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Š § ·¨´µ¢ �. �. ¨ ¤·. E9-2004-146
ˆ§³¥·¥´¨¥ Ô³¨ÉÉ ´¸  ¶ÊÎ±  H−-¨µ´µ¢ ¢ ± ´ ²¥
 ±¸¨ ²Ó´µ° ¨´¦¥±Í¨¨ Í¨±²µÉ·µ´  DC-72

‚ · ¡µÉ¥ ¶·¨¢µ¤¨É¸Ö ³¥Éµ¤¨±  ¨§³¥·¥´¨Ö ¶µ¶¥·¥Î´µ£µ Ô³¨ÉÉ ´¸  ¨µ´´µ£µ ¶ÊÎ±  ¢
± ´ ²¥  ±¸¨ ²Ó´µ° ¨´¦¥±Í¨¨ Í¨±²µÉ·µ´  DC-72. �´  µ¸´µ¢ ´  ´  ³¥Éµ¤¥ £· ¤¨¥´Éµ¢ ¸
¨¸¶µ²Ó§µ¢ ´¨¥³ ¸É ´¤ ·É´µ£µ ¸± ´¥·  ¸ ¢· Ð ÕÐ¥°¸Ö ¨£²µ° ¤²Ö ¨§³¥·¥´¨Ö ¶µ¶¥·¥Î´ÒÌ
· §³¥·µ¢ ¨µ´´µ£µ ¶ÊÎ± . �É  ³¥Éµ¤¨±  ¡Ò²  · §· ¡µÉ ´  ¤²Ö ¨µ´´ÒÌ ¶ÊÎ±µ¢ ¸ Éµ± ³¨
¤µ 1000 ³±� ¨ ¶µ§¢µ²Ö¥É ¢µ¸¸É ´ ¢²¨¢ ÉÓ Ô³¨ÉÉ ´¸ ¸ ÉµÎ´µ¸ÉÓÕ µ±µ²µ 30 %. Œ¥Éµ¤¨± 
ÊÎ¨ÉÒ¢ ¥É ¸µ¡¸É¢¥´´Ò° § ·Ö¤ ¨µ´´µ£µ ¶ÊÎ± , ÎÉµ Ö¢²Ö¥É¸Ö ¸ÊÐ¥¸É¢¥´´Ò³. ‚ Ô±¸¶¥·¨-
³¥´É¥ ´¥ ¢¸¥£¤  Ê¤ ¥É¸Ö ¶µ²ÊÎ¨ÉÓ  ±¸¨ ²Ó´µ-¸¨³³¥É·¨Î´Ò° ¶ÊÎµ±. �µÔÉµ³Ê ¶·¥¤²µ¦¥´
´µ¢Ò° ³¥Éµ¤ µ¡· ¡µÉ±¨ Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ ¶·¨ ¨§³¥·¥´¨¨ ¶µ¶¥·¥Î´µ£µ Ô³¨É-
É ´¸   ±¸¨ ²Ó´µ-´¥¸¨³³¥É·¨Î´µ£µ ¨µ´´µ£µ ¶ÊÎ± . �·¨¢µ¤ÖÉ¸Ö Ëµ·³Ê²Ò ¤²Ö µ¶·¥¤¥²¥´¨Ö
¤¨¸¶¥·¸¨° ¸·¥¤´¥±¢ ¤· É¨Î´ÒÌ · §³¥·µ¢ ¶ÊÎ±  ¢µ ¢· Ð ÕÐ¥°¸Ö ¸¨¸É¥³¥ ±µµ·¤¨´ É ¶µ
¸¨£´ ² ³ ¸ ¨£²Ò ¸± ´¥· . ˆ§³¥·¥´¨Ö ¸·¥¤´¥±¢ ¤· É¨Î´ÒÌ Ô³¨ÉÉ ´¸µ¢ εx,y ¶·µ¢µ¤¨²¨¸Ó
´  ¸É¥´¤¥ ± ´ ²  ¨´¦¥±Í¨¨ Í¨±²µÉ·µ´  DC-72 ¶·¨ Éµ±¥ ¶ÊÎ±  H−-¨µ´µ¢ 180 ³±� ¨
±¨´¥É¨Î¥¸±µ° Ô´¥·£¨¨ ¨µ´µ¢ 16,82 ±Ô‚. �·¨¢µ¤ÖÉ¸Ö É ±¦¥ ·¥§Ê²ÓÉ ÉÒ µ¡· ¡µÉ±¨ Ô±¸¶¥-
·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ.
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Measurement of H− Beam Emittance in
Axial Injection Channel of DC-72 Cyclotron

A method of measuring the ion beam transversal emittance in the axial injection channel
of DC-72 cyclotron is given. It is based on the gradient method using the standard rotating
wire scanner for measurement of the transversal ion beam dimensions. This method was
worked out for ion beam currents up to 1000 µA and allows one to reconstruct emittance with
an accuracy about 30%. The method takes into account the ion beam self-charge, which is
essential. It is not always a success to obtain an axial-symmetric ion beam in experiments.
Therefore, a new experimental data processing method of measuring the transversal emittance
for a non-axial-symmetric ion beam was suggested. The formulae for determination of the
RMS dispersions of the ion beam dimensions in the rotating coordinate system by signals
from the scanner wire are given. The measurements of the RMS emittances εx,y were carried
out in the test stand of the injection channel of DC-72 cyclotron with the H− ion beam current
of 180 µA and kinetic energy of ions of 16.82 keV. The results of the experimental data
processing are adduced.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions,
JINR.
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INTRODUCTION

A method of measuring the ion beam transversal emittance in the axial
injection channel of the DC-72 cyclotron was given in [1]. It is based on the
gradient method with a standard rotating wire scanner [2, 3] used to measure
the transversal ion beam dimensions. This method was worked out for ion
beam currents up to 1000 µA and allows one to reconstruct emittance with an
accuracy of about 30%. The method takes into account the beam self-charge,
which is essential. The main assumption in [1] is that the ion beam is axial-
symmetric and has equal horizontal and vertical dimensions. But it is not always
a success to obtain an axial-symmetric ion beam in experiments. Therefore, a
new experimental data processing method was proposed to measure the transversal
emittance of the non-axial-symmetric ion beams. The formulae to determine the
RMS ion beam dimensions by signals from the scanner wire are given.

1. SCHEME OF THE EXPERIMENT

The scheme of the measuring section of the axial injection channel of H−

ions in the DC-72 cyclotron is shown in Fig. 1. The ion beam current was equal
to 180 µA. The kinetic ion energy was equal to 16.82 keV. Ratio of the ion
charge Z to its atomic weight A(Z/A) was equal to 1.

Measurements were carried out by the gradient method using the focusing
solenoid IS2. The beam RMS dimensions were measured by means of the scanner
IC3. The axial dimension of the solenoid ˇeld was 450 mm. The distance
between the solenoid center and the scanner was 750 mm. The method of the
beam emittance reconstruction is given in detail in Appendix. Processing of the
experimental data was carried out in the of	ine regime.

2. INITIAL PROCESSING OF SIGNALS FROM SCANNER

During measurements the signals were read out from the scanner and written
into a ˇle 196 times per one turn of the scanner wire. The ˇrst 98 signals corre-
spond to measurement of the horizontal beam dimension (x) and the subsequent
ones correspond to the measurement of the vertical beam dimension (y). An
example of such signals is shown in Fig. 2.
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Fig. 1. Scheme of the measuring section of the channel. IM60 is a 60◦ horizontal bending
magnet; IM90 is a 90◦ vertical bending magnet; IQ1, IQ2, IQ3 are quadrupoles; IS2 is a
focusing solenoid, IC3 is a scanner

Fig. 2. Signals from the scanner before the background elimination

From Fig. 2 one can see that the background level can reach 15% from
maximum of the useful signal. On the follow-up processing the background was
subtracted from the useful signal as shown in Fig. 3.
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Fig. 3. Signals from the scanner after the background elimination

3. DISPERSIONS OF BEAM DENSITY DISTRIBUTION

Dispersions of the beam density distribution were determined by the following
formulae:

σx,y =
4L2

max

N2
[ n2

x,y − (nx,y)2]

nx2 =

97∑
n=0

n2In

97∑
n=0

In

, nx =

97∑
n=0

nIn

97∑
n=0

In

, (1)

n2
y =

195∑
n=98

n2In

195∑
n=98

In

, ny =

195∑
n=98

nIn

195∑
n=98

In

.

Here N is a number of divisions of the revolution period of the scanner wire
(N = 195). Lmax is the maximum linear dimension:

Lmax =
πR√

2
, (2)

where R is the radius of the helical winding of the scanner wire. The angle of
the spiral winding of the scanner wire was equal to 45◦ in this case. In is the
current value from the scanner wire at one of the measurement moments.

Measured dependences of σx,y versus the current in the solenoid IS2 winding
are shown in Fig. 4 (dots).
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Fig. 4. Dependences of the dispersions σx,y versus the current in the solenoid IS2

4. VIOLATION OF BEAM AXIAL SYMMETRY

As one can see from Fig. 4, the measured real ion beam was not axially
symmetric at all. The new processing program has been proposed taking into
account the violation of the beam axial symmetry. The emittances of the beam
in the longitudinal magnetic ˇeld are invariants in the coordinate system rotating
with Larmor frequency. Therefore, it is necessary to deˇne the dispersions σ1,2

in the coordinate system rotated through the angle ϕ, determined by the solenoid
longitudinal magnetic ˇeld Bs:

ϕ =
1
2

Ls∫
0

Bsds

Bρ
(3)

σ1 = σx cos2ϕ + σy sin2ϕ,

σ2 = σx sin2ϕ + σy cos2ϕ.
(4)

Here Ls is the axial dimension of the solenoid ˇeld Bs. Recalculated depen-
dences of the dispersions σ1,2 on the current in the solenoid IS2 are shown in
Fig. 5.

Values of the RMS ion beam emittances εx,y found by means of the new
processing program are equal to

εx = 19π mm · mrad, εy = 18.8π mm · mrad. (5)

Some difference of the emittances in planes {x, y} can be explained by
the ion losses while the beam passes through the bending magnet IM90. The
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Fig. 5. Dependences of the dispersions σ1,2 on the current in the solenoid IS2

obtained values of the ion beam transverse emittances (5) are two times greater
than those measured earlier in the ion sources by using the multicusp magnetic
plasma conˇnement [4, 5].

CONCLUSIONS

Measurement of the H− ion beam emittance has been carried out by the
gradient method.

The method has been worked out to reconstruct the transversal emittances of
the beam of large space charge (the ion beam current up to several mA) by using
the measured beam dimensions.

The software has been developed taking into account the violation of the
beam axial symmetry.

The authors would like to express their thanks to S. L. Bogomolov, S. V. Past-
chenko, P. G. Bondarenko, M. V. Khabarov, and V. A. Verevochkin for organiza-
tion of the beam emittance measurements.

APPENDIX

For any value of the solenoid magnetic ˇeld Bs the magnitudes x2 and y2

are connected with momenta x2
0, xx′

0, x′2
0 and y2

0 , yy′
0, y′2

0 at a solenoid entrance
by the following equations:

x2 = Rx2
11x

2
0 + 2Rx11Rx12xx′

0 + Rx2
12x

′20,

y2 = Ry2
11y

2
0 + 2Ry11Ry12yy′

0 + Ry2
12y

′20.
(1A)
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For a small beam space charge, the elements of the transfer matrix, R11 and
R12, depend on parameters of the focusing system only. Initial RMS values x2

0,

xx′
0, x′2

0 and y2
0, yy′

0, y′2
0 may be found by means of the least squares method

with the measured (under several Bs magnitudes) dispersion values x2 and y2.
These momenta are used to calculate RMS beam emittances [1]:

εx = [x2
0 x′2

0 − (xx′
0)

2]1/2,

εy = [y2
0 y′2

0 − (yy′
0)

2]1/2.
(2A)

For a large space charge the elements of the transfer matrix, R11 and R12,
as it will be shown below, depend on the initial values x2

0, xx′
0, x′2

0 and y2
0 , yy′

0,
y′20. However, equations (1A) remain valid. This allows one to use the equations
(1A) as recursive formulae to determine the initial values of the momenta and the
beam RMS emittances (2A).

Let us introduce matrix Λ related to matrix of the second-order momenta M
in the following way:

M = ΛΛT . (3A)

In non-axial-symmetric case, matrix Λ looks like

Λ =

(
Λ(1) Λ(2)

Λ(1)′ Λ(2)′

)
, (4A)

where the prime denotes a derivative along the distance and Λ(1,2) are diagonal
(2×2) matrices:

Λ(1) =


 Λ(1)

11 0

0 Λ(1)
22


 and Λ(2) =




Λ(2)
11 0

0 Λ(2)
22


 . (5A)

One seeks initial matrix Λ0 in a lower triangular form:

Λ0 =

(
Λx0 0

Λ′
x0 ΛV 0

)
, (6A)

where

Λx0 =




√
x2

0 0

0
√

y2
0


 , Λ′

x0 =




xx′
0√

x2
0

0

0
yy′

0√
y2
0


 ,
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ΛV 0 =




√
x′2

0 −
(xx′

0)2

x2
0

0

0

√
y′20 −

(yy′
0)2

y2
0


 . (7A)

Then initial matrix M0 looks like

M0 =

(
Λx0ΛT

x0 Λx0Λ′T
x0

Λ′
x0Λ

T
x0 (Λ′

x0Λ
′T
V 0 + ΛV 0ΛT

V 0)

)
. (8A)

The variation of the values of the matrix Λ elements along the beam trajectory
is given by the equation

Λ′ = AΛ. (9A)

Matrix is equal to

A =
(

0 E
b 0

)
. (10A)

Here and later matrix E is a unit (2×2) matrix, and symmetric matrix of the
second-order b is deˇned by its own and external electromagnetic ˇelds.

The initial conditions for the equation (9A) have the following form:

Λ(1)
0 = Λx0, Λ(1)′

0 = Λ′
x0, Λ(2)

0 = 0, Λ(2)′

0 = ΛV 0. (11A)

Solution of Eq. (9A) with the initial conditions (11A) allows one to deˇne
transfer matrix R:

R = ΛΛ−1
0 . (12A)

When the ions move inside the solenoid, matrix b is equal to

b =
(

−k2 0
0 −k2

)
= −k2E. (13A)

Here k =
√

1
2

Bs

Bρ , Bρ is magnetic rigidity of the ions. In a drift space matrix

b = 0. Taking into account the beam Coulomb ˇeld, one has b ⇒ b + bs, where
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bs =
Z

A

I

I0

1
(βzγ)3

1√
Λ(1)2

11 + Λ(2)2

11 +
√

Λ(1)2

22 + Λ(2)2

22

×

×




1√
Λ(1)2

11 + Λ(2)2

11

0

0
1√

Λ(1)2

22 + Λ(2)2

22


 . (14A)

Here I is the beam current, I0 = 3.12 · 107 A; βz is the relative beam velocity;
and γ is the relativistic factor.

From Eqs. (9A), (10A), (13A), (14A), we obtain the following system of
nonlinear differential equations for deˇning the elements of matrix Λ:




Λ(1)′′
11 + k2Λ(1)

11 − Q
Λ(1)

11

Λ(1)2

11 + Λ(2)2

11 +
√

(Λ(1)2

11 + Λ(2)2

11 )(Λ(1)2

22 + Λ(2)2

22 )
= 0

Λ(1)′′
22 + k2Λ(1)

22 − Q
Λ(1)

22

Λ(1)2

22 + Λ(2)2

22 +
√

(Λ(1)2

11 + Λ(2)2

11 )(Λ(1)2

22 + Λ(2)2

22 )
= 0

Λ(2)′′
11 + k2Λ(2)

11 − Q
Λ(2)

11

Λ(1)2

11 + Λ(2)2

11 +
√

(Λ(1)2

11 + Λ(2)2

11 )(Λ(1)2

22 + Λ(2)2

22 )
= 0

Λ(2)′′
22 + k2Λ(2)

22 − Q
Λ(2)

22

Λ(1)2

22 + Λ(2)2

22 +
√

(Λ(1)2

11 + Λ(2)2

11 )(Λ(1)2

22 + Λ(2)2

22 )
= 0.

(15A)
Coulomb factor Q is equal to

Q =
Z

A

I

I0(βzγ)3
. (16A)

According to Eqs. (4A)Ä(7A) and (12A), the values of elements of transfer
matrix R are deˇned in the following way:

R =

(
(Λ(1)Λ−1

x0 − Λ(2)Λ−1
V 0Λ

′
x0Λ

−1
x0 ) Λ(2)Λ−1

V 0

(Λ(1)′Λ−1
x0 − Λ(2)′Λ−1

V 0Λ
′
x0Λ

−1
x0 ) Λ(2)′Λ−1

V 0

)
. (17A)

Then from (17A) we obtain
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Rx11 =
1√
x2

0

(
Λ(1)

11 − Λ(2)
11

Ex

)
, Rx12 =

Λ(2)
11

√
x2

0

Ex
,

2Ry11 =
1√
y2
0

(
Λ(1)

22 − Λ(2)
22

Ey

)
, Ry12 =

Λ(2)
22

√
y2
0

Ey
. (18A)

Here Ex =
√

x2
0x

′
0 − (xx′

0)2 and Ey =
√

y2
0y

′
0 − (yy′

0)2.
Thus, we obtain the system of equations taking into account the dependence

of elements of the transfer matrix on the beam Coulomb ˇeld. The elements
of the transfer matrix depend on the initial momentum values (6A), (7A) due to
nonlinearity of the system (15A).

The following algorithm is supposed to reconstruct the beam emittance:
1. The dependence of dispersions σx,y on the solenoid magnetic ˇeld induc-

tion is deˇned.
2. Using the known elements of the transfer matrix for the zero beam current,

the ˇrst approximation of the momentum values x2
1, x′

1, xx′
1, y2

1 , y′
1, yy′

1 and
RMS emittances (2A) are determined with the least squares method.

3. Using these values one determines the initial conditions (11A) to integrate
the system (15A) when Coulomb parameter Q �= 0 and ˇnds the ˇrst approxi-
mation for the transfer matrix elements Rx11, Rx12, Ry11, and Ry12 (18A) with
the nonzero beam current.

4. Further the least squares method helps to ˇnd the second approximation
for the initial momentum values x2

2, x′
2, xx′, y2

2 , y′
2, yy′ and emittances εx,y2 .

5. This process of successive approximations continues until the necessary
accuracy of the measured RMS values of the ion beam emittances is achieved.
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