
�����������

�	
�	
��
����������

����� ���� ����� ��������

�! "������ !��# !�� �����$����

������"���� ��� ���� �� ��������"���

�%��&' �&�'�'(') *�
 �(+,)�
 �)�)�
+�� �(-&�� �(����
��&�'�'(') �* �&*�
��'�+�� .&�/)
��'0 �* �)�12�3�)
��&0

Khoromskaia V. Kh. E11-2004-81

Petri Nets Based Modelling of Control Flow

for Memory-Aid Interactive Programs in Telemedicine

Petri Nets (PN) based modelling of the control flow for the interactive memory assistance

programs designed for personal pocket computers and having special requirements for robust-

ness is considered. The proposed concept allows one to elaborate the programs which can give

users a variety of possibilities for a day-time planning in the presence of environmental and time

restrictions.

First, a PN model for a known simple algorithm is constructed and analyzed using the cor-

responding state equations and incidence matrix. Then a PN graph for a complicated algorithm

with overlapping actions and choice possibilities is designed, supplemented by an example of its

analysis. Dynamic behaviour of this graph is tested by tracing of all possible paths of the flow

of control using the PN simulator. It is shown that PN based modelling provides reliably pre-

dictable performance of interactive algorithms with branched structures and concurrency re-

quirements.

The investigation has been performed at the Laboratory of Information Technologies,

JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2004

Õîðîìñêàÿ Â. Õ. E11-2004-81

Ìîäåëèðîâàíèå íà îñíîâå ñåòåé Ïåòðè ïîòîêà óïðàâëåíèÿ

â èíòåðàêòèâíûõ ïðîãðàììàõ ïîääåðæêè ïàìÿòè â òåëåìåäèöèíå

Äàííàÿ ðàáîòà áûëà èíèöèèðîâàíà ïðîáëåìàìè ìîäåëèðîâàíèÿ èíòåðàêòèâíûõ àë-

ãîðèòìîâ â ðàìêàõ ñèñòåìû óäàëåííîé ìåäèöèíñêîé ïîìîùè äëÿ ëþäåé ñ íàðóøåíèåì ïà-

ìÿòè. Ðàññìîòðåíî ìîäåëèðîâàíèå íà áàçå ñåòåé Ïåòðè (PN) ïîòîêà óïðàâëåíèÿ â èíòåð-

àêòèâíûõ ïðîãðàììàõ ïîääåðæêè ïàìÿòè, ïðåäíàçíà÷åííûõ äëÿ èñïîëüçîâàíèÿ â èíäèâè-

äóàëüíûõ êîìïüþòåðàõ è èìåþùèõ îñîáûå òðåáîâàíèÿ ê íàäåæíîñòè. Ïðåäëîæåííàÿ

êîíöåïöèÿ ìîäåëèðîâàíèÿ àëãîðèòìîâ ïîçâîëÿåò ðàçðàáàòûâàòü ïðîãðàììû ñ øèðîêèìè

âîçìîæíîñòÿìè äëÿ åæåäíåâíîãî ïëàíèðîâàíèÿ àêòèâíîé äåÿòåëüíîñòè ïîëüçîâàòåëåé

ñ ó÷åòîì âîçìîæíûõ ñèòóàòèâíûõ è âðåìåííûõ îãðàíè÷åíèé.

Âíà÷àëå ìû ñòðîèì ìîäåëü PN äëÿ óæå èñïîëüçóåìîãî ïðîñòîãî àëãîðèòìà è àíàëè-

çèðóåì åãî ñ ïîìîùüþ ìàòðèöû ïåðåõîäîâ è óðàâíåíèÿ ñîñòîÿíèé. Çàòåì ìû ñòðîèì ãðàô

PN äëÿ ïðåäëàãàåìîãî ñëîæíîãî àëãîðèòìà ñî âçàèìîèñêëþ÷àþùèìè âîçìîæíûìè äåé-

ñòâèÿìè è ïðèâîäèì âàðèàíò åãî àíàëèçà. Äèíàìè÷åñêîå ïîâåäåíèå ýòîãî àëãîðèòìà ïðî-

òåñòèðîâàíî ñ ïîìîùüþ ñèìóëÿòîðà PN.

Â ðàáîòå ïîêàçàíî, ÷òî ïðèìåíåíèå PN-ìîäåëèðîâàíèÿ îáåñïå÷èâàåò ïðåäñêàçóåìîå

ôóíêöèîíèðîâàíèå ñëîæíûõ èíòåðàêòèâíûõ ïðîãðàìì ñ ðàçâåòâëåííîé ñòðóêòóðîé

è òðåáîâàíèÿìè ñèíõðîíèçàöèè.

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè èíôîðìàöèîííûõ òåõíîëîãèé ÎÈßÈ.

Ñîîáùåíèå Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004

INTRODUCTION

This work was initiated by the modelling and scheduling problems arising
in the framework of a telemedicine project [7] aimed on a construction of com-
puter assistance system for people with brain injuries. The problem consists in
developing a scheduling paradigm for a humanÄcomputer interaction program,
which should compensate memory disabilities of a customer while giving wide
choice for a day-time planning in a presence of possible time limits for different
actions∗.

In existing approaches, the memory assisting programs were designed for
managing simple user tasks which were restricted in time and space. Such
programs possess rather transparent algorithmic structure, which can be modelled
by an easily traced �ow-chart. More complicated algorithms for a day-time
schedule which can have time restrictions along with a possible changing of tasks
and places require an appropriate modelling concept which could provide the
construction of sophisticated real-time interactive programs. The latter should
have a variety of choices and right responses and prompts for every choice with
a free time planning from one side and with tracing of some important deadlines
from the other side.

There are different approaches for modelling of the complex algorithms, with
most widely used uniˇed modelling language and �ow charts. In our particular
case we need possibilities for modelling of concurrency and interactivity, as well
as the facilities for hierarchical subdivision. Here we choose the Petri Nets
concept which provides a graphical and mathematical formalism for modelling,
simulation and formal analysis of discrete event systems with concurrency which
fairly suits for our problem of interest. This approach enables us not only to model
the processes but also provides the facilities for tracing of all possible control
�ows in the designed structures, i.e., we can consider the dynamic behaviour of
the modelled system. In this way, we obtain an integrated presentation of the
software, environment properties and time constraints.

∗In the framework of the project [7] a number of patients with memory disabilities are provided
by pocket computers which have an access to a special server ®guided¯ by a medical assistant. Every
person has a separate plan for each day of the week. Individual plans are organized by medical
assistants and are loaded into personal mobile computers at the beginning of each day. For critical
cases a patient has access to a caregiver via mobile communication.

1

Application of Petri Nets (PN) for modelling of the interactive algorithms
provides powerful tools for their analysis. In fact, there are well-developed
means for mathematical analysis of such models. There is also a big choice
of PN simulators which maintain analysis and/or animation, and in this way,
provide veriˇcation of the performance of a chosen algorithm. Moreover, Petri
Nets paradigm itself ensures the construction of a reliable algorithm since it clears
out possible drawbacks of a concept already on the design level.

This paper presents an example which demonstrates, how tools and methods
developed for the Petri Nets can be used for the development of secure and robust
complex interactive algorithms.

1. BASICS OF PETRI NETS

Petri Net is a graph, consisting of two types of nodes, places, denoted by
circles and transitions, denotes by bars. Directed arcs connect only different types
of nodes: places with transitions, or transitions with places.

Fig. 1. Condition-event type of Petri Nets (a). The case (b) shows the graph after ˇring
event e1

Places can contain marks, so-called tokens, which pass to the next places
through transitions under certain conditions which will be discussed further. To-
kens are denoted by black dots for condition-event Petri Nets (see Fig. 1), or by
numbers, which correspond to the current number of tokens in a place for other
types of Petri Nets (see Fig. 2). The place-transition Petri Net is a general type,
while the condition-event type is a particular case of the place-transition graph
when every place (condition) can contain only one token. However, this type of
Petri Nets has some special properties [2].

Generally, the formal mathematical deˇnition for the Petri Nets is the fol-
lowing:

• A net N is a 4-tuple N = (P, T, F, M0), where
• P = {p1, p2, . . . , pn} is a ˇnite set of places,

2

Fig. 2. Place-transition type of Petri Nets (a). The case (b) shows the graph after ˇring
transition t1

• T = {t1, t2, . . . , t�} is a ˇnite set of transitions.
• For the above sets there holds P ∩ T = ∅.
• The �ow F is a set of arcs, F ⊆ (P × T) ∪ (T × P).
• M0 is the initial marking of the Petri Net, that is a displacement of tokens

in the net at the starting position. It shows, which places contain token at the
beginning of the process.

Transitions can be enabled or disabled. A transition is enabled iff all places
which have input arcs to this transition contain tokens. An enabled transition ti
can ˇre. It means, that it can be activated, so that tokens from each input place
of ti are transferred to each output place of this transition.

In place-transition Petri Nets some arcs get numbers, so-called weights, which
tell how many tokens should be transferred through this arc. For example, the
arc between p1 and t1 in Fig. 2 has weight 2. It means, that this arc is dedicated
for transferring two tokens. And the input gate of t1 expects not less than two
tokens from p1 to be enabled.

Examples of the performance of condition-event and place-transition Petri
Nets are shown in Figs. 1 and 2, respectively. In Fig. 1 we observe the situation,
when transition (event) e1 is ˇred ˇrst. Therefore, place (condition) c3 gets a
token. In case if transition (event) e2 would be ˇred, place c4 would get a token,
and so transition e1 would be disabled.

Figure 2 presents the example of a general place-transition graph with weighted
arcs. The arc between p1 and t1 has weight 2, which is denoted in the graph
by the corresponding number. If the arc has weight 1, as the one between p2
and t1, the number is omitted. In Fig. 2, a transition t1 is enabled (since it has
enough tokens from both places), therefore it can ˇre. Fig. 2, b shows the graph
after ˇring transition t1. Since the arc between t1 and p3 has weight 2, it moves
two tokens to place p3. After ˇring the transition, one token is left in p2, since
one ˇring of t1 needs one token from p2.

3

All interconnections of a given Petri Net can be described by an incidence
matrix, which is given by

N =




−1, if (p, t) ∈ F and (t, p) /∈ F,
1, if (p, t) /∈ F and (t, p) ∈ F,
0, if (p, t) /∈ F and (t, p) /∈ F.

(1)

It should be noted that the incidence matrix exists only for pure nets, i.e. nets
without self-loops, consisting of one place and one transition (where p is both out-
put and input place of t), because in this case the corresponding matrix elements
are indeˇnite.

After ˇring a transition, the marking of the net changes from Mi to some Mj .
A sequence of transitions t1, t2, . . . , tk is called occurrence sequence, enabled at
M , if there are markings M1, M2, . . . , Mk, such that

M
t1−→ M1

t2−→ . . .
tk−→ Mk. (2)

By tracing such sequences of markings it is possible to construct the reachability
graph. The latter traces all variety of transitions and all reachable markings of the
considered Petri Net. By analyzing the reachability graph one can reveal possible
deadlocks, or can make a decision on boundedness of the system. It means, that
the system contains a ˇnite set of possible states (markings).

When analyzing a particular Petri Net, the main issues are reachability, bound-
edness and liveness of the given graph. The Petri Nets theory is presented in
extensive literature [1Ä3,5,6], where the analysis and existence theorems for these
properties are given. Here we do not include theoretical foundations of Petri Nets,
we aim to show on basic examples how to construct and analyze these graphs.

Let us consider a Petri Net graph presented in Fig. 3 which models task
processing by a processor unit. Here Petri Nets graph models the following
processes: t1 denotes that a task is put into the queue, p1 Å the task is waiting
for the processor, p2 Å the task is being processed, p4 Å the processor is idle,
p3 Å the task is completed. For this graph we have the following �ow:

F = {t1p1, p1t2, p4t2, t2p2, p2t3, t3p4, t3p3, p3t4}.

In Fig. 3 we have the initial marking of the graph M0 = (1, 0, 0, 1). It corresponds
to the moment when there is a task waiting and the processor is idle (both places
contain tokens). So next event which can happen, is that enabled transition t2
ˇres and place p2 gets a token. It means that the processor begins to compute the
task. After the task is completed transition t3 ˇres and transfers tokens to places
p3 and p4. After that the system has marking M = (0, 0, 1, 1).

4

Fig. 3. Petri Nets graph for task processing

Incidence matrix (1) for the graph in Fig. 3 looks like

NFig. 3 =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 −1 1 0


 .

A well-known example of using condition-event Petri Nets for modelling the
producer-consumer problem is shown in Fig. 4. The model consists of three
parts, a producer, a buffer and a consumer. Producing and consuming parts have
mutual dependence through the buffer states.

Fig. 4. Modelling of a producer-consumer problem

Here we begin with the initial marking M0 = (0, 1, 0, 1, 0, 1). In this position
the only transition which can ˇre (or as we said, is enabled) is t1 (produce), while
all other transitions are disabled at the marking M0: t2 to be enabled requires
tokens from both p4 and p1, and t3 to ˇre requires tokens from p3 and p6. Hence,
after ˇring transition t1 we have the next marking M = (1, 0, 0, 1, 0, 1). In this
way, the token from place p2 is transferred to place p1. At this step transition
t2 becomes enabled (both p1 and p4 contain a token) and can ˇre. It transfers
tokens to both p3 and p2. The number of places which can obtain a token from
a single enabled transition is deˇned only by a number of outgoing arcs but not

5

by the number of ®incoming¯ tokens from the ingoing arcs. For the modelled
process above steps mean that the product was produced and then delivered to
the buffer. Next, we have the marking M = (0, 1, 1, 0, 0, 1).

At this step we should note that ˇring of transition t1 is independent from
the processes of the ®consuming¯ part of the Petri Net. Performance of the
®producing¯ part of the graph is in�uenced only by the state of the buffer. If
the buffer is not empty, then the product cannot be ®delivered¯ and further
®production¯ stops. It is regulated by transition t2.

Next, in the ®consuming¯ part, transition t3 is enabled, since both places
which have incoming arcs to this transition contain a token. After ˇring t3, both
p4 and p5 obtain a token. The ®consuming¯ part of the net is also regulated by
the state of the buffer from one side (transition t3), and by ˇring of independent
transition t4 (consume) from the other side.

There are examples of modelling the producer-consumer problem for several
consumer or/and several buffers, as well as with a number of tokens > 1.

One can ˇnd in the literature interesting examples of Petri Nets modelling
for logistic processes, communication protocols [5], vending machines [3].

2. PETRI NET CONSTRUCTION FOR AN INTERACTIVE ALGORITHM

In Sections 3 and 4 we describe the main results of this paper. First, we show
how to construct and analyze a Petri Net model for the �ow-chart on an example
of a medicine taking algorithm (see [7], page 11). According to presentation of
the �ow-chart elements in terms of places and transitions as described in [5], we
generate a corresponding Petri Net (Fig. 5). The performance of the modelled
algorithm can be investigated either by using state equations, or by building the
reachability graph. Note, that in Fig. 5 transitions t5 and t7 are inserted for
simulation reasons. The real algorithm has a start place at p6 and two exit places,
p5 for normal exit and p7 for critical exit. This graph is safe, since the number
of tokens in each place cannot exceed one.

To simplify further analysis we can reduce the Petri Net in Fig. 5 to the
algorithm shown in Fig. 6. For this purpose we include the simple structures
(having no branches) of the type t − p − t into a single transition node t. In this
way, we construct a compact graph for further analysis of the program. According
to (1), the incidence matrix for this Petri Net is the following:

Nred.med =




−1 0 1 −1 0 0 0 0 1 1
1 −1 0 0 0 −1 1 0 0 0
0 1 0 0 0 0 0 0 −1 0
0 0 −1 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1 −1 0 0
0 0 0 0 1 0 0 1 0 −1




. (3)

6

Fig. 5. Petri Nets graph for the medicine taking �ow-chart. Transitions t5 and t7 are
inserted for test simulation reasons

Every row of the incidence matrix corresponds to a deˇnite place, every column Å
to a deˇnite transition. For example, place p5 (ˇfth row from above) has two
outgoing transitions t7 and t8, which are denoted by −1 and one ingoing transition
t6, denoted by 1.

At the starting point we have the initial marking of the graph M0 =
(1, 0, 0, 0, 0, 0). For any possible marking of the graph M we have equation [6]

M = M0 + N · v, (4)

where v is the ˇring vector. For example, setting M = (0, 0, 0, 0, 1, 0), we can
ˇnd the ˇring vector by solving the system of equations

7

Fig. 6. Reduced graph for the medicine taking algorithm

N · v =




−1
0
0
0
1
0




.

Hence, solving the system of equations




−x1 + x3 − x4 + x9 + x10 = −1
x1 − x2 − x6 + x7 = 0
x2 − x9 = 0
−x3 + x4 − x5 = 0
x6 − x7 − x8 = 1
x5 + x8 − x10 = 0,

we get the desired ˇring vector v = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0), which, in fact,
determines the sequence of transitions which should ˇre in order to reach the
marking M from the initial marking M0. Speciˇcally, it means that transitions
t1 and t6 should ˇre to reach a marking M = (0, 0, 0, 0, 1, 0) from the initial
marking M0 = (1, 0, 0, 0, 0, 0). In this way, it is possible to see if any marking
in the designed graph is really reachable from a given state.

Another way of model analysis is based on the construction of the reachability
graph. It is built by tracing the momentary possible markings of the system, as

8

Fig. 7. Reachability graph for the medicine taking algorithm (in Fig. 5)

shown by (2), after each consequent ˇring, beginning from the starting position.
The reachability graph for the initial Petri Net in Fig. 5 is shown in Fig. 7. Here, it
is easy to see that the graph is bounded (it doesn't contain unbounded branches).

It should be noted that according to a deˇnition [3], the graph presented in
Fig. 5 belongs to a subclass of Petri Nets known as Finite-State Machines. It
means that every transition in this net has exactly one incoming arc and exactly
one outgoing arc.

In this way, any �ow-chart can be modelled by a Petri Net, and on this basis
we can derive its mathematical description, which, in turn, allows to analyze all
possible and impossible states of the given algorithm. In the next section we
construct a Petri Net graph for modelling parallel activities or concurrency.

3. THE ALGORITHM FOR OVERLAPPING ACTIONS
WITH A CHOICE POSSIBILITY

In this section we propose the construction of algorithms for programming
a day-time activity of a user which gives him a variety of possible activities
according to his choice. These algorithms are modelled as Petri Net graphs
which provide a ®logical tracing¯ of the �ow of control under the constraints
coming from delays watching, displacement of the patient and a given variety
of the day-task choices. The example of the PN graph constructed for three
overlapping actions with choice possibilities is presented in Fig. 8. It describes the
algorithm for programming choice between overlapping day-time tasks (actions)
in a presence of time restrictions for every consequent action and taking into
account possible variations in place location. It is possible to introduce more
conditional restrictions, such as action priorities or some additional environment
conditions. In Fig. 8 one can see how after starting place p1 = 1 (it corresponds
to the initial marking M0 = (1, 0, . . . , 0)) the control �ow is splitted into three

9

Fig. 8. Interactive algorithm with the two-stage overlapping actions using time and place
semaphores

places p2 = 1, p3 = 1, p8 = 1, denoting the conditions for activity, time and
space. The marking of the scheme becomes M = (0, 1, 1, 0, . . . , 1(p8), 0, . . . , 0).
These places have the meanings ®moving out¯, ®time semaphore¯ and ®place
semaphore¯. According to the time left after the ˇrst outdoor activity of a user
denoted by ®action 1¯, one of the three ®deadlines¯ will be activated. These
®deadlines¯ designate the fact that up to some apriori ˇxed time the user should
return home, for example, to have some important meeting. The values of
the ®deadline¯ thresholds can be calculated by the program before starting the
outdoor activity. And then, according to the time needed for the ˇrst action,
program proposes the next route, or gives the possibility of available choice for
the user. After that three branches of control �ow are again incorporated into
one by means of one of transitions t6, t7, t8 to form the next stage of activity
depending on the previous conditions (on the choice of deadline route).

It is possible to introduce more semaphores, including some necessary prepa-
rations for the possible outdoor tasks. The graph may be more branched, but with
the same logical structure.

The constructed graph has a hierarchical structure. The places drawn as dou-
ble circles (for example, the places for ®moving out¯), like p2, p4 or p9 represent

10

the so-called virtual (macro)places. They denote that these places themselves
contain subgraphs for implementing a certain activity, for example, moving from
home to some place, or visiting a doctor. Most of macroplaces subgraphs have
a structure analogous to the one corresponding to the medicine taking algorithm
shown in Fig. 5. Generally, these simple graphs have normal and critical exits.
Here we omit consideration of critical exits since their treatment can be easily
implemented on the code level.

The activity of the program shown in Fig. 8 begins from place p1 (®Start¯).
Then the following steps are activated:

• Firing of transition t1 activates places p2 (®moving out of the house¯),
p3 (®timer semaphore¯) and p8 (®place semaphore¯). As was noted, p2 is a
macroplace, consisting of a graph itself.

• Firing of transition t2 activates place p4 (®action 1¯). This is also a
macroplace, containing a simple subgraph for performing some predeˇned action.

• After that, according to the time past after action 1 is fulˇlled, one of
transitions t3, t4, or t5 can be enabled. The choice of ˇring depends on the
predeˇned values of ®deadline 1¯, ®deadline 2¯ or ®deadline 3¯ and on the desire
of the patient. For example, if visiting a doctor took much time, then transition
t3 is ˇred, corresponding to place ®deadline 1¯, which leads to macroplace p15
®moving back home¯. If after ®action 1¯ there is still some time left before some
home activities, there can be a choice between ˇring t4 or t5, which leads to
®action 2¯ or ®action 3¯, according to the pre-deˇned day-plan of the user. The
example of the choice of ®deadline¯ for ®action 2¯ is shown in Fig. 9.

• Transition t8 also activates new timer p11, which can be used for further
choice of outdoor activities. In this case it is performing or not ®action 22¯
according to the value of the timer and predeˇned values of ®deadline 21¯ and
®deadline 22¯.

Let us construct the incidence matrix for this scheme. According to (1) it
looks like

NFig.8 =




−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
1 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0
1 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0




. (5)

We can ˇnd analytically if some type of a marking is really reachable. The initial
marking of the scheme is M0 = (1, 0, 0, . . . , 0). We need to prove existence of

11

Fig. 9. Simulation step before a choice of the ®deadline n¯ route. At this step, the tokens
are distributed at places p4, p3 and p8 after ˇring the transitions t1 and t2 from the initial
position p1 (Start)

some marking, say,

M = (0, . . . , 0, 1(p9), 0, 1(p10), 0, . . . , 0). (6)

Solving the system of Eqs. (4) with the given M0, M and incidence matrix NFig.8

(5), we obtain the ˇring vector

v = (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0).

It corresponds to consequent ˇring of transitions t1, t2, t4 and t8, which bring the
system to the state given by (6). Though with larger systems incidence matrices
become rather cumbersome, they are easy for the treatment due to sparse structure.

Dynamic behaviour of the graph in Fig. 8 can be traced by the animation
procedure (®run simulations¯) of the Renew simulator [4]. One of the simulation
steps is shown in Fig. 9. The Renew simulator provides step-wise tracing by
manual activating of the transitions on the desired path or can produce automatic
run-time simulations by ®scanning¯ all enabled transitions one by one. Animation

12

in a run mode substitutes the analytical evaluation of the graph, since it traces
all possible ˇring steps statistically. If there exists a place with unboundedness
(a ®trap¯) it would be seen after a few cycles of the run mode (the number of
tokens in these places would be > 1).

CONCLUSIONS

There exists a number of references describing the Petri Nets based modelling
for different ˇelds of application, for example, simulations in internetworking, au-
tomatic production control, modelling of industrial concurrent processes, logistic
management, etc. Here we have shown the application of Petri Nets for modelling
of the control �ow in the interactive memory assistance programs, which have
special requirements for robustness. Presented examples of building and analyzing
the PN models of interactive algorithms do not give an easy way for the problem
solution. But they give a tool for verifying very branched program structures
with concurrency, which is questionable when using �ow charts or UML designs.
For large complex algorithms with concurrency when mathematical analysis of a
graph is cumbersome, it is possible to use PN simulators to estimate their perfor-
mance. The proposed Petri Nets based modelling of the telemedicine tasks gives
means for integrated presentation of environment properties, time constraints and
for tracing of the �ow of control in the designed structures.

In this work the Renew PN simulator was used [4], which provides good
simulation equipment, as well as robust performance.

This work was partially supported by the SMWK Research Grant while
V. Khoromskaia was working as a guest researcher at the Institute of Informatics,
University of Leipzig, Germany.

Acknowledgements. I would like to thank Prof. Dr. K. Irmscher for the
support of the current work and Dipl.-Inf. H. Schulze for the statement of the
problem.

I am appreciative to Prof. Dr. S. Gerber for reading the manuscript and for
useful comments on Section 2. I thank Dr. J. Waldmann for valuable remarks on
the construction of the algorithm for overlapping actions.

I acknowledge Dr. E. Ayrjan for the support in publishing process.

REFERENCES

1. Baumgarten B. Petri-Netze. Grundlagen und Anwendungen. Spectrum, Acad. Verlag,
1996.

2. Gerber S. Petri-Netze. www.informatik.uni-leipzig.de/ theo/theo.html, 2000.
3. Murata T. Petri Nets: Properties, Analysis and Applications // Proc. of the IEEE. 77(4).

1989.

13

4. Wienberg F., Kummer O., Duvigneau M. Renew Å User Guide. Release 1.6. University
of Hamburg, Department for Informatics, 2002; www.renew.de.

5. Peterson J. L. Petri Net Theory and the Modelling of Systems. Prentice Hall, 1981.

6. Lectures on Petri Nets I: Basic Models. Advances in Petri Nets. Lecture Notes in
Computer Science / Eds. W. Reisig, G. Rosenberg. Springer Verlag, 1998.

7. Schulze H., Irmscher K. A Mobile Distributed Telemedical System // Proc. of USM
2000 Å Trends in Distributed Systems. Third International IFIP/GI Conference. Mu-
nich: Springer, 2000; www.memos-online.de/paper dt.html.

Received on May 24, 2004.

Šµ··¥±Éµ· ’. …. �µ¶¥±µ

�µ¤¶¨¸ ´µ ¢ ¶¥Î ÉÓ 07.07.2004.
”µ·³ É 60× 90/16. �Ê³ £ µË¸¥É´ Ö. �¥Î ÉÓ µË¸¥É´ Ö.

“¸². ¶¥Î. ². 1,18. “Î.-¨§¤. ². 1,67. ’¨· ¦ 310. Ô±§. ‡ ± § º 54517.

ˆ§¤ É¥²Ó¸±¨° µÉ¤¥² �¡Ñ¥¤¨´¥´´µ£µ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤µ¢ ´¨°
141980, £. „Ê¡´ , Œµ¸±µ¢¸± Ö µ¡²., Ê². †µ²¨µ-ŠÕ·¨, 6.

E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/

