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�µ²ÊÎ¥´Ò µÍ¥´±¨ · ¸¶·¥¤¥²¥´¨Ö µ¤´µ£µ ±² ¸¸  s-³¥·´ÒÌ · ¢´µ³¥·´µ · ¸-
¶·¥¤¥²¥´´ÒÌ ¸¥Éµ±.

�·¥¤¸É ¢²¥´ µ¡§µ· ¨¸¸²¥¤µ¢ ´¨° ¢ µ¡² ¸É¨ · ¢´µ³¥·´µ · ¸¶·¥¤¥²¥´´ÒÌ
¶µ¸²¥¤µ¢ É¥²Ó´µ¸É¥° ¨ ¸¥Éµ±. �¶·¥¤¥²¥´Ò ¤¨¸±·¥¶ ´¸ ¨ ¤¨ Ëµ´¨Ö, ±µÉµ·Ò¥
Ö¢²ÖÕÉ¸Ö ³¥· ³¨ µÉ±²µ´¥´¨Ö · ¸¶·¥¤¥²¥´¨Ö ¤ ´´µ° ¶µ¸²¥¤µ¢ É¥²Ó´µ¸É¨ ¶µ µÉ-
´µÏ¥´¨Õ ± ¨¤¥ ²Ó´µ³Ê · ¸¶·¥¤¥²¥´¨Õ. �Í¥´±¨ ¤²Ö ÔÉ¨Ì ³¥· § ¢¨¸ÖÉ µÉ µ¸´µ¢ -
´¨Ö b ¸Î¥É´µ° ¸¨¸É¥³Ò, ¢ ±µÉµ·µ° ¶µ¸É·µ¥´Ò ¸µµÉ¢¥É¸É¢ÊÕÐ¨¥ ¶µ¸²¥¤µ¢ É¥²Ó´µ-
¸É¨ ¨ ¸¥É±¨, ¨ µ¸´µ¢Ò¢ ÕÉ¸Ö ´  µ·Éµ´µ·³¨·µ¢ ´´ÒÌ ËÊ´±Í¨µ´ ²Ó´ÒÌ ¸¨¸É¥³ Ì.

� ¸¸³µÉ·¥´  (t, m, s)-ceÉ±a ¢ s-³¥·´µ³ ¥¤¨´¨Î´µ³ ±Ê¡¥, ±µÉµ· Ö ¸µ¤¥·¦¨É
bm-ÉµÎ¥±. �·¨ ÔÉµ³ bt-ÉµÎ¥± ¶µ¶ ¤ ÕÉ ¢ ¶ · ²²¥²¥¶¨¶¥¤ µ¡Ñ¥³µ³ bt−m, 0 � t �
m, £¤¥ m Å Í¥²µ¥.
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The b-Adic Diaphony of an Arbitrary (t, m, s)-Net

The paper considers the possibility to estimate the distribution of class
s-dimensional uniformly distributed nets.

A brief survey of the investigations in the area of uniformly distributed sequences
and nets is made. The discrepancy and the diaphony are deˇned, which are measures
for deviation of the distribution of a given sequence from an ideal distribution. The
estimations of these measures depend on the base b of the number system in which
the corresponding sequences and nets are constructed, and are based on orthonormal
functional systems.

The (t, m, s)-net, containing bm points, such that bt points are contained in par-
allelepiped with volume bt−m, 0 � t � m, in s-dimensional unit cube is considered.

An estimation of the b-adic diaphony is proved, which depends on the base b,
the number of the points, the dimension, but does not depend on the way of the
construction of the net.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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INTRODUCTION

Let ξ = (xj)j≥1 be a sequence in [0, 1) and J is an arbitrary subinterval of
[0, 1).

For an arbitrary integer N ≥ 1 we separate the initial part {x0, . . . , xN−1}
of the sequence ξ. We denote with AN (ξ; J) = |{j : 0 ≤ j ≤ N − 1, {xj} ∈ J}|,
where {xj} is the fractional part of xj .

Deˇnition 1. The sequence ξ is uniformly distributed mod 1 if for every
subinterval J ⊆ [0, 1) the equality

lim
N→∞

AN (ξ; J)
N

= |J |

is hold, where |J | is the length of J.

The beginning of the theory of uniformly distributed sequences is connected
to the problem of a declination of heavenly body form his orbit by means of
attraction of other heavenly bodies. Weyl [33] is considered as an originator of
the theory.

The theory of uniformly distributed sequences investigates the possibility to
prove criteria for uniform distribution of sequences and to construct uniformly
distributed sequences from one side and deˇne measures for uniform distribution
from another one. The investigations of uniformly distributed sequences are
directly connected to the orthonormal functional systems. The ˇrst criteria for
uniform distribution of sequences are proved by Weyl [33] and are based on the
trigonometric functional system.

The construction of uniformly distributed sequences and nets, depending on
the number system, brings to the necessity of new investigation means, corre-
sponding to the number system. Using the dyadic number system, Sloss and
Blyth [29] have proved the necessary and sufˇcient conditions for uniform dis-
tribution, which are based on the Walsh [3] functional system. Hellekalek and
Leeb [11] have deˇned a measure for uniform distribution on the base of the
Walsh functions. This measure is called dyadic diaphony.

There are sequences and nets constructed to b-adic number system and gen-
eralized number system. An apparatus corresponding to the number system for
investigation of these sequences and nets is worked and developed by the author
and Grozdanov in [6Ä8,28].
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Deˇnition 2. Let N ≥ 1 be an arbitrary ˇxed integer and ξN = {x0, . . . xN−1}
is a net of real numbers in [0, 1). The quantity D(ξN ) deˇned by the equality

D(ξN ) = sup
J⊆[0,1)

∣∣∣∣A(ξN ; J)
N

− |J |
∣∣∣∣

is called a discrepancy of the given net.

Remark. Let ξ = (xj)j≥0 be a sequence of real numbers. For each integer
N ≥ 1 the discrepancy DN (ξ) of the sequence ξ is deˇned as the discrepancy of
the initial part {x0, . . . , xN−1} containing the ˇrst N members of the sequence ξ.

The importance of investigation of uniformly distributed sequences and nets
is conditioned by their applications. The uniformly distributed sequences and nets
are used for numerical, Monte Carlo and quasi-Monte Carlo integrations. The
KoksmaÄHlawka [10,13] inequality shows that the error depends on the variation
of the function and the discrepancy of the net. A set of articles is devoted to
the constructions of sequences and nets with low discrepancy. In this direction
Niederreiter [18Ä21], Faure [2Ä4], Tezuka [30, 31] and many other authors have
been working. The so-called (t, m, s)-nets (see Deˇnition 4) and (t, s)-sequences
are used in the last few years. The newest investigations of Pillichshammer and
Dick [22Ä26] are related to construction of (t, m, s)-nets and estimations of the
discrepancy, the L2-discrepancy and the diaphony of (t, m, s)-nets.

Up to now, the studies of the (t, m, s)-nets and their measures are related
to a concrete construction of the (t, m, s)-net, though this construction is very
general. When we talk about the estimations of measures for the distribution of
the (t, m, s)-nets, the investigations show that these estimations do not depend
on the concrete construction of the (t, m, s)-net. The deˇnition of (t, m, s)-net
and the deˇnitions of the measures conˇrm this statement. The result presented
in this paper is based only on the deˇnition of (t, m, s)-net and does not depend
on the construction of the net.

Section 1 gives a review of basic deˇnitions and a survey of some necessary
results. In Section 2 the result and its proof are given. Section 3 proposes a brief
discussion and issues for future investigations.

1. SURVEY

In this section some basic deˇnitions and results are given necessary for the
formulation and the proof of the result in the present paper.

Let b ≥ 2 and s ≥ 1 be ˇxed integers and [0, 1)s is a s-dimensional unit
cube. We denote N0 = N ∪ {0}.
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Deˇnition 3. An elementary interval to base b is deˇned to be an interval of
the form

s∏
i=1

[
ai

bgi
,
ai + 1

bgi

)

with integers gi, ai ≥ 0 and ai = 0, 1, . . . , bgi − 1 for 1 ≤ i ≤ s.

Deˇnition 4. Let 0 ≤ t ≤ m be integers. A (t, m, s)-net to base b is a set of
bm points in [0, 1)s having the property that in every elementary interval to base
b of volume bt−m there are exactly bt points of the set.

Deˇnition 5. (i) Let ω = exp
(

2πi
b

)
. The Rademacher functions to base b are

deˇned by

r0(x) = ωa, for
a

b
≤ x <

a + 1
b

, a = 0, 1, . . . , b − 1,

and for k ≥ 1 by
rk(x + 1) = rk(x) = r0(bkx).

(ii) The functions of Walsh to base b is deˇned as follows:

w0(x) = 1 for each x ∈ [0, 1),

and if k ≥ 1 has a b-adic representation k = kgb
αg + kg−1b

αg−1 + . . . + k0b
α0 ,

where αg > αg−1 > . . . > α0 and kj ∈ {1, 2, . . . , b − 1} for 0 ≤ j ≤ g, then the
kth Walsh function to base b is deˇned as

wk(x) = rkg
αg

(x)rkg−1
αg−1

(x) . . . rk0
α0

(x) for each x ∈ [0, 1).

The system W(b) = {wk(x) =
s∏

i=1

wki(xi), k = (k1, k2, . . . , ks) ∈ Ns
0,

x = (x1, x2, . . . , xs) ∈ [0, 1)s} is called the Walsh functional system to base b.
This system is deˇned by Chrestenson [1].

When b = 2 from the system W(b) the original system of Walsh W(2) is
obtained.

Let N ≥ 1 be an arbitrary ˇxed integer.

Deˇnition 6. The b-adic diaphony of the ˇrst N elements of the sequence
ξ = (xj)j≥0 in [0, 1)s is deˇned as

FN (W(b), ξ) =


 1

(b + 1)s − 1

∑
k∈Ns

0,k �=0

ρ(k)

∣∣∣∣∣∣
1
N

N−1∑
j=0

wk(xj)

∣∣∣∣∣∣
2



1
2

,
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where for vector k = (k1, k2, . . . , ks) ∈ Ns
0, ρ(k) =

s∏
i=1

ρ(ki) and for every

k ≥ 0

ρ(k) =
{

b−2g, if bg ≤ k < bg+1, g ≥ 0, g ∈ Z
1, if k = 0.

When b = 2 from Deˇnition 6 the deˇnition of the dyadic diaphony of
Hellekalek and Leeb [11] is obtained.

The deˇnition of b-adic diaphony is given by Grozdanov and Stoilova [6].
The generalizations of this deˇnition could be found in the PhD thesis of Stoilova
and in [5,9].

The results obtained by investigation of the applications of the (t, m, s)-nets
for numerical, Monte Carlo and quasi-Monte Carlo integrations are necessary for
us to the proof of the statement. Such a result is the next Lemma.

Lemma 1. Let N = bm and ξN = {x0,x1, . . . ,xN−1} be a (t, m, s)-net to
base b. If k = (k1, k2, . . . , ks) ∈ Ns

0, k �= 0 is such that there exist integers
gi ≥ 0 with ki < bgi for 1 ≤ i ≤ s and g1 + g2 + . . . + gs ≤ m − t, then

N−1∑
j=0

wk(xj) = 0.

The proof of this Lemma could be found in [15] and [17].
In [25] an estimation of the dyadic diaphony of digital (t, m, s)-net is pre-

sented. But this estimation depends on the construction of the net.

Theorem 1. Let ξ2m = {x0,x1, . . . ,x2m−1} be a digital (t, m, s)-net over
Z2, with t < m and with regular generator matrices C1, C2, . . . , Cs. Then we
have

F 2
2m(W(2), ξ2m) ≤ c(s)22t (m − t)s−1

22m
,

where c(s) > 0 depends only on the dimension s.

Theorem 1 of Dick and Pillichshammer is proved with arbitrary generator
matrices. They do not use concrete form of the matrices, but these matrices are
used in the proof of the theorem. This engenders the question for the possibility
to escape of the dependence on the construction.
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2. STATEMENT

Theorem 2. Let N = bm and ξN be a (t, m, s)-net to base b with t ≤ m.
Then for the b-adic diaphony F (W(b); ξN ) of the net ξN we have

F (W(b); ξN ) ≤ C(b, s)bt (m − t)
s−1
2

bm
,

where the constant C(b, s) > 0 depends on the dimension s and on the base of
the number system b.

Proof. Using Lemma 1 we have

[NF (W(b); ξN )]2 =
1

(b + 1)s − 1

∑
k∈Ns

0

ρ(k)

∣∣∣∣∣∣
N−1∑
j=0

wk(xj)

∣∣∣∣∣∣
2

=

1
(b + 1)s − 1

s∑
r=1

(
s

r

) ∞∑
g1, . . . , gr = 1,
g1 + . . . + gr ≤ m − t

×

bg1−1∑
k1=bg1−1

. . .
bgr−1∑

kr=bgr−1

b−2(g1+...+gr+r)

∣∣∣∣∣∣
N−1∑
j=0

wk(xj)

∣∣∣∣∣∣
2

+

+
1

(b + 1)s − 1

s∑
r=1

(
s

r

) ∞∑
g1, . . . , gr = 0,
g1 + . . . + gr ≥ m − t − r

×

bg1+1−1∑
k1=bg1

. . .
bgr+1−1∑
kr=bgr

b−2(g1+...+gr)

∣∣∣∣∣∣
N−1∑
j=0

wk(xj)

∣∣∣∣∣∣
2

≤

≤ b2m

(b + 1)s − 1

s∑
r=1

(
s

r

)
(b − 1)r

∞∑
g1, . . . , gr = 0,
g1 + . . . + gr ≥ m − t − r

b−2(g1+...+gr) ≤

≤ b2m

(b + 1)s − 1

s∑
r=1

(
s

r

)
(b − 1)r

∞∑
h=m−t−r

∞∑
g1, . . . , gr = 0,
g1 + . . . + gr = h

b−2h ≤

≤ b2m

(b + 1)s − 1

s∑
r=1

(
s

r

)
(b − 1)r

∞∑
h=m−t−r

b−2hhr−1 ≤
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≤ b2m

(b + 1)s − 1

s∑
r=1

(
s

r

)
(b − 1)rb−2(m−t−r)(m − t)r−1

∞∑
h=1

b−2hhs−1 ≤

≤ b2t(m − t)s−1

(b + 1)s − 1
c1(b)

s∑
r=0

(
s

r

)
(b−1)rb2r =

b2t(m − t)s−1

(b + 1)s − 1
c1(b)(1+(b−1)b2)s,

whence the proof of Theorem 2 is completed.

3. DISCUSSION

The proven result shows that the order of the b-adic diaphony of the
(t, m, s)-nets does not depend on the construction. The concrete construction
exercises an in�uence on the constant. From the point of view of the using of
(t, m, s)-nets for Monte Carlo and quasi-Monte Carlo integrations is clear that
the value of the constant is important. Furthermore, the Monte Carlo and quasi-
Monte Carlo methods with uniformly distributed sequences and nets are used in
the computer graphics. Investigations in this direction were made by Keller [12].
This engenders the necessity of the search for such a construction so that the
constant is the smallest one.

Another interesting question is to ˇnd a connection between b-adic diaphony
and the error of the integration.

The question for general lower estimation of the b-adic diaphony of an arbi-
trary net takes an essential place. The similar estimation of the dyadic diaphony
is made by Dick and Pillichshammer.

The solving of these and others problems is a subject of future research.

Acknowledgments. The author would like to thank Joint Institute for Nuclear
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