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On Uncertainty Relations in Quantum Mechanics

Uncertainty relations (UR) are shown to have nothing specific for quantum

mechanics (QM), being the general property valid for the arbitrary function. A wave

function of a particle having a precisely defined position and momentum in QM simul-

taneously is demonstrated. Interference on two slits in a screen is shown to exist

in classical mechanics. A nonlinear classical system of equations replacing the QM

Schrödinger equation is suggested. This approach is shown to have nothing in common

with the Bohm mechanics.

The investigation has been performed at the Frank Laboratory of Neutron Physics,

JINR.
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Èãíàòîâè÷ Â. Ê. E4-2004-72

Î ñîîòíîøåíèÿõ íåîïðåäåëåííîñòè â êâàíòîâîé ìåõàíèêå

Ïîêàçàíî, ÷òî ñîîòíîøåíèÿ íåîïðåäåëåííîñòè (ÑÍ), ÿâëÿÿñü îáùèì ñâîé-

ñòâîì âñåõ ôóíêöèé, íå èãðàþò íèêàêîé îñîáåííîé ðîëè â êâàíòîâîé ìåõàíèêå

(ÊÌ) è íå çàïðåùàþò ÷àñòèöå èìåòü îäíîâðåìåííî àáñîëþòíî òî÷íî îïðåäåëåí-

íûå ïîëîæåíèå è èìïóëüñ. Íà ïðèìåðå èññëåäîâàíèÿ òðàåêòîðèè êëàññè÷åñêîé

çàðÿæåííîé ÷àñòèöû ïîêàçàíî, ÷òî èíòåðôåðåíöèÿ íà äâóõ ùåëÿõ ñóùåñòâóåò

è â êëàññè÷åñêîé ìåõàíèêå. Îáñóæäàåòñÿ íåëèíåéíàÿ ñèñòåìà êëàññè÷åñêèõ

óðàâíåíèé äëÿ òðàåêòîðèè ÷àñòèöû è åå ïîëÿ, êîòîðûå ìîãëè áû çàìåíèòü óðàâ-

íåíèå Øðåäèíãåðà. Ïîêàçàíî, ÷òî òàêîé ïîäõîä íå èìååò íè÷åãî îáùåãî ñ ìåõà-

íèêîé Áîìà.

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè íåéòðîííîé ôèçèêè èì. È. Ì. Ôðàíêà

ÎÈßÈ.

Ñîîáùåíèå Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



INTRODUCTION

A widely spread belief dominates in physical community that uncertainty
relations (UR) are the cornerstone of quantum mechanics (QM). We want to
show that they have nothing speciˇc for QM. They are valid in QM, as in any
ˇeld where we meet functions. The real cornerstone of QM is the Schréodinger
equation, which was a great guess, like Maxwellian ones. In Sec. 1 we remind
to readers how UR are proven for an arbitrary function. It follows from this
proof that UR have nothing speciˇc for QM. In Sec. 2 we show that such notions
as position and momentum are a matter of deˇnition for an extended object
like a wave function, and demonstrate that nonsingular de Broglie wave packet
describes a particle, which simultaneously has precisely deˇned momentum and
position. In Sec. 3 we show that interference is not an exclusive property of a
wave mechanics. It takes place also in classical mechanics. In Sec. 4 we discuss
whether QM equation can be replaced with classical equations. We suppose
that it is possible to deˇne a system of equations for trajectory and ˇeld of the
particle, propose for mathematicians to solve an electrodynamical problem for an
electron moving through a slit in a conducting screen, and show that such system
of equations is not contained in the so-called ®Bohm mechanics¯. In conclusion
we repeat our main points.

1. WHAT ARE UR

UR is a mathematical theorem which relates ranges of a function and its
Fourier image. This theorem is valid in all branches of physics and mathematics
dealing with extended objects described with functions. Let us remind this well-
known theorem.

Let us take an arbitrary function f(x) of ˇnite range, and its Fourier image

F (p) =

+∞∫
−∞

f(x) exp(ipx)dx, (1)
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and deˇne
+∞∫

−∞

|f(x)|2dx =

+∞∫
−∞

|F (p)|2dp ≡ N < ∞, (2)

x0 =
1
N

∫
x|f(x)|2dx, p0 =

1
N

∫
p|F (p)|2dp. (3)

With this function we can write the nonnegative integral

1
N

∫
|(α(x − x0) + d/dx − ip0)f(x)|2 = α2A + αB + C (4)

for arbitrary α, where

A =
1
N

∫
(x − x0)2|f(x)|2dx =

1
N

∫
(x2 − x2

0)|f(x)|2dx ≡ 〈(∆x)2〉, (5)

B=
1
N

∫
x

d

dx
|f(x)|2dx=

∫
d

dx
(x|f(x)|2)−

∫
|f(x)|2= − 1

N

∫
|f(x)|2= − 1,

(6)

C =
1
N

∫
(p − p0)2|F (p)|2dp =

1
N

∫
(p2 − p2

0)|F (p)|2dp ≡ 〈(∆p)2〉. (7)

Since Eq. (4) is nonnegative for all α, we have

α2〈(∆x)2〉 − α + 〈(∆p)2〉 � 0,

which is possible only for

〈(∆p)2〉〈(∆x)2〉 � 1
4
, (8)

which is just the uncertainty relation used in QM, however, it is satisˇed for
arbitrary function f(x), and therefore is not related speciˇcally to QM. Thus
it cannot be a cornerstone of QM. The uncertainty relation takes place in all
branches of physics. For example, in classical ˇeld theory, thermodynamics,
hydrodynamics, and plasma physics. It is valid even in classical mechanics,
because for functions x(t) we have UR (∆ω)2(∆t)2 � 1/4.

UR contain nothing speciˇc to QM. QM is only a particular case, which
is very alike to classical ˇeld theory.
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2. POSITION AND MOMENTUM CAN BE DEFINED ABSOLUTELY
PRECISELY SIMULTANEOUSLY

Since the wave function in QM deˇnes a particle and it is an extended object,
the question arises: what is a position of the extended object?

The answer to this question is: position of the extended object is the matter
of deˇnition.

In classical electrodynamics position of the electron is the singularity of its
ˇeld.

In classical mechanics position of, say, a ball is the matter of deˇnition. You
may choose its center or a point, where you touch it.

For a free particle of mass m in QM we can use the nonsingular de Broglie's
wave-packet [1Ä3]

ψ = j0(s|r − vt|) exp (ivr − iωt), (9)

in which j0(x) is the spherical Bessel function, s is a parameter determining the
width of the function, and

ω = (v2 + s2)/2. (10)

Here we use unities � = m = 1, so velocity v of the particle is the same as its
wave-vector k. Function (10) is a solution of the Schréodinger equation

(i∂t + ∆/2)ψ = 0.

We can deˇne its position as a position of maximum of |ψ|2 and as a momentum
of corresponding velocity v. They are deˇned absolutely precisely simultaneously
in QM.

3. INTERFERENCE IN CLASSICAL MECHANICS

Let us consider an experiment on interference on two slits in a screen, shown
in Fig. 1.

It is usually stated that particle goes through both slits in the screen, and
transmitted parts of the particle wave function interfere on the screen of observa-
tion, which is manifested by the interference pattern. However, the interference
can be explained purely classically with particle going through only one exactly
speciˇed slit.

Let us consider the same experiment with a classical electron, moving through
one speciˇed slit in the target screen, as is shown in Fig. 2.

Because of interaction of the electron ˇeld with the screen, the electron tra-
jectory changes after the screen. Interaction of the electron ˇeld with the screen
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St depends on the screen structure. In particular, it is different when there is
one or two slits. It means that the direction of propagation of the electron af-
ter St depends on whether the second slit is opened or closed. Thus the second

Fig. 1. According to standard QM wave
function of a particle transmitted through
both slits in target screen St interferes
after St and gives a diffraction pattern on
observation screen So

slit interferes with electron motion, even
if the electron goes precisely through the
chosen upper slit.

Our considerations permit us to pre-
dict the change of direction of the elec-
tron after the screen St, if we perform
an experiment shown in Fig. 2, where the
second slit can be closed with the shut-
ter. With such simple considerations we
cannot predict the diffraction pattern on
the screen So, shown in Fig. 1, because
in classical physics there are no such a
parameter as wavelength, however wave-
length can enter, if we take into account
relativistic retardation of the interaction of
electron with its own ˇeld re�ected from

the screen St or introduce a quantum of action. Indeed, we can suppose that
the shift of the incident electron along distance l can affect the total ˇeld of the
electron in presence of the screen St, and consecutively electron motion only if
pl = h. Just at this point the quantization can enter into the classical behavior,
and give such a parameter as the wavelength.

S
t

S
o

e

Shutter

2nd slit closed

2nd slit open

Fig. 2. An experiment with classical electron going through the upper slit in the screen
St. Because of interaction of the electron ˇeld with the St its trajectory after the screen
depends on whether the other slit is opened or not. This is an interference illustration of
two slits in classical physics
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4. NONLINEAR CLASSICAL SYSTEM OF EQUATIONS INSTEAD OF
QM

All usual equations in mathematical physics can be sorted into two groups:

1. Field equations of the type

L̂ψ(r) = j(r), (11)

where L̂ is an operator, which can be linear or nonlinear in ˇeld ψ(r), and j(r)
is a source, which can depend on some particle trajectory r(t), and this trajectory
is supposed to be ˇxed. As an example we can mention Maxwell equations with
given currents, and with determined boundary conditions.

2. Trajectory equations of the type

d2r

dt2
= F (r(t), t), (12)

where the ˇeld of force F (r, t) is ˇxed.

However, above, we had another type of the problem. It differs from (11)
and (12). In this problem one has the trajectory equation

d2rp

dt2
= F (ψ(rp(t), t)), (13)

with the force F (ψ), which depends on unknown ˇeld ψ. The ˇeld ψ is a solution
of the ˇeld equation

L̂ψ(r, t) = j(r, rp(t)) (14)

with the source which depends on yet unknown solution of Eq. (13).

Formally we can exclude ψ = L̂−1j(r, rp(t)) from Eq. (13); however, then
we obtain highly nonlinear equation for trajectory

d2rp

dt2
= F (L̂−1j(rp(t), rp(t′))). (15)

Solution of (15) or of the system ((13), (14)) is the challenge for mathematicians.
QM avoids solution of such a nonlinear system, however, reduction of non-

linear system to the linear Schréodinger equation costs probabilities instead of
determinism.

However, it would be very interesting to try to solve such a nonlinear system,
which can be easily formulated in classical electrodynamics.
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4.1. The Problem of Classical Electrodynamics. We have the Maxwell
equation for 4-tensor F µν :

∂µFµν(r, t) =
4π

c
euνδ(r − r(t)), µ, ν = 0 ÷ 3, (16)

where uν is speed with components u0 = c, uk = vk(t) for k = 1 ÷ 3. The
functions r(t) and v(t) are not known and are to be determined from the other
equation Å the trajectory one

m
dv(t)

dt
= eE(r, t) +

e

c
[v(t)H(r, t)],

where

v(t) =
dr(t)
dt

,

and electric and magnetic ˇelds are the components of the 4-tensor F µν

Ek(r, t) = F0k(r, t), Hk = εijkFij(r, t),

which are formed by ˇeld, re�ected from the target screen, and the re�ection is
determined by boundary conditions for the ˇeld Fµν . The screen can be accepted
to be an inˇnitely thin ideal conductor. Position of slits, their width and the
distance between them can be arbitrary.

For the beginning it is sufˇcient to solve even nonrelativistic, pure Coulomb
problem. In the case when there are no slits, solution in nonrelativistic limit is
trivial.

We want to remark that this nonlinear system has nothing to do with Bohm
mechanics. No quantum potential is introduced, and no Schréodinger equation is
presupposed. In the next section we brie�y review the Bohm mechanics.

4.2. Bohm Mechanics and Hydrodynamical Interpretation. There are a lot
of activity on interpretation of quantum mechanics in terms of classical trajectories
and quantum potential (see, for example, [4] and references therein), which are
known as Bohm mechanics or hydrodynamical interpretation. However, it is not
a classical version, which replaces quantum mechanics, but only an alternative
way of solving of the Schréodinger equation. We can ˇnd the full wave function
ψ by solving the Schréodinger equation

i�
∂

∂t
ψ(r, t) =

[
− �

2

2m
∆ + V (r)

]
ψ, (17)

or represent it as ψ(r, t) = R(r, t) exp(iS(r)/�), where R(r) = |ψ(r), substi-
tute into (17), and after separation of real and imaginary parts obtain two other
equations for them [4]

∂R2

∂t
+ ∇

(
R2 ∇S

m

)
= 0, (18)
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∂S

∂t
+

(∇S)2

2m
+ V − �

2

2m

∇2R

R
= 0. (19)

Solution of these two equations is equivalent to solution of single Eq. (17). When
you ˇnd R and S, you can ˇnd such things as

Q(r, t) =
�

2

2m

∇2R

R
, (20)

which you call ®quantum potential¯, and

v(r, t) =
∇S(r, t)

m
, (21)

which you call speed. If you apply ∇ to Eq. (19) and use deˇnition (21), you
obtain the equation

m
∂v(r, t)

∂t
+ m(v · ∇)v = −∇(V (r) + Q(r, t)), (22)

which is equivalent to

dv(r, t)
dt

= −∇(V (r) + Q(r, t)). (23)

However, v is not equal to ṙ(t), because it is a ˇeld, which depends on both r
and t.

Now, if you have already solved Eq. (17), you can consider (23) as the
Newton equation and ˇnd a family of trajectories. However, in this case you
arrive at the problem of ˇnding trajectories for given ˇeld (12). It has nothing in
common with the proposed classical nonlinear system of equations.

CONCLUSION

We think that the wave function ψ in QM represents some kind of a ˇeld,
and the force of this ˇeld can be proportional to |ψ|2. Then it will explain why
in QM probability for a particle to be detected is proportional to |ψ|2. If ψ is a
ˇeld, then the position and momentum of a particle which is the source of this
ˇeld can be naturally deˇned simultaneously, and UR do not forbid it.
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