are
subjected to some differential constraints. These constraints have the same form
for every type of the twisted multiplet and ensure the corresponding sigma-model
actions to exhibit N=(4, 4) supersymmetry. We also showed how the require-
ment of extra N=(2, 2) supersymmetry constrains the potential (or mass) terms
P1, P2.

We demonstrated that in more general cases, when the superpotential K
depends on N=(2, 2) chiral and twisted chiral superˇelds belonging to differ-
ent N=(4, 4) twisted multiplets, the extra N=(2, 2) supersymmetry requires the
general sigma-model action to split into to a sum of sigma-model actions for
separate multiplets. The only possibility to arrange mutual interactions of the
twisted multiplets of different types is via the appropriate invariant mixed mass
terms. The latter are bilinear in the chiral and twisted chiral superˇelds belonging
to a ®self-dual¯ pair of the N=(4, 4) twisted multiplets. The multiplets from
different such pairs can interact with each other neither via sigma-model actions
nor via mass terms.

To summarize, the analysis performed in the present paper in the standard
N=(2, 2), 2D superˇeld formalism revealed a full agreement with that one given
in Ref. [30] for different types of N=(4, 4) twisted multiplets within the bi-
harmonic SU(2) × SU(2) superspace approach. The N=(2, 2), 2D superˇeld
description of all types of N=(4, 4) twisted multiplets developed here can ˇnd
applications in many physical and geometric problems to which these multiplets
are relevant.
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APPENDIX A
N=(2, 2), 2D SPINOR DERIVATIVES AND CONSTRAINTS

Here we give some details of our notations for spinor derivatives. Starting
from the quartet notation, one can deˇne two different types of covariant deriva-
tives in the left and right light-cone coordinate sectors, such that they are doublets
with respect to different automorphism groups SU(2) (these groups form, respec-
tively, SO(4)L and SO(4)R )

Di k = (Di 1, Di 2) ≡ (D+i, D̄+i)
= (D1 k , D2 k) ≡ (D+k, D̄+k), (A.1)

Da b = (Da 1, Da 2) ≡ (D−a, D̄−a)
= (D1 b, D2 b) ≡ (D−b, D̄−b). (A.2)

The N=(2, 2) spinor derivatives D and d which correspond to the manifest and
hidden supersymmetry, respectively, are deˇned by

D+i = (D+, d+) = Di 1, D̄i
+ = (D̄+, d̄+) = εi k D̄+k = εi k Dk 2, (A.3)

D−a = (D−, d−) = Da 1, D̄a
− = (D̄−, d̄−) = εa b D̄−b = εa b Db 2. (A.4)

The relations between the N=(2, 2) spinor derivatives D, d and the SU(2)-
doublet ones with the underlined indices deˇned in the second lines of (A.1),
(A.2) are as follows:

D+k = D1 k = (D+, d̄+), D̄
i
+ = εi k D̄k = (D̄+, d+), (A.5)

D−b = D1 b = (D−, d̄−), D̄
a
− = εa b D̄b = (D̄−, d−). (A.6)

The explicit form of the covariant spinor derivatives as differential operators in
the left sector of R(1,1|4,4) and R(1,1|2,2) is

D+i =
∂

∂θ+i
+ iθ̄+

i ∂++, D̄i
+ = − ∂

∂θ̄+
i

− iθ+i∂++,

D+ =
∂

∂θ+
+ iθ̄+∂++, D̄+ = − ∂

∂θ̄+
− iθ+∂++,

d+ =
∂

∂η+
+ iη̄+ ∂++, d̄+ = − ∂

∂η̄+
− iη+ ∂++. (A.7)
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The analogous expressions in the right sector are

D−a =
∂

∂θ−a
+ iθ̄−a ∂−−, D̄a

− = − ∂

∂θ̄−a
− iθ−a∂−−,

D− =
∂

∂θ−
+ iθ̄−∂−−, D̄− = − ∂

∂θ̄−
− iθ−∂−−,

d− =
∂

∂ξ−
+ iξ̄−∂−−, d̄− = − ∂

∂ξ̄−
− iξ−∂−−. (A.8)

The N=(4, 4) supersymmetry generators in R(1,1|4,4) read

Q+i = i
∂

∂θ+i
+ θ̄+

i ∂++, Q̄i
+ = −i

∂

∂θ̄+
i

− θ+i ∂++,

Q−a = i
∂

∂θ−a
+ θ̄−a ∂−−, Q̄a

− = −i
∂

∂θ̄−a
− θ−a ∂−−. (A.9)

We denote the ˇrst components of the expansions of N=(4, 4) superˇelds in
(2.5)Ä(2.7) with respect to the extra Grassmann coordinates η's and ξ's as

a|η=ξ=0 = a, ā|η=ξ=0 = ā, b|η=ξ=0 = b, b̄
∣∣
η=ξ=0

= b̄, (A.10)

A|η=ξ=0 = α, Ā
∣∣
η=ξ=0

= ᾱ, B|η=ξ=0 = β, B̄
∣∣
η=ξ=0

= β̄, (A.11)

A|η=ξ=0 = a, Ā
∣∣
η=ξ=0

= ā, B|η=ξ=0 = b, B̄
∣∣
η=ξ=0

= b̄. (A.12)

In the superspace R(1,1|2,2), these N=(2, 2) superˇelds are subjected to the
following chirality and twisted chirality conditions:

D̄+a = 0, D̄−a = 0, D̄+b = 0, D−b = 0,

D+ā = 0, D−ā = 0, D+b̄ = 0, D̄−b̄ = 0, (A.13)

D̄+α = 0, D̄−α = 0, D̄+β = 0, D−β = 0,

D+ᾱ = 0, D−ᾱ = 0, D+β̄ = 0, D̄−β̄ = 0, (A.14)

D̄+a = 0, D̄−a = 0, D̄+b = 0, D−b = 0,

D+ā = 0, D−ā = 0, D+b̄ = 0, D̄−b̄ = 0. (A.15)

These conditions directly follow from the deˇning N=(4, 4) constraints (1.7)Ä
(1.10).
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APPENDIX B
SOLVING CONSTRAINTS FOR K

Here we deduce the explicit solution of the constraints on the superpotential
K which involves N=(4, 4) twisted multiplets of two different types belonging
to a ®non-self-dual¯ pair. These constraints are given by Eqs. (3.13), (3.14):

∂2K

∂aα∂Aβ
= 0,

∂2K

∂āα∂Āβ
= 0. (B.1)

The doublet notation was explained in (3.11).
As a ˇrst step, we partly solve (B.1) by introducing the complex quantity

Fβ (āα, Aα, Āα) ≡ ∂K

∂Aβ
, F̄β (aα, Aα, Āα) ≡ ∂K

∂Āβ
. (B.2)

From the deˇnition of Fα and F̄α one derives the integrability conditions

∂Fα

∂Āβ
− ∂F̄β

∂Aα
= 0. (B.3)

Acting on this equation by the operator
∂

∂aρ
and again using (B.2), one obtains

∂2F̄β

∂Aα∂aρ
= 0, (B.4)

which implies
∂F̄α

∂Aβ
= Gαβ (Aρ, Āρ). (B.5)

Analogously, for Fα we ˇnd

∂Fα

∂Āβ
= Ḡαβ (Aρ, Āρ). (B.6)

Integrating Eqs. (B.5) and (B.6), we ˇnd the following general solution for Fα

and F̄α:

Fα (āβ , Aβ , Āβ) = fα (Aβ , Āβ) + Ḡα (Aβ , āβ),
F̄α (aβ , Aβ , Āβ) = f̄α (Aβ , Āβ) + Gα (Āβ , aβ). (B.7)

Substituting this into (B.3), one ˇnds

∂fα

∂Āβ
− ∂f̄β

∂Aα
= 0. (B.8)
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The solution of the last equation can be easily found

fα =
∂

∂Aα
T (Aβ, Āβ), f̄α =

∂

∂Āα
T (Aβ , Āβ). (B.9)

Then from Eqs. (B.2), (B.7), (B.9) one derives

∂K

∂Aα
= Fα (āβ , Aβ , Āβ) = Ḡα (Aβ , āβ) +

∂

∂Aα
T (Aβ, Āβ),

∂K

∂Āα
= F̄α (aβ , Aβ , Āβ) = Gα (Āβ , aβ) +

∂

∂Āα
T (Aβ, Āβ), (B.10)

or

Ḡα (Aβ , āβ) =
∂

∂Aα

{
K − T

}
, Gα (Āβ , aβ) =

∂

∂Āα

{
K − T

}
. (B.11)

These relations imply the integrability conditions

∂Ḡα

∂Aβ
− ∂Ḡβ

∂Aα
= 0,

∂Gα

∂Āβ
− ∂Gβ

∂Āα
= 0, (B.12)

which, in turn, give that

Ḡα =
∂

∂Aα
G(Aβ , āβ), Gα =

∂

∂Āα
Ḡ(Āβ , aβ). (B.13)

Substituting (B.13) into (B.11) leads to the set of equations

∂

∂Aα

{
K−T −G(Aβ , āβ)

}
= 0,

∂

∂Āα

{
K−T − Ḡ(Āβ , aβ)

}
= 0, (B.14)

which can be easily solved as

(i) K − T = G(Aα, āα) + Ω(Āα, aα, āα),
(ii) K − T = Ḡ(Āα, aα) + Ω̄(Aα, aα, āα). (B.15)

Expressing K−T from Eq. (ii) in (B.15) and substituting it into the ˇrst equation
in (B.14), one ˇnds

Ω̄ = G(Aα, āα) + h(aα, āα). (B.16)

Analogously, expressing K − T from Eq. (i) and substituting it into the second
equation in (B.14), one obtains

Ω = Ḡ(Āα, aα) + h(aα, āα). (B.17)

Finally, the full solution of the constraints on the superpotential K is a sum
of four pieces

K(Aα, Āα, aα, āα) = T (Aα, Āα)+h(aα, āα)+G(Aα, āα)+Ḡ(Āα, aα). (B.18)
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Taking into account the deˇnition of the doublets Aα, aα and their complex
conjugates, as well as Laplace equations (3.12), we conclude that the ˇrst two
terms in (B.18) correspond to the potentials of N=(4, 4) supersymmetric sigma-
model actions for two independent twisted multiplets q̂ i a and q̂i a. The last two
terms can be removed by the generalized Kéahler gauge transformations in (3.3)
corresponding to the gauge function g. So they do not make contribution into the
R(1,1|2,2) superˇeld action.

Thus, the ˇnal result for the potential K is

K(Aα, Āα, aα, āα) = T (Aα, Āα) + h(aα, āα). (B.19)

The proof for the case of the chiral and twisted-chiral N=(2, 2) superˇelds
which form a ®self-dual¯ pair of N=(4, 4) twisted multiplets follows the same
route. It can be also straightforwardly extended to the case with multiple twisted
multiplets of various types.
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