P14-2004-104

Т. Н. Мамедов¹, А. Г. Дутов², Д. Герлах³, В. Н. Горелкин⁴, К. И. Грицай¹, В. А. Жуков¹, А. В. Стойков^{1, 3}, В. Б. Шипило², У. Циммерманн³

ИССЛЕДОВАНИЕ АКЦЕПТОРНОЙ ПРИМЕСИ БОРА В ИСКУССТВЕННОМ АЛМАЗЕ μ -SR-МЕТОДОМ

¹Объединенный институт ядерных исследований, 141980 Дубна, Московская обл., Россия

²Институт физики твердого тела и полупроводников НАНБ, 220726 Минск, Белоруссия

³Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁴Московский физико-технический институт, 141700 Долгопрудный, Московская обл., Россия

Мамедов Т. Н. и др. Исследование акцепторной примеси бора в искусственном алмазе μ^{-} SR-методом P14-2004-104

Представлены первые результаты, полученные в исследовании акцепторных центров бора в искусственном алмазе μ^- SR-методом. Атомы акцепторной примеси $_{\mu}$ B в образце создавались путем имплантации отрицательных мюонов. Поляризация мюонов была исследована в поперечном спину мюона магнитном поле величиной 2,5 кГс в диапазоне температур 4,2 – 300 К. Обнаружено, что акцепторный центр $_{\mu}$ B в алмазе находится как в диамагнитном (ионизованном), так и в парамагнитном состояниях. С ростом температуры вклад диамагнитной фракции увеличивается немонотонным образом.

Работа выполнена в Лаборатории ядерных проблем им. В. П. Джелепова при поддержке Российского фонда фундаментальных исследований, проект 02-02-16881.

Сообщение Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

P14-2004-104

Mamedov T. N. et al. Investigation of the Boron Acceptor Impurity in Synthetic Diamond by the μ -SR-method

The primary results in the investigation of boron acceptor centers in synthetic diamond by the μ SR-method are presented. Atoms of μ B acceptor impurity in the sample were created by implantation of negative muons. The polarization of muons was studied in a magnetic field of 2.5 kGs transverse to the direction of the muon spin in the temperature range 4.2 – 300 K. It was found that μ B acceptor in diamond exists in both diamagnetic (ionized) and paramagnetic states. The fraction of the diamagnetic state increases non-monotonously as the temperature increases.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear Problems, JINR, and supported by the Russian Foundation for Basic Research, Project 02-02-16881.

Communication of the Joint Institute for Nuclear Research. Dubna, 2004

введение

Алмаз как полупроводник, обладающий высокой механической прочностью, теплопроводностью и радиационной устойчивостью, давно привлекает к себе внимание с точки зрения изготовления на его основе детекторов ядерного излучения и элементов твердотельной электроники, способных работать в условиях сильных радиационных и тепловых нагрузок (см., например, [1]). Существенный прогресс [2, 3], достигнутый в последние годы в технологии получения высококачественных поликристаллических и кристаллических пленок искусственного алмаза толщиной 200–300 мкм и более, делает реальным создание в ближайшие годы на основе алмаза детекторов ядерного излучения и элементов электроники.

Основными электрически активными примесями в алмазе являются атомы азота и бора [1, 4, 5]. Однако атомы азота в алмазе образуют очень глубокие донорные уровни ($E_c = 1,7$ эВ и $E_c = 4,0$ эВ при ширине запрещенной зоны $E_g = 5,4$ эВ), и поэтому применение алмаза с примесью азота в электронных устройствах затруднено. Замещающие атомы бора в решетке алмаза образуют относительно неглубокие акцепторные центры ($E_v = 0,37$ эВ [6, 7]). Растворимость атомов бора в алмазе достаточно высокая ($\sim 10^{21}$ см⁻³), и критическая концентрация, соответствующая переходу полупроводник–металл, составляет $n_c = 2 \cdot 10^{20}$ см⁻³ [4, 8].

Как и в других полупроводниках с кристаллической структурой алмаза, ЭПР-сигнал акцепторных примесей в алмазе наблюдался лишь в деформированных образцах [9]. При этом резонансная линия настолько широкая, что сверхтонкая структура не наблюдается, и соответственно из этих данных определение константы сверхтонкого взаимодействия акцепторного центра не представляется возможным.

Результаты [10–13], достигнутые в изучении взаимодействия акцепторной примеси алюминия в решетке кремния с использованием пучков поляризованных отрицательных мюонов, дают достаточное основание полагать, что применение данного метода позволит, хотя бы частично, заполнить пробел, имеющийся в настоящее время в экспериментальном исследовании акцепторной примеси бора в алмазе. Возможность использования поляризованных отрицательных мюонов для исследования взаимодействий акцепторной примеси в алмазе обусловлена тем, что при захвате мюона атомом углерода образовавшийся мюонный атом μ В с точки зрения строения его электронной оболочки имитирует атом бора. При этом поляризация мюона определяется состоянием

1

электронной оболочки (парамагнитное или диамагнитное) мюонного атома акцепторного центра (АЦ), сверхтонким взаимодействием в АЦ и взаимодействиями АЦ со средой. Соответственно, исследуя временную эволюцию поляризации мюонов, остановившихся в алмазе, можно получать информацию о взаимодействиях акцепторной примеси бора в кристаллической решетке алмаза.

1. ИЗМЕРЕНИЯ

Измерения были выполнены на спектрометре GPD [14], расположенном на мюонном канале μ E1 ускорителя протонов Института Пауля Шеррера (PSI, Швейцария). Перпендикулярное к направлению вектора начальной поляризации спина мюона однородное магнитное поле на образце создавалось кольцами Гельмгольца. Величина магнитного поля составляла 2,5 кГс с долговременной стабильностью не хуже 10^{-4} . Измерения проводились в гелиевом криостате, что позволяло изменять температуру в диапазоне 4,2 – 300 К. Температура образца стабилизировалась с точностью не хуже 0,1 К.

В измерениях был использован мелкокристаллический алмаз, полученный методом спонтанного синтеза при давлении 5,5 ГПа и температуре 1620 К (см. [15]) и отсортированный по размерности зерна в интервале 120–180 мкм.

Известно, что синтетический алмаз, полученный вышеуказанным способом, содержит примесь атомов азота, алюминия, марганца, железа и никеля. Как показывают исследования [16], концентрация примесных атомов, находящихся в парамагнитном состоянии, в алмазе составляет $\sim 10^{17}$ см⁻³, хотя общая концентрация примесей может достигать 0,1% (атомы марганца, железа и никеля в основном находятся в виде включений).

Временна́я эволюция поляризации мюонов P(t), остановившихся в образце, исследовалась путем измерения временно́го распределения электронов из реакции $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_{\mu}$. При этом зависимость количества зарегистрированных электронов от времени (по отношению к времени остановки мюонов в образце) имеет вид экспоненты, модулированной функцией P(t). Методика измерений и процедура восстановления функции поляризации спина мюона P(t) из аппаратурных μ^- SR-спектров подробно описаны в [10, 11].

2. РЕЗУЛЬТАТЫ

Результаты измерений температурной зависимости поляризации $P_0(T)/P_0(300 \text{ K})$, где $P_0 = P(t = 0)$, и скорости релаксации λ спина отрицательного мюона в искусственном алмазе представлены на рисунке. Во всем диапазоне температур наблюдается существенная остаточная поляризация отрицательных мюонов и релаксация спина мюона со скоростью 0,2–0,4 мкс⁻¹. При

комнатной температуре наблюдаемое в начальный момент времени значение поляризации мюона в алмазе в пределах ошибки совпадает с поляризацией в графите. Реакторный графит использовался как стандартный образец для контроля поляризации пучка мюонов. В нем остаточная поляризация мюона максимальна и релаксация поляризации отсутствует.

В отличие от кремния (см., например, [10–13]), в алмазе во всем диапазоне температур частота прецессии спина мюона во внешнем магнитном поле совпадает с частотой прецессии в графите с точностью 5 · 10⁻⁴.

Совпадение частоты прецессии спина мюона в алмазе с ее значением в графите и практически отсутствие температурной зависимости скорости релаксации при $T \lesssim 150$ К дает достаточное основание полагать, что наблюдаемая фракция (далее диамагнитная фракция) поляризации мюона соответствует диамагнитному (ионизованному) состоянию акцепторного центра $_{\mu}$ В. При этом релаксация поляризации мюона, по-видимому, обусловлена дипольным взаимодействием спина мюона с парамагнитными примесями в образце, а недостающая фракция поляризации ($1-P_0(T)/P_0(300$ K)) связана с образованием акцепторного центра в парамагнитном состоянии и высокой скоростью релаксации спина мюона в этом состоянии.

Температурная зависимость поляризации и скорости релаксации спина мюона в искусственном алмазе. Линии проведены для наглядности

Из рисунка видно, что акцепторные центры $_{\mu}$ В при низких температурах ($T \leq 10$ K) с вероятностью ~ 40% находятся в ионизованном состоянии. С увеличением температуры вклад диамагнитной фракции возрастает и при комнатной температуре становится близким к единице. Однако доля диамагнитной фракции является немонотонной функцией температуры. В областях 5–10 и 20–90 К ее вклад не зависит от температуры, а в интервале 10–15 К наблюдается скачок в температурной зависимости.

Значительная доля диамагнитной фракции примеси _µВ свидетельствует о высокой вероятности ионизации АЦ бора в алмазе с высокой концентрацией примеси азота. Для выяснения механизмов ионизации и причины немонотонной температурной зависимости вероятности ионизации акцепторной примеси бора в алмазе в области температур T < 300 К предполагается проведение исследований в образцах с разными концентрациями примесей.

Авторы благодарны дирекции Института Пауля Шеррера (Швейцария) за предоставление возможности проведения настоящих измерений.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект 02-02-16881.

ЛИТЕРАТУРА

- 1. Вавилов В. С. // УФН. 1997. Т. 167. С. 17.
- 2. Isberg J. et al. // Science. 2002. V. 297. P. 1670.
- 3. Adam W., Berdermann E., Bergonzo P. et al. // Nucl. Instr. and Meth. A. 2003. V. 514. P. 79.
- 4. Collins A. T. // Ceramics International. 1996. V. 22. P. 321.
- 5. Chrenko R. M. // Phys. Rev. B. 1973. V. 7. P. 4560.
- Безруков Г. Н. и др. // Физика и техника полупроводников. 1970. Т. 4. С. 693; Bezrukov G. N. et al. // Sov. Phys. Semicond. 1970. V. 4. P. 587.
- 7. Collins A. T., Williams A. W. S. // J. Phys. C. 1971. V.4(13). P. 1789.
- 8. Williams A. W. S., Lightowlers E. C., Collins A. T. // J. Phys. C. 1970. V. 3. P. 1727.
- 9. Ammerlaan C. A. J. // Inst. Phys. Conf. Series. 1980. V. 59. P. 81.
- 10. Mamedov T. N., Chaplygin I. L., Duginov V. N. et al. // J. Phys.: Condens. Matter. 1999. V. 11. P. 2849.
- 11. Мамедов Т. Н., Стойков А. В., Горелкин В. Н. // ЭЧАЯ. 2002. Т. 33, вып. 4. С. 1005.
- Mamedov T. N., Herlach D., Gorelkin V. N. et al. // Physica. B. 2003. V. 326(1–4). P.97.
- 13. Мамедов Т. Н., Андрианов Д. Г., Герлах Д. и др. // Письма в ЖЭТФ. 2004. Т. 79. С. 25.
- 14. Abela R., Baines C., Donath X. et al. // Hyp. Int. 1994. V. 87. P. 1105.
- 15. Шипило В. Б., Звонарев Е. В., Кузей А. М. и др. Получение, свойства и применение порошков алмаза и нитрида бора. Минск: Белорусская навука, 2003.
- 16. Дутов А. Г., Комар В. А., Шипило В. Б. и др. Препринт ОИЯИ Д14-2003-220. Дубна, 2003.

Получено 29 июня 2004 г.

Редактор Е.К.Аксенова

Подписано в печать 11.05.2004. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,75. Уч.-изд. л. 0,92. Тираж 280 экз. Заказ №.54417.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/