
E10-2004-136

Cs. Téoréok*

VISUALIZATION AND DATA ANALYSIS
IN THE MS .NET FRAMEWORK

∗Technical University of Ko�sice, Vysoko�skolsk�a 4, 04002, Ko�sice, Slo-
vakia, torokcs@tuke.sk

’µ·µ± —. E10-2004-136
‚¨§Ê ²¨§ Í¨Ö ¨ ´ ²¨§ ¤ ´´ÒÌ ¢ ¶² ÉËµ·³¥ MS .NET

�² ÉËµ·³ .NET Ö¢²Ö¥É¸Ö ¨´É¥£·¨·ÊÕÐ¥° Windows-±µ³¶µ´¥´Éµ° ¤²Ö ¶µ-
¸É·µ¥´¨Ö ¨ ¢Ò¶µ²´¥´¨Ö ¸²¥¤ÊÕÐ¥£µ ¶µ±µ²¥´¨Ö ¶·µ£· ³³´ÒÌ ¶·¨²µ¦¥´¨°. �´
¶·¥¤² £ ¥É ´µ¢ÊÕ ¢ÒÎ¨¸²¨É¥²Ó´ÊÕ ³µ¤¥²Ó, ¶µ§¢µ²ÖÕÐÊÕ ¡Ò¸É·µ ¸µ§¤ ¢ ÉÓ ¸É ´-
¤ ·É´Ò¥ ¶·¨²µ¦¥´¨Ö ¨ ¸µ¥¤¨´ÖÉÓ ¨Ì. ‚ · ¡µÉ¥ ¤ ´µ µ¶¨¸ ´¨¥ ´µ¢µ° .NET-
±µ³¶µ´¥´ÉÒ, ´ §Ò¢ ¥³µ° LinAlg, ±µÉµ· Ö Ê¶·µÐ ¥É ¢¨§Ê ²¨§ Í¨Õ ¨ ´ ²¨§
Í¨Ë·µ¢ÒÌ ¤ ´´ÒÌ ¢ ¸·¥¤¥ .NET. �¸´µ¢´µ° ¶·¨´Í¨¶ LinAlg Å ÔÉµ ¢¥±Éµ·¨-
§ Í¨Ö, ¶µ§¢µ²ÖÕÐ Ö § ¶¨¸Ò¢ ÉÓ ¢¥±Éµ·´µ-³ É·¨Î´Ò¥ ¢Ò· ¦¥´¨Ö ¨ ¢¨§Ê ²¨§¨·µ-
¢ ÉÓ ¤ ´´Ò¥ ¢ µ¡Ñ¥±É´µ-µ·¨¥´É¨·µ¢ ´´µ³ ¸É¨²¥. ‚ µ¸´µ¢Ê LinAlg § ²µ¦¥´Ò
¢¥±Éµ·´Ò¥ ¨ ³ É·¨Î´Ò¥ ±² ¸¸Ò. �¶¨¸ ´Ò · §´µµ¡· §´Ò¥ ¶ÊÉ¨ ¸µ§¤ ´¨Ö ¨ ³µ-
¤¨Ë¨± Í¨¨ ÔÉ¨Ì ±² ¸¸µ¢, ¨ ¶µ± § ´µ, ± ± ¨Ì ³¥Éµ¤Ò ¶µ¤¤¥·¦¨¢ ÕÉ ¶µ²ÊÎ¥´¨¥
¨´Ëµ·³ Í¨¨ µ ¤ ´´ÒÌ, É ±¦¥ ¨Ì ¸É É¨¸É¨Î¥¸±¨°, Î¨¸²¥´´Ò° ¨ £· Ë¨Î¥¸±¨°
 ´ ²¨§.

� ¡µÉ ¢Ò¶µ²´¥´ ¢ ‹ ¡µ· Éµ·¨¨ ¨´Ëµ·³ Í¨µ´´ÒÌ É¥Ì´µ²µ£¨° �ˆŸˆ.

‘µµ¡Ð¥´¨¥ �¡Ñ¥¤¨´¥´´µ£µ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤µ¢ ´¨°. „Ê¡´ , 2004

Téoréok Cs. E10-2004-136
Visualization and Data Analysis in the MS .NET Framework

The .NET Framework is an integral Windows component for building and running
the next generation of software applications. It provides a new computing model that
enables a standard and rapid way of building applications and their connection. The
paper presents a .NET component named LinAlg that makes visualization, signal
and data analysis in .NET simpler. The main concept in LinAlg is vectorization
that enables one to write vector/matrix expressions and visualize data in an object-
oriented manner. At the center of LinAlg lie vector and matrix classes. The
paper describes diverse ways of their creating and modiˇcation and illustrates how
their methods support gaining information about data, their statistical, numerical, and
graphical analysis.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2004

INTRODUCTION

The main beneˇt of systems SAS, Matlab or R is the support of visualization
and vectorization (vectorial/matrix programming) with a rich set of functions and
toolboxes. Everyone who got used to the services that are provided by these and
similar systems and intends or is forced to write code in classic or new languages
desires to use analogous services. The new component-oriented programming
language MS Visual C# within the MS .NET Framework provides techniques and
services that support the work with arrays and graphics, however, not at the level
as the above-mentioned systems.

The .NET Framework [1] is an integral
Windows component for building and running
the next generation of software applications
and Web services. It is composed of the
Common Language Runtime (CLR) and a set
of class libraries. CLR is Microsoft's com-
mercial implementation of the Common Lan-
guage Infrastructure (CLI) speciˇcation (CLI
is a framework for designing, developing, de-
ploying, and executing distributed components
and applications based on the Common Type System). CLR is responsible for
run-time services such as language integration, security enforcement, and mem-
ory, process, and thread management. In addition, the CLR has a role in life-
cycle management, strong type naming, cross-language exception handling, and
dynamic binding.

The paper [2] showed the process of vectorization in C# and introduced a
simple vector class that later served as a basic building block for developing
more advanced data models and classes [3]. This paper presents the LinAlg
component library developed at the author's department. LinAlg is a set of
types and classes that enable vectorial programming and incorporates a wide range
of numerical, statistical, and graphical methods. Data analysis and visualization
in the .NET framework gets more comfortable due to LinAlg.

Section 1 serves as a brief and fast introduction to how to use LinAlg.
Section 2 presents the library as a whole and some different ways of getting in-
formation on its classes and members. The following section describes the vector
and matrix classes, how to create and manipulate them. Section 4 introduces

1

the common mathematical functions and operators for vector and matrix objects.
Then we show the main visualization techniques included in LinAlg. Section 6
is devoted to data analysis techniques and presents varied statistical and numerical
methods.

1. FAST INTRODUCTION TO LinAlg

This section serves as a fast introduction to how create, plot, and view
vectors and matrices using the component LinAlg. You can ˇnd more thorough
examples in the upcoming sections. The ˇrst example is a full program with every

necessary code (referencing na-
mespaces, a class declaration,
and a Main static member). It
creates four vectors (one with-
out a variable) by three different
ways, plots and shows them. The
z vector illustrates the �oat cal-
culus (the MS Intermediate Lan-
guage's equivalent of float is
Single). Notice that we must
reference both the LinAlg dll
component LinAlg Sem in the so-
lution explorer (on the right) and
the LinAlg namespace in the
code (on the left):

using System;
using System.Windows.Forms;
using LinAlg;

public class Seminar_Dubna
{

static void Main()
{

sec_02_FastIntro();
}
static void sec_02_FastIntro()
{

VectorF x, y, z;
x = VectorF.CreateFromTo(20, -3.2f, 3.2f);
y = MathLA.Sin(x);
y.PlotInWF(x, false, "Sin(x)");
MathLA.Pow(x, 2).PlotInWF(x, true, "Parabola");
float a = Single.PositiveInfinity;
float b = Single.MaxValue, c = Single.MinValue;
z = new VectorF(-a/0, -b/0, 1/a, 1/b, 0f/0f, a/a, b/b, c/c);
z.MsgBox(3, "Typ float");

}
}

2

Setting the boolean asApplicationRun argument of PlotInWF to
true runs the window in modal mode. If you want to display several windows
at once, set asApplicationRun to true only for the last window (the
same holds for the ShowInWF method).

Mention must be made that 1/0 would occur in a compilation Division by
constant zero error.

The creation and viewing of matrices are illustrated by the codelines:

MatrixF A, B, C;
A = MatrixF.CreateFromBy1(2, 3, 100f); A.MsgBox();
B = MatrixF.CreateFromVector(2, 2, 0.1f, 0.2f, 1f, 2f); B.MsgBox("B");
VectorF x = 10*VectorF.CreateFromMatrix(B, true); // true => by rows
C = MatrixF.CreateFromVector(2, 2, x); C.MsgBox("C");
D = MatrixF.ConcatAfter(x-10, x, x+10); D.ShowInWF(true);

The MsgBox method serves for viewing small vectors and matrices. For
viewing large ones use the ShowInWF method, that is equipped with scrollbars.
At last we mention here without giving any example that the most frequently
used properties Length, RowsNumbers, and ColumnNumbers return the
number of elements in a vector and the number of the rows and columns of a
matrix, respectively.

3

2. GENERAL INFORMATION ON LinAlg

LinAlg consists of nineteen classes and two enums:

Class FormPlot class MatrixD class Time
class GraphicsLA class MatrixF class VectorB
class GridView class MatrixS class VectorD
class InfoTypes class Numerics class VectorF
class LinRegression class Point3D class VectorS
class MathLA class Point3DF enum PointType
class MatrixB class TimeCount enum PlotType

We give here four different ways of getting information on classes and their
public members (variables, methods, functions, and properties):

1) IntelliSense of Visual studio;
2) the class InfoTypes;
3) the object browser of Visual studio;
4) the XML-based NDoc application.

1) In MS Visual Studio the built-in IntelliSense help appears when writing
a dot after a name of a class or its object. You must realize that a class can
contain two different types of members: static and object members. The ˇrst
ones are related to the class itself, while the second ones, to its objects. The
following picture shows IntelliSense in work: CreateI is a static method of the
MatrixF class, whereas ColumnsNumber is an object property (IntelliSense
every time shows the appropriate members and does not mix them):

2) Executing the codelines
string ass = "LinAlg_Sem.dll";
string dirTo = "Info_LinAlg";
InfoTypes.FileWrite(ass, dirTo);

4

you get a list of the classes, enumerations, and interfaces contained in LinAlg
(InfoLinalg\LinAlg Sem.txt) and a thorough information on their members in the
corresponding text ˇles:

3) Selecting View Ä Object Browser (Ctrl+Alt+J) and clicking linalg sem Ä
LinAlg you can easy get the signatures of the class members with some other
pieces of information:

5

4) The free XML-based NDoc application enables one to view also examples
provided through attributes.

3. CREATING AND MANIPULATING VECTORS AND MATRICES

LinAlg contains four vector classes and four matrix ones
VectorF, VectorD, VectorS, VectorB
MatrixF, MatrixD, MatrixS, MatrixB

that hold float, double, string, and bool elements, respectively (F,
D, S, B). Both the float and double classes can be used for numerical
computations. However, plot can be created only for �oat vectors, whereas inverse
matrix can be computed just for double matrix. It is not a strong constraint, for,
by casting �oat, vectors/matrices can be converted to double vectors/matrices and
vice versa.

This section shows different ways of creating and manipulating vectors and
matrices.

New vectors/matrices can be created in LinAlg in ˇve ways:
1) using the new keyword;
2) using one of the Create* functions;
3) reading data from a ˇle due to FileRead function;
4) combining several vectors/matrices by Concat* functions;
5) casting vectors/matrices of another type.
Notice that some other functions and properties return also vectors/matrices,

such as MovingAverage, SortDown, MeanOfRows, etc.

1) Instantiating objects with the new keyword is the standard way of creating
class objects based on constructors. The vector and matrix classes contain a varied
number of constructors:

VectorS s = new VectorS("JINR", "LIT", "Dubna");
s.MsgBox(); // "JINR", "LIT", "Dubna"

VectorB B = new VectorB(3);
B.MsgBox(); // false, false, false

MatrixF A = new MatrixF(2,3);
A.MsgBox(); // 2x3 matrix with 0 elements

ArrayList aL = new ArrayList();
aL.Add(1.0/4); aL.Add(1/2.0);
VectorD a = new VectorD(aL);
a.MsgBox(); // 0.25, 05

Only VectorD can be instantiated based on an ArrayList. Unlike
vectors, matrices cannot be instantiated from a list of values. For this purpose
use the static CreateFromVector.

6

A vector of zero length VectorD d = new VectorD(0); is a valid
object in LinAlg and it can be sometimes useful. Remember that d does not
have any element and d.Length returns 0.

2) The number of VectorF constructors in the earlier versions of LinAlg
was more than ten; however, it led to code that was difˇcult to read, mainly in the
case of several arguments. In later versions some constructors were replaced with
static Create* functions. From the viewpoint of readability it was a proper
decision.
static void sec_04_Vectors_Create()
{

VectorD d = VectorD.CreateFromTo(5, 1, 3);
d.MsgBox(); // 1, 1.5, 2, 2.5, 3

VectorD d2 = VectorD.CreatePowers(2, -1, 4); // of 2 from to
d2.MsgBox(); // 0.5, 0, 1, 2, 4, 8, 16

VectorF f = VectorF.CreateRndNormal(2, 0, 1, 1397); // mean,var,kernel
f.MsgBox(); //-1.07070744, -1.65021265

float[,] a = {{1,2,3}, {4,5,6}};
VectorF g = VectorF.CreateFromMatrix(a, false); // by columns
g.MsgBox(); // 1, 4, 2, 5, 3, 6

MatrixF F = MatrixF.CreateFromByH(2, 3, 1, 0.1f);
F.MsgBox(); // MatrixF 2x2: 1, 1.1, 1.2 ; 1.3, 1.4, 1.5

VectorS u = VectorS.CreateSameValues(3, "Hi");
u.MsgBox(); // Hi, Hi, Hi

VectorB b = new VectorB(true, true, false, false);
MatrixB B = MatrixB.CreateFromVector(2, 2, b);
B.MsgBox(); // 2x2: true, true ; false, false

VectorS x = new VectorS("a", "b", "c");
VectorS y = new VectorS("1", "2", "3");
MatrixS S = MatrixS.CreatePermutation(x,y);
S.MsgBox("Permutations"); //see the picture

MatrixD D = MatrixD.CreateRndUniform(2, 2, 1, 10, 1307);
D.MsgBox(); // 5, 3 ; 4, 5

}

Mention must be made that, unlike CreateRndNormal and Create-
RndUniform, AddNoise adds pseudorandom numbers to an existing vector
based on a signal-to-noise ratio (SNR), see Sec. 6.

7

3) Data processing is unimaginable without reading/writing measurements
from/to ˇles:
static void sec_04_Vectors_IO()
{

VectorF f = VectorF.CreateFromBy1(2, 5);
f.FileOverWrite("ja.txt");
f.FileAppend("ja.txt");
VectorF.FileRead("ja.txt").MsgBox(); // 5,6,5,6

MatrixF F = MatrixF.CreateI(2);
F.FileOverWrite("ha.txt",'\t'); // tab delimiter
MatrixF.FileRead("ha.txt",'\t').MsgBox(); //
MatrixF 2x2: 1,0 ; 0,1

}

As you can see it is necessary to supply matrices with a column delim-
iter char. Notice also that FileRead is always a static method, whereas
FileWrite is an object one. A MatrixS object can be also read using a
dialog window due to the static method FileDialogRead (see the casting
example below).

4) Use the Concat* functions if you want to create a vector or matrix from
several ones:
static void sec_04_Vectors_Concat()
{

VectorF x = VectorF.CreateFromBy1(3, 1);
VectorF y = VectorF.Concat(x, x);
y.MsgBox(); // 1,2,3,1,2,3

MatrixF a = MatrixF.ConcatBellow(x,x);
MatrixF b = MatrixF.ConcatAfter(a, new MatrixF(2,2));
b.MsgBox(); // MatrixF 2x5: 1,2,3,0,0 ; 1,2,3,0,0

}

5) Casting is an important concept in C#. A double array or a �oat vector
can be implicitly casted to a double vector; however, in accordance with the MS
recommendations a double vector should be casted to a �oat vector explicitly:
static void sec_04_Vectors_Cast()
{

double[] d1 = {1, 2};
VectorF f = new VectorF(3);
VectorD d2 = d1; // implicit casting
d2 = f; // implicit casting
f = (VectorF)d2; // explicit casting
MatrixD D = (MatrixD)MatrixS.FileDialogRead(';');
D.MsgBox();

}

If a dialog is cancelled, a 0×0 matrix is returned that does not contain
any element, and D.RowsNumber and D.ColumnsNumber return 0. The
CastToMatrixS method of the MatrixF class rounds the matrix elements
to the given decimal places and casts the matrix to MatrixS.

At the end of this section we demonstrate the use of some vector and matrix
manipulation methods, such as ElementsSet, RowsSet (ColumnsSet),
Reverse, and SortUp:

8

static void sec_04_Vectors_Manipulate()
{

VectorF x = new VectorF(1f, 2f, 3f, 7f, 7f, 6f);
VectorF y = new VectorF(60f, 50f, 40f);

x.ElementsSet(3, y);
x.MsgBox(); // 1,2,3,60,50,40

x.Reverse.MsgBox(); // 40,50,60,3,2,1
x.SortUp.MsgBox(); // 1,2,3,40,50,60

MatrixF a = MatrixF.CreateFromBy1(2, 3, 1);
a.RowsSet(0, y);
a.MsgBox(); // 60,50,40 ; 4,5,6
a.ElementsSet(0,1, new MatrixF(2,2));
a.MsgBox(); // 60,0,0 ; 4,0,0

}

The Length of the new vector should remain the same, so you cannot do
this:

x.ElementsSet(5, y);

4. COMPUTATION WITH VECTORS AND MATRICES

In the .NET Framework the System.Math class provides some common
mathematical functions and constants. These functions are static and take value
type arguments. Their counterparts in LinAlg with vector and matrix arguments
are contained in the class MathLA. In addition to the well known basic math-
ematical functions, .NET Framework also provides arithmetic and comparison
operators +, Ä, /, ==, !=. Their vector and matrix counterparts are embedded to
the LinAlg's appropriate vector and matrix classes through operator overloading
(notice that we deˇned for string vectors and matrices only the + operator).

The next example illustrates the use of such MathLA functions as
PolynomialByRoots, Round, the operator *, the Transposed pro-
perty, and the ElementsMultiply method of the class MatrixD. MathLA
in addition to the PolynomialByRoots function also has a
PolynomialByCoefs function (they take the coefˇcients and the real roots
of the polynomial as the second argument). Since the standard Math class does
not have such functions, MathLA also contains overloads of these two functions
for a scalar ˇrst argument:

static void sec_05_Computation()
{

VectorD x, r, y;
MatrixD a;
x = VectorD.CreateFromTo(7, -1, 1);
r = new VectorD(-1.5, -0.2, 1);
y = MathLA.PolynomialByRoots(x, r);
a = MatrixD.ConcatAfter(x,y); //7x2
MathLA.Round(a.Transposed, 3).ShowInWF();

9

MatrixD d, e, f1, f2;
d = MatrixD.CreateFromBy1(2,2,-1);
e = MatrixD.CreateFromBy1(2,2,1);
f1 = d*e;
f2 = MatrixD.ElementsMultiply(d,e);
f1.MsgBox("f1"); f2.MsgBox("f2");
(f1 == f2).MsgBox();

}

Notice that the comparison operators == and != return for vector/matrix
operands a boolean vector/matrix.

We emphasize that in LinAlg the * operator always decreases the dimen-
sion and so for vectors it corresponds to the dot product (z = x*y;).
Consequently, to get a vector of the elements' square, use the MathLA.Pow
function (see Sec. 1) or the ElementsMultiply function for vectors.

It is a proper place to make an important remark relating to shallow and deep
copy. A simple reference type assignment y = x; always results in a shallow
copy: changing y you also change x. However, y = x + 0; or y = x*1;
presents a deep copy (changes in y do not effect x).

The second example demonstrates the * operator and the use of a string
matrix for an Excel-like data viewing:
Static void sec_05_ExcelLike_DataViewing()
{

// A) Compute:
int n = 3; // 15
MatrixF a = MatrixF.CreateFromByH(n, n, -2*n, 2f);
MatrixF b = MatrixF.CreateSameValues(n, 1, -n/2);
MatrixF c = a*b;
MatrixS d = new MatrixS();

10

// B) Show:
string s = "";
d.Add("A", 0, n/2, s);
d.Add(a , 1, 0, s); d.Add("*", n/2+1, n , s);
d.Add("B", 0, n+1, s);
d.Add(b , 1, n+1, s); d.Add("=", n/2+1, n+2, s);
d.Add("C", 0, n+3, s);
d.Add(c , 1, n+3, s);
d.ShowInWF(true);

}

5. DATA VISUALIZATION

Section 1 showed how easy it is to plot one vector in a separate window
using PlotInWF. This section begins with showing how to handle such easy
plotting of several vectors. However, plotting in a separate window does not
enable one to adjust some settings, such as the font height, decimal places of the
axes values and the place of markers along the axes, and neither permits it to
draw verticals and horizontals in a simple way. This section presents the methods
that make the process of creating enhanced plots simpler based on the Paint
event handler. We underscore that plotting with PlotInWF and the Paint
event handler present two diverse approaches: you should never use PlotInWF
in an event handler.

To plot several vectors in a separate window, create an array of VectorF
objects and use the static PlotInWF method:

static void plot3VectorsInWF()
{

VectorF x1 = VectorF.CreateFromTo(31, -2f, 2f);
VectorF x2 = VectorF.CreateFromTo(61, -.5f, 6.5f);
VectorF x3 = new VectorF(3f, 6f);
VectorF y1 = 0.5f*MathLA.Pow(x1, 2);
VectorF y2 = MathLA.Sin(2*x2);
VectorF y3 = new VectorF(1.5f, 1.5f);

VectorF[] xV = new VectorF[]{x1, x2, x3};
VectorF[] yV = new VectorF[]{y1, y2, y3};

VectorF.PlotInWF(yV, xV, false);
}

11

To change the type of plot and its color, use the PlotType enumeration
and the appropriate overload method of PlotInWF (see the right picture):

PlotType[] Pt = {PlotType.Both, PlotType.Line, PlotType.Line};
Color[] pC = {Color.Blue, Color.Red, Color.Black};
VectorF.PlotInWF(yV, xV, pT, pC, true);

If you want to place the points over the line, ˇrst draw the line and then the
points.

You can create plots
not only in a separate win-
dow, but in the native win-
dow of your application
too. GDI+ enables one to
draw on the graph surface
of the most controls due to
their OnPaint event han-
dler. The subsequent ex-
amples will be drawn on a
panel. Add a panel con-
trol to the Windows Form
in a design mode and set its
BackColor to White in
the Properties window (F4).
Bounding the panel's An-
chor to its every four edges

will result in increasing and decreasing of the panel when resizing the application
window. In design mode click the panel if it is not selected, in the properties
window select the Event pane (see the yellow thunder) and double-click the Paint
event. The system generates:

12

Å a codeline that associates the Paint event with the panel1_Paint
event handler by creating a PaintEventHandler delegate instance;

Å an empty panel1_Paint method and opens the code window.
To draw something in GDI+ you, need a Graphics object (associate it with

a surface or canvas). There are several ways of creating such Graphics objects
(see [4]). We shall use the panel's CreateGraphics method. LinAlg also
needs a GraphicsLA object to set (here implicitly) the World area (the real
mathematical coordinates) and the Plot area (the pixel coordinates on the screen):

void panel1_Paint(object sender, System.Windows.Forms.PaintEventArgs e)
{

Graphics g1 = panel1.CreateGraphics();
g1.Clear(panel1.BackColor);
GraphicsLA g2 = new GraphicsLA(g1);
plot1Vector(g2);
g1.Dispose();

}

static void plot1Vector(GraphicsLA g)
{

float b = 2*(float)Math.PI;
VectorF x = VectorF.CreateFromTo(31,0f,b);s
VectorF y = 10.3f*MathLA.Sin(x);

y.PlotLines(g);
y.PlotPoints(g);

}

In order the Windows resizing worked properly when the Windows is getting
smaller, select in the design mode either the form or the panel, in the Events pane
double-click the Resize event, and to the created and viewed *_Resize event
handler add the codeline

Refresh();

To make space for the axes, you can use the PlotAreaIni method. Its
four parameters set the distance of the plot (plot area) from the right, left, bottom,
and top edges of the panel (notice that PlotAreaIni has several overloads)

13

static void plot1VectorWithAxes(GraphicsLA g)
{

VectorF x = VectorF.CreateFromTo(31, 0f, 2*(float)Math.PI);
VectorF y = 10.3f*MathLA.Sin(x);
g.PlotAreaIni(30f, 10f, 10f, 10f);
y.PlotLines(g, x);
y.PlotPoints(g, new Pen(Color.Red), 2, PointType.Rectangle, x);
g.PlotAxisX(y, x);
g.PlotAxisY(y, x); //=> see the picture

}

To run plot1VectorWithAxes, call it from the panel's paint event han-
dler panel1_Paint after commenting the codeline plot1Vector(g2);

Unlike the PlotLines and PlotPoints methods, PlotAxisX and
PlotAxisY do not set implicitly the world area coordinates, so if you want to
plot the vectors over the axes, change the order of commands and add before the
axes drawing commands a codeline with the WorkAreaIni method:

g.WorldAreaIni(x.Minimum, x.Maximum, y.Minimum, y.Maximum);
g.PlotAxisX(y, x);
g.PlotLines(y, x);
...

The four input arguments of the WorkAreaInimethod set the world area
coordinates: the minimal and maximal values over the x and y axes.

One of the overloaded methods of PlotAxis* can be used to alter the
axes' default name. To change the default settings of the axes marks (the
number of marks, their font heights and decimal places), use the *MarksNB,
*MarksDecimalPlaces, and the *FontHeight methods, and to draw
title, subtitle, and any text on the plot utilize the PlotTitle method. The
overloaded versions of these methods enable one to create many effects on the
plots. The next example demonstrates the use of these methods:
static void plotMarksFontsTitles(GraphicsLA g)
{

VectorF x = VectorF.CreateFromTo(31, 0f, 2*(float)Math.PI);
VectorF y = 10.3f*MathLA.Sin(x);

g.PlotAreaIni(35f, 10f, 10f, 10f);
g.WorldAreaIni(x.Minimum, x.Maximum, y.Minimum, y.Maximum);

14

g.XMarksNB = 3; g.YMarksNB = 2;
g.XMarksDecimalPlaces = 2; g.YMarksDecimalPlaces = 3;
g.XFontHeight = 8; g.YFontHeight = 7;
g.PlotAxisX(y, x);
g.PlotAxisY(y, x, "Sin(x)");

string title = "Fonts, Marks and Texts";
Font fnt = new Font(FontFamily.GenericSansSerif,10);
g.PlotTitle(title, fnt, Color.Blue, StringAlignment.Center,50,0);
g.PlotTitle("Zero", g.PlotAreaGet[0]-5, g.PlotAreaGet[3]/2 - 8);
string subTitle = "Dubna - "+DateTime.Now.ToString();
g.PlotTitle(subTitle, 0, g.PlotAreaGet[3]);

y.PlotLines(g, x);
y.PlotPoints(g, new Pen(Color.Red), 2, PointType.Rectangle, x);

}

WordAreaIni is generally needed when plotting several charts at the same
time. The following example plots three charts. To set the world area coordinates,
we leveraged the MiniMaxi static function of the VectorF class:

static void plot3Vectors(GraphicsLA g)
{

VectorF x1 = VectorF.CreateFromTo(31, -2f, 2f);
VectorF x2 = VectorF.CreateFromTo(61, -.5f, 6.5f);
VectorF y1 = 0.5f*MathLA.Pow(x1, 2);
VectorF y2 = MathLA.Sin(2*x2);
VectorF y3 = 1.8f*MathLA.Exp(-MathLA.Pow(x2-3, 2));
VectorF mimax = VectorF.MiniMaxi(x1, x2, x2);
VectorF mimay = VectorF.MiniMaxi(y1, y2, y3);

g.WorldAreaIni(mimax[0], mimax[1], mimay[0], mimay[1]);
g.PlotAreaIni(5);

y1.PlotLines(g, x1);
y1.PlotPoints(g, new Pen(Color.Blue), 2, PointType.Rectangle, x1);
y2.PlotLines(g, new Pen(Color.Red, 1), x2);
y3.PlotPoints(g, new Pen(Color.Red, 1), 3, PointType.Rectangle, x2);

VectorF xAx = new VectorF(mimax[0], mimax[1]);
VectorF yAx = new VectorF(mimay[0], mimay[1]);

g.PlotAxisX(yAx, xAx);
g.PlotAxisY(yAx, xAx);

}

15

If you want to enhance any point on the chart, create two additional �oat
vectors of length one that will hold the x and y coordinates of the given point,
and based on them use the PlotPoints method.

To better locate the plot values, it is common to draw vertical and horizontal
lines. GraphicsLA has four methods for this purpose:
PlotVerticals, PlotHorizontals, PlotVerticalLine, and
PlotHorizontalLine.

The following codelines illustrate their use:
static void plot_VerticalsHorizontals(GraphicsLA g)
{

VectorF x;
x = VectorF.CreateFromTo(100,-4f, 4f);
VectorF y = MathLA.Sin(x);

VectorF mimaX = VectorF.MiniMaxi(x);
VectorF mimaY = VectorF.MiniMaxi(y);
g.WorldAreaIni(mimaX[0], mimaX[1], mimaY[0], mimaY[1]);
g.PlotAreaIni(5f, 5f, 5f, 5f);

VectorF v = new VectorF(-4, -3, -2, -1, 1, 2, 3, 4);
g.PlotVerticals(new Pen(Color.LightGray), mimaY, v);

VectorF h = new VectorF(-1, -0.5f, .5f, 1);
g.PlotHorizontals(new Pen(Color.LightGray), mimaX, h);

g.PlotVerticalLine(new Pen(Color.Red,5), -.5f, .5f, 1.5f);
g.PlotHorizontalLine(new Pen(Color.Red,5), .6f, 2.5f, .5f);

g.PlotAxisX(y, x);
g.PlotAxisY(y, x);

y.PlotLines(g, x);
}

16

LinAlg in addition to the main plot methods PlotLines and
PlotPoints has some special plot methods as well. This section's last ex-
ample leverages one of them. PlotStems should be called before any plot
command, since it sets the WorldAreaIni according to its second argument
refValue:

static void plot_Stems(GraphicsLA g)
{

VectorF x = VectorF.CreateFromTo(31,0f, 8.3f);
VectorF y = 1.3f*MathLA.Sin(x)+5;

g.PlotAreaIni(30f, 10f, 25f, 10f);
float refVal = y.Minimum;
y.PlotStems(g, refVal, new Pen(Color.Red), 2, PointType.Rectangle, x);

g.PlotAxisX(y, x);
g.PlotAxisY(y, x);

}

6. DATA ANALYSIS

LinAlg provides a wide range of statistical and numerical functions, prop-
erties, and methods that support the data analysis process. You can leverage for
both (value type) vectors and matrices the properties:

Length, RowsNumbers, ColumnNumbers, Maximum,
Minimum, Mean, Median, StandDev, Var, Sum,
CumSum, Norm:

Matrices also support
MaximumOfColumns, MaximumOfRows, MeanOfColumns,

MeanOfRows Inverse, Determinant, Transposed
The vector function IndexOf returns the index of a value, and CountOf
returns the count of a given value either in a vector or matrix.

You can ˇnd the results of the next example in the comments:

17

static void sec_07_Mean()
{

VectorF x = new VectorF(1, 2, 3, 4, 20);
VectorF z = new VectorF(x.Mean, x.Median);
z.MsgBox(); // 6, 3

MatrixD A = MatrixD.CreateFromBy1(2,3,1); // 2x3: 1,2,3 ; 4,5,6
MatrixD B = A.MeanOfRows;
B.MsgBox(); // 2x1: 2, 5

A[0,0] = 6;
MessageBox.Show(A.CountOf(6).ToString()); // 2

}

The vector classes offer further functions, such as
MovingAverage, Differences, GetEveryKth
LinRegression,
ACorFPar, ACorF, P_A_CF, P_A_CF_Errors

We illustrate each of the functions with an example.
MovingAverage returns the moving average of the order 2 * befAft + 1,

where befAft is the function argument. The return vector has the same length as
the input one, because the function does not delete the elements at the beginning
and at the end of the vector:

static void sec_07_MovingAverage()
{

VectorF a = VectorF.CreateFromBy1(6,1);
VectorF b = VectorF.CreateFromByH(5,5,-1);
VectorF c = VectorF.Concat(a,b);
VectorF d;

18

int befAft = 2;
d = c.MovingAverage(befAft);
MatrixF.ConcatAfter(c,d).Transposed.ShowInWF();

VectorF x = VectorF.CreateFromTo(101,-3,3);
VectorF y = MathLA.Sin(x);
y = y.AddNoise(10);
VectorF yEs = y.MovingAverage(10);
VectorF[] u = new VectorF[]{x,x};
VectorF[] v = new VectorF[]{y,yEs};
VectorF.PlotInWF(v, u, true);

}

To make the checking easy, notice that (3+4+5+6+6)/5 = 4.6.
The signature of Differences is

public VectorF[] Differences(int order, int lag)

and it gets the differences x[i] - x[i-lag] of the given order:

VectorF a;
a = new VectorF(1, 2, 4, 7, 11, 16, 22); // maxorder 6
int order = 3;
VectorF[] ad = a.Differences(order, 1);
ad[0].ShowInWF(); // 1,2,3,4,5,6
ad[1].ShowInWF(); // 1,1,1,1,1
ad[2].ShowInWF(); // 0,0,0,0

The function GetEveryKth, who's signature is
public VectorF GetEveryKth(int k,
int fromThisElement)

returns the every k-th (�1) element of a given vector from fromThisElement
(�1):

VectorF a = VectorF.CreateFromBy1(32,1);
a = a.GetEveryKth(4, 20);
a.ShowInWF(); // 20,24,28,32

The LinRegression class serves for performing linear and polynomial
regression. In the following example a nonpolynomial function is ˇtted by a
polynomial of degree ten:

static void sec_06_Regression ()
{

VectorD x = VectorD.CreateFromTo(30, -4f, 4f);
VectorD y;
y = 1 - MathLA.Exp(-MathLA.Pow(x, 2));
y = y.AddNoise(20, 5107701); // SNR=20, kernel=5107701

LinRegression c = y.Regression(x, 12);
c.Coefficients.MsgBox(5,"Coeff..."); //rounded to 5 decimals

VectorF yf = (VectorF)y;
VectorF yEst = (VectorF)c.YEstimation;
VectorF[] yV = new VectorF[]{yf, yEst};
VectorF.PlotInWF(yV, (VectorF)x, true, "Red-Appr.");

}

19

Notice that since the function is even the odd regression coefˇcient are zero.
To view the estimations and residuals, write:

c.YEstimation.MsgBox("YEst...");
c.YResiduals.MsgBox("YRes...");

LinAlg provides four methods for computing the correlation functions:
ACorFPar, ACorF, P_A_CF and P_A_CF_Errors. The ˇrst and the
second columns in the matrices returned by the last two methods refer to the
partial auto correlation and the auto correlation, respectively.

static void plot_P_A_CF()
{

VectorF x = VectorF.CreateFromTo(300, -4f, 4f);

VectorF y;
y = (VectorF)(1*MathLA.Sin(10*x)+1*MathLA.Sin(15*x)+1*MathLA.Sin(50*x));
y = y.AddNoise(20);

int lag = x.Length/10;
MatrixF a = y.P_A_CF(lag);

int what;
what = 0;
VectorF yEr = y.P_A_CF_Errors(a.Columns(1)).Columns(what);
VectorF[] yV = new VectorF[]{a.Columns(what), yEr, -yEr};
VectorF.PlotInWF(yV, x.ElementsGet(0,lag-1), false, "PartAutoCorrFunc");

what = 1;
yEr = y.P_A_CF_Errors(a.Columns(1)).Columns(what);
yV = new VectorF[]{a.Columns(what), yEr, -yEr};

VectorF.PlotInWF(yV, x.ElementsGet(0,lag-1), true, "AutoCorrFunc");
}

20

To draw the error lines with the same color, you could write:
PlotType[] pt = new PlotType[3]{PlotType.Both, PlotType.Line,
PlotType.Line};
Color[] pc = new Color[3]{Color.Blue, Color.Magenta, Color.Magenta};
VectorF[] xV = new VectorF[]{x.ElementsGet(0,lag-1),
x.ElementsGet(0,lag-1),
x.ElementsGet(0,lag-1)};
VectorF.PlotInWF(yV, xV, pt, pc, true);

7. WHAT'S FURTHER?

To answer this question, we consider four topics: code management, code
reuse, graphics, and applications.

Code management. LinAlg was created in 2001Ä2003; however, its en-
hancement has been continued. Managing such a system needs time and resources.
The author is thankful to his PhD students for helping in code testing and writ-
ing documentation that is not complete even so. Thus, we have to improve the
documentation.

Code reuse. Another problem is connected with code reuse. Let us take an
example. To support the + operator in vector expressions, we had to implement
the + operator for three classes VectorF, VectorD, and VectorS. With parametric
polymorphism (also called as generics or templates in C++) it would be sufˇcient
to implement the operator only once for a parametric class Vector<T> C# 1
does not provide parametric polymorphism; however, it will be included into the
release 2. So our future plan is to redesign and reimplement LinAlg based on
generics in the .NET 2005 version [5].

Graphics. The graphics system of LinAlg is �exible, it enables one to
create plots in two different ways; however, it does not support interactive graph-
ics (this question is not completely solved even in Maple or Matlab). Thus, one
of the main tasks of the future will be creating interactive graphics. Leverag-
ing the managed DirectX 9, we designed and built a component for plotting 3D
charts. The last picture illustrates the plot types provided by this component. Our
intention is to connect these two components.

21

Applications. So far LinAlg has played a key role in developing stand-
alone Windows applications for wavelets [6], neural networks [7], polynomial
approximation by DPT [8], adaptive piecewise cubic approximation [9], and time
series analysis by ARI processes. There are many scientiˇc problems that need
solution and we intend to continue the sequence of applications created based on
LinAlg. The third application was also converted to a Web application. Our
plan is to develop some tools that will make the converting process simpler.

CONCLUSIONS

Visualization and data analysis are the key techniques for gaining information
from measurements. LinAlg was created to support this process in the .NET
framework. The paper presents the main classes of LinAlg. The use of the
graphical, statistical, and numerical methods of these classes is illustrated with
examples. Considerations on further enhancements of LinAlg are given too.

Acknowledgements. The author is thankful to V. V. Ivanov, whose interest
in LinAlg stimulated the writing of this paper. He also thanks VEGA for
supporting the project 1/1006/04.

REFERENCES

1. http://msdn.microsoft.com/netframework/technologyinfo/overview/

2. Téoréok Cs. Vectorization and Operator Overloading in C# // Proc. of 7th Intern. Sci.
Conf. ®Applied Mathematics¯, Ko�sice, 2002.

3. Téoréok Cs. Matlab-like Programming in. NET Framework. Microsoft Research Acad.
Conf. Budapest, 2003.

22

4. Glynn J. et al. Professional Windows GUI Programming Using C#. Wrox Press, 2002.

5. Téoréok Cs. Generics-based Vectorization in MS. NET Rotor. JINR Preprint E10-2004-
135. Dubna, 2004.

6. Kepi�c T. Descrete Wavelet Analysis // Intern. Seminar of Computing Statistics,
Bratislava, Dec. 4Ä5, 2003. P. 199Ä202.

7. R�evayov�a M., Téoréok Cs. Analysis of Prediction with Neural Networks. Prastan, 2004.
To be appeared.

8. Matej�cikov�a A. On the Estimation of the Degree of Regression Polynomial // Ibid.
P. 215Ä218.

9. Téoréok Cs., Dikoussar N. D. MS .NET Components for Piecewise Cubic Approxima-
tion. To be appeared.

Received on August 31, 2004.

�¥¤ ±Éµ· �. ‘. ‘±µ±µ¢
Œ ±¥É �. �. Š¨¸¥²¥¢µ°

�µ¤¶¨¸ ´µ ¢ ¶¥Î ÉÓ 1.10.2004.
”µ·³ É 60× 90/16. �Ê³ £ µË¸¥É´ Ö. �¥Î ÉÓ µË¸¥É´ Ö.

“¸². ¶¥Î. ². 1,43. “Î.-¨§¤. ². 2,21. ’¨· ¦ 300 Ô±§. ‡ ± § º 54619.

ˆ§¤ É¥²Ó¸±¨° µÉ¤¥² �¡Ñ¥¤¨´¥´´µ£µ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤µ¢ ´¨°
141980, £. „Ê¡´ , Œµ¸±µ¢¸± Ö µ¡²., Ê². †µ²¨µ-ŠÕ·¨, 6.

E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/

