P15-2004-119

Ю. П. Гангрский, В. И. Жеменик, Г. В. Мышинский, Ю. Э. Пенионжкевич

НЕЗАВИСИМЫЕ ВЫХОДЫ ОСКОЛКОВ К
г И Хе ПРИ ФОТОДЕЛЕНИИ НЕЧЕТНЫХ ЯДЕР $^{237} \rm Np$
И $^{243} \rm Am$

Направлено в журнал «Ядерная физика»

Гангрский Ю. П. и др. Независимые выходы осколков Кr и Xe при фотоделении нечетных ядер ²³⁷Np и ²⁴³Am

Представлены результаты измерений независимых выходов осколков Kr (A = 89 - 93) и Xe (A = 135 - 142) при фотоделении нечетных ядер ²³⁷Np и ²⁴³Am. Эксперименты проводились на пучке тормозного излучения электронов с энергией 25 МэВ на микротроне ЛЯР ОИЯИ. Использовалась методика переноса вылетевших из мишени осколков газовым потоком по капилляру и конденсации инертных газов в криостате при температуре жидкого азота. Идентификация осколков Kr и Xe проводилась по γ -спектрам их дочерних продуктов. Получены распределения по массовым числам независимых выходов изотопов Kr и Xe, а также сопряженных им осколков (Y и La при делении ²³⁷Np и Nb и Pr при делении ²⁴³Am).

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

Gangrsky Yu. P. et al.

P15-2004-119

P15-2004-119

Independent Yields of Kr and Xe Fragments at Photofission of Odd Nuclei ²³⁷Np and ²⁴³Am The independent yields of fragments Kr (A = 89 - 93) and 2

The independent yields of fragments Kr (A = 89 - 93) and Xe (A = 135 - 142) at photofission of odd nuclei ²³⁷Np and ²⁴³Am are presented. The experiments were performed using the bremsstrahlung of 25 MeV electrons on the microtron of FLNR, JINR. A technique was used that included the transportation of fragments which escaped from the target with the gas flow through a capillary and the condensation of inert gases in a cryostat at the temperature of liquid nitrogen. Kr and Xe isotopes were identified by the γ spectra of their daughter products. The mass number distributions of the independent yields of Kr and Xe isotopes and of the complementary fragments (Y and La at the photofission of ²³⁷Np and Nb and Pr at the photofission of ²⁴³Am) were obtained.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

введение

Одним из направлений исследований механизма ядерного деления является измерение выходов осколков и их зависимостей от различных характеристик делящегося ядра и образующихся осколков (нуклонный состав, энергия возбуждения, угловой момент). Особый интерес представляют измерения выходов первичных осколков (или независимых выходов), т.е. тех осколков, которые образуются после разрыва делящегося ядра и эмиссии нейтронов, но еще не испытали β -распад. Эти измерения являются источником важной информации о формировании нуклонного состава осколков в процессе их перехода от седловой точки к точке разрыва.

Однако данных об этом процессе явно недостаточно, и они относятся в основном к делению ядер U и Pu нейтронами и к спонтанному делению 252 Cf [1, 2]. Представляет интерес расширить подобного рода исследования, добавив к ним реакции деления, вызываемые другими бомбардирующими частицами, например γ -квантами. Особенности последних реакций (фиксированный угловой момент, вносимый в ядро γ -квантом, отсутствие кулоновского барьера и энергии связи) позволяют получить новую информацию о влиянии внешних условий на процесс формирования нуклонного состава осколков.

Цель данной работы состоит в измерении независимых выходов осколков инертных газов Kr и Xe при фотоделении нечетных ядер 237 Np и 243 Am. Эта работа является продолжением аналогичных экспериментов, выполненных нами с четно-четными ядрами 232 Th, 238 U и 244 Pu [3, 4]. Анализ измеренных зависимостей выходов от массового числа осколка с привлечением известных аналогичных данных для четных ядер позволил бы судить о влиянии нечетной частицы в делящемся ядре на процесс формирования осколков. Данные о независимых выходах осколков при фотоделении ядер с нечетным числом протонов или нейтронов практически отсутствуют (можно отметить лишь работу [5]). Кроме того, используя известные данные о числе мгновенных нейтронов деления, можно было бы получить дополнительную информацию и о выходах сопряженных осколков — ядер Nb и Pr при фотоделении 243 Am и ядер Y и La в случае деления 237 Np.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

В проведенных экспериментах использовалась та же методика, что и в наших работах по фотоделению четно-четных ядер [3, 4]. Она была основана на сильном различии химических свойств Kr и Xe и всех остальных осколков деления, что позволяло проводить их эффективное разделение. Вылетевшие из облучаемой тормозным излучением мишени осколки Kr и Xe тормозились в газе и переносились его потоком по тефлоновому капилляру в криостат, где конденсировались на стенках медной трубки длиной 1 м, свернутой в спираль и опущенной в сосуд Дьюара с жидким азотом. Все остальные осколки, остановившиеся в газе, задерживались фильтром на входе в капилляр. Таким образом, в медной трубке оказывались лишь изотопы Kr и Xe с периодами полураспада более 0,2 с (время переноса осколков по капилляру составляло $\sim 0,5$ с) и продукты их β -распада. В качестве газа-носителя использовался чистый гелий при давлении в камере 2,5 атм. Этот газ характеризовался под действием нейтронов или тормозного излучения микротрона.

Идентификация изотопов Kr и Xe и определение их выходов проводились по их спектрам γ -излучения (данные об этих спектрах представлены в работе [6]). В случае короткоживущих изотопов Kr и Xe (с периодами полураспада менее 1 мин) для идентификации использовались γ -спектры их дочерних продуктов (Rb и Sr в случае Kr и Ba и La в случае Xe). Эти дочерние продукты, образующиеся непосредственно при разрыве ядра, задерживались фильтром на входе в капилляр и поэтому не вносили вклад в измеряемый выход осколков Kr и Xe. Также задерживались фильтром и осколки Se, Br, Te и I, из которых после β -распада могли бы образоваться исследуемые изотопы Kr и Xe. Таким образом, для измерений γ -спектров выделялись лишь те осколки Kr и Xe, которые образовывались непосредственно после разрыва ядра и эмиссии нейтронов, но до их β -распада. Измерения проводились в защищенном от излучения микротрона помещении, т. е. в условиях низкого фона γ -лучей и нейтронов.

Облучаемые мишени представляли собой слои из окислов Np и Am толщиной 50 мкг/см², нанесенные на подложку из алюминия толщиной 20 мкм. При таких толщинах слоя и подложки половина осколков, образующихся в мишени, вылетала из нее и тормозилась в газе.

Для измерений γ -спектров использовался НРGе-детектор объемом 100 см³ с разрешением 2,1 кэВ для γ -линии ⁶⁰Со с $E_{\gamma} = 1332$ кэВ. Спектры записывались в памяти персонального компьютера для последующего анализа с использованием программы AKTIV [7]. Выходы идентифицированных осколков Kr и Xe определялись из площадей их (или их дочерних продуктов) γ -линий в спектрах с учетом эффективности регистрации, интенсивности на акт распада, времени облучения, прохождения по капилляру и измерения.

Эксперименты проводились при энергии ускоренных электронов 25 МэВ, что соответствовало средней энергии возбуждения делящегося ядра 13 МэВ (она определялась из формы тормозного спектра [8] и функции возбуждения реакции фотоделения ядер ²³⁷Np и ²⁴³Am в предположении, что она подобна известной зависимости для ²³⁸U [9]).

2

2. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Анализ измеренных у-спектров позволил идентифицировать 4 изотопа Кг и 7 изотопов Хе. Независимые выходы этих изотопов по отношению к выходам соответственно ⁹¹Кг и ¹³⁷Хе приведены в табл. 1. Для получения значений этих выходов, отнесенных к числу актов деления, измерялись кумулятивные выходы осколков с массовыми числами A = 91 и 137 и оценивались доли Kr и Xe (фракционные выходы) в этих изобарах. Кумулятивные выходы были получены из интенсивностей γ -линий изотопов ⁹¹Sr и ¹³⁷Cs, которые находятся в конце цепочек β -распадов с данными А. Они составляли соответственно 4,2(2) и 6,3(3) % от числа актов деления. Фракционные выходы этих осколков ⁹¹Kr и ¹³⁷Xe были оценены из систематики выходов в реакциях деления ядер U и Pu нейтронами [1] и оказались равными 0,60(6) для ²³⁷Np и 0,55(6) для ²⁴³Am. Эти значения позволяют определить независимые выходы по отношению к числу актов деления для ⁹¹Kr и ¹³⁷Xe, а из них — и для всех остальных осколков Kr и Xe. Полученные таким способом значения выходов также представлены в табл. 1, а их зависимости от массового числа осколка — на рис. 1 и 2.

Осколок	$^{237}\mathrm{Np}\;(\gamma,f)$		²⁴³ Am (γ, f)			
	$Y_{\text{отн}}, \%$	$Y_{\mathrm{afc}}, 1/f$	$Y_{\text{oth}}, \%$	$Y_{\mathrm{abc}}, 1/f$		
⁸⁹ Kr	65(8)	0, 0019(2)	81(3)	0,019(2)		
⁹¹ Kr	100	0, 025(3)*	100	0,023(2)*		
⁹² Kr	44(7)	0, 011(1)	42(2)	0,0095(9)		
⁹³ Kr	18(4)	0, 0045(5)				
¹³⁵ Xe	61(3)	0, 023(3)	42(5)	0,015(2)		
¹³⁷ Xe	100	0, 038(4)*	100	0,035(4)*		
¹³⁸ Xe	80(10)	0, 030(3)	76(8)	0,027(3)		
¹³⁹ Xe	31(4)	0, 012(1)	35(3)	0,012(1)		
¹⁴⁰ Xe	8,0(9)	0, 0030(3)	9,8(6)	0,0034(3)		
¹⁴¹ Xe	3,0(3)	0, 0011(1)	6,0(6)	0,0021(2)		
¹⁴² Xe	2,0(3)	0, 00076(8)	3,4(7)	0,0012(1)		
*Оцененные значения выходов.						

Таблица 1. Независимые выходы осколков Kr и Xe

3

Рис. 1. Изотопные распределения осколков Кr (слева) и Xe (справа) в реакции $^{237}{\rm Np}(\gamma,f).$ Точки — экспериментальные данные, пунктир — расчет по формуле (1) с параметрами из табл. 2

Рис. 2. То же, что на рис. 1, но для реакции $^{243}\mathrm{Am}(\gamma,f)$

Эти зависимости (изотопные распределения осколков) обычно аппроксимируют распределением Гаусса:

$$Y(A) = K \exp\left[-\frac{\left(A - \overline{A}\right)^2}{2\sigma^2}\right],\tag{1}$$

где \overline{A} и σ — среднее массовое число и дисперсия распределения, K — нормирующий множитель. Из рис. 1 и 2 можно видеть, что, как и при фотоделении четно-четных ядер, измеренные распределения хорошо описываются выражением (1). Однако для нейтроноизбыточных осколков Xe (¹⁴¹Xe и ¹⁴²Xe) наблюдается превышение измеренных значений выходов над расчетными. Возможно, это является отражением ядерной структуры указанных осколков.

Значения параметров изотопных распределений представлены в табл. 2. Сравнение их с известными распределениями для четно-четных ядер показывает, что и для ²³⁷Np, и для ²⁴³Am значения \overline{A} заметно ниже, чем для ²³²Th, ²³⁸U и ²⁴⁴Pu [3], но близки к значению \overline{A} для случая деления ²³⁵U тепловыми нейтронами [2]. Такое соотношение между значениями \overline{A} отражает их зависимость от нейтронного избытка делящегося ядра. Отношение N/A для ²³⁸U составляет 1,587 (близкие значения имеют место и для ²³²Th и ²⁴⁴Pu), для ²³⁷Np — 1,549, а для ²⁴³Am — 1,558. Значения σ для ²³⁷Np и ²⁴³Am соответствуют систематике дисперсий изотопных распределений при делении ядер нейтронами и γ -квантами.

Элемент	²³⁷ Np ((γ, f)	$^{243}\mathrm{Am}~(\gamma,f)$			
	\overline{A}	σ	\overline{A}	σ		
Kr	90,3(2)	1,2(1)	90,1(3)	1,4(2)		
Y	96,3(3)	1,3(1)				
Nb			101,5(2)	1,5(1)		
Xe	136,7(2)	1,3(1)	136,9(1)	1,5(1)		
La	142,7(3)	1,3(1)				
Pr			148,3(5)	1,4(2)		

Таблица 2. Параметры изотопных распределений осколков фотоделения

Из изотопных распределений Кг и Хе можно получить аналогичные распределения и для сопряженных осколков. Для осколков Кг это будут изотопы La при делении ²³⁷Np и изотопы Pr при делении ²⁴³Am. В случае осколков Хе такими изотопами будут Y и Nb. Связь между осколками с одинаковыми независимыми выходами описывается выражением

$$A_{\mathrm{T}} + A_{\mathrm{T}} + \nu = A_0, \tag{2}$$

где $A_{\rm II}$, $A_{\rm T}$ и A_0 — массовые числа соответственно легкого и тяжелого осколков и делящегося ядра, ν — суммарное число нейтронов, испускаемых из обоих осколков.

Значения ν можно получить из известного числа испущенных нейтронов при делении ядер в реакциях 236 Np(n, f) и 242 Am(n, f) нейтронами [10, 11] с поправкой на энергию возбуждения делящихся ядер 237 Np и 243 Am. Для 237 Np $\nu = 4, 0$, а для 243 Am $\nu = 4, 6$. Эти значения ν позволяют определить средние массовые числа \overline{A} осколков Y, Nb, La и Pr, которые представлены в табл. 2.

Полученные в нашей работе данные по фотоделению ядер ²³⁷Np и ²⁴³Am дополняют систематику независимых выходов осколков деления. Они позволяют заключить, что нечетная частица в делящемся ядре не приводит к существенному изменению изотопных распределений осколков по сравнению с четно-четными ядрами, а сами распределения близки к тем, что имеют место при делении соответствующих ядер быстрыми нейтронами.

В заключение авторы выражают благодарность Ю.Ц. Оганесяну и М. Г. Иткису за поддержку работы, А. Г. Белову за помощь в облучении образцов на микротроне, Г. В. Букланову за изготовление мишеней.

ЛИТЕРАТУРА

- 1. Wahl A. C. // Atomic Data Nucl. Data Tabl. 1988. V. 39. P. 1.
- 2. England T.R., Rides B.E. LANL Preprint La-Ur-794-3106. Los Alamos, 1994.
- 3. Гангрский Ю. П., Жеменик В. И., Маслова Н. Ю. и др. // ЯФ. 2003. Т. 66. С. 1251.
- 4. Гангрский Ю. П., Жеменик В. И., Земляной С. Г. и др. // Изв. РАН. Сер. физ. 2003. Т. 67. С. 1475.
- 5. De Frenne D., Thierens H., Proot B. et al. // Phys. Rev. C. 1982. V. 26. P. 1356.
- 6. Broune E., Firenstone R. B. Table of Radioactive Isotopes. N.Y.: J. Wiley and Sons, 1986.
- 7. Zlokasov V. E. // Comp. Phys. Comm. 1982. V. 28. P. 27.
- 8. Kondev A. G., Tonchev A. P., Zhuchko V. E. // Nucl. Instr. Meth. B. 1992. V. 71. P. 126.
- 9. Cadwell J. T., Dowly E. L., Berman B. L. et al. // Phys. Rev. C. 1980. V. 21. P. 1215.
- 10. Manero F., Konshin V.A. // Atomic Energy Rev. 1972. V. 10. P. 657.
- 11. Гангрский Ю. П., Далхсурен Б., Марков Б. Н. Осколки деления ядер. М.: Энергоатомиздат, 1986.

Получено 28 июля 2004 г.

Редактор А. Н. Шабашова

Подписано в печать 05.08.2004. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,75. Уч.-изд. л. 0,57. Тираж 270 экз. Заказ № 54550.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/