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Uncertainty relations (UR) are shown to have nothing specific for quantum
mechanics (QM), being the general property valid for the arbitrary function. A wave
function of a particle having a precisely defined position and momentum in QM simul-
taneously is demonstrated. Interference on two slits in a screen is shown to exist
in classical mechanics. A nonlinear classical system of equations replacing the QM
Schrodinger equation is suggested. This approach is shown to have nothing in common
with the Bohm mechanics.
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INTRODUCTION

A widely spread belief dominates in physical community that uncertainty
relations (UR) are the cornerstone of quantum mechanics (QM). We want to
show that they have nothing specific for QM. They are valid in QM, as in any
field where we meet functions. The real cornerstone of QM is the Schrédinger
equation, which was a great guess, like Maxwellian ones. In Sec.1 we remind
to readers how UR are proven for an arbitrary function. It follows from this
proof that UR have nothing specific for QM. In Sec.2 we show that such notions
as position and momentum are a matter of definition for an extended object
like a wave function, and demonstrate that nonsingular de Broglie wave packet
describes a particle, which simultaneously has precisely defined momentum and
position. In Sec.3 we show that interference is not an exclusive property of a
wave mechanics. It takes place also in classical mechanics. In Sec.4 we discuss
whether QM equation can be replaced with classical equations. We suppose
that it is possible to define a system of equations for trajectory and field of the
particle, propose for mathematicians to solve an electrodynamical problem for an
electron moving through a slit in a conducting screen, and show that such system
of equations is not contained in the so-called «Bohm mechanics». In conclusion
we repeat our main points.

1. WHAT ARE UR

UR is a mathematical theorem which relates ranges of a function and its
Fourier image. This theorem is valid in all branches of physics and mathematics
dealing with extended objects described with functions. Let us remind this well-
known theorem.

Let us take an arbitrary function f(z) of finite range, and its Fourier image

+o00o
F(p) = / f(x) exp(ipz)dz, (1)



and define
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With this function we can write the nonnegative integral
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Since Eq. (4) is nonnegative for all o, we have
a?((Az)?) —a+{(Ap)*) > 0
which is possible only for

(B (A2 > 7. ®)

which is just the uncertainty relation used in QM, however, it is satisfied for
arbitrary function f(z), and therefore is not related specifically to QM. Thus
it cannot be a cornerstone of QM. The uncertainty relation takes place in all
branches of physics. For example, in classical field theory, thermodynamics,
hydrodynamics, and plasma physics. It is valid even in classical mechanics,
because for functions z(t) we have UR (Aw)?(At)? > 1/4.

UR contain nothing specific to QM. QM is only a particular case, which
is very alike to classical field theory.



2. POSITION AND MOMENTUM CAN BE DEFINED ABSOLUTELY
PRECISELY SIMULTANEOUSLY

Since the wave function in QM defines a particle and it is an extended object,
the question arises: what is a position of the extended object?

The answer to this question is: position of the extended object is the matter
of definition.

In classical electrodynamics position of the electron is the singularity of its
field.

In classical mechanics position of, say, a ball is the matter of definition. You
may choose its center or a point, where you touch it.

For a free particle of mass m in QM we can use the nonsingular de Broglie’s
wave-packet [1-3]

¥ = jo(s|r — vt|) exp (ivr — iwt), 9)

in which jo(z) is the spherical Bessel function, s is a parameter determining the
width of the function, and
w=(v?+5%)/2. (10)

Here we use unities &7 = m = 1, so velocity v of the particle is the same as its
wave-vector k. Function (10) is a solution of the Schrédinger equation

(i + AJ2) = 0.

We can define its position as a position of maximum of |t/|? and as a momentum
of corresponding velocity v. They are defined absolutely precisely simultaneously
in QM.

3. INTERFERENCE IN CLASSICAL MECHANICS

Let us consider an experiment on interference on two slits in a screen, shown
in Fig. 1.

It is usually stated that particle goes through both slits in the screen, and
transmitted parts of the particle wave function interfere on the screen of observa-
tion, which is manifested by the interference pattern. However, the interference
can be explained purely classically with particle going through only one exactly
specified slit.

Let us consider the same experiment with a classical electron, moving through
one specified slit in the target screen, as is shown in Fig. 2.

Because of interaction of the electron field with the screen, the electron tra-
jectory changes after the screen. Interaction of the electron field with the screen



S; depends on the screen structure. In particular, it is different when there is
one or two slits. It means that the direction of propagation of the electron af-
ter S; depends on whether the second slit is opened or closed. Thus the second
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Fig. 1. According to standard QM wave
function of a particle transmitted through
both slits in target screen S: interferes
after S; and gives a diffraction pattern on
observation screen S,

slit interferes with electron motion, even
if the electron goes precisely through the
chosen upper slit.

Our considerations permit us to pre-
dict the change of direction of the elec-
tron after the screen Sy, if we perform
an experiment shown in Fig. 2, where the
second slit can be closed with the shut-
ter. With such simple considerations we
cannot predict the diffraction pattern on
the screen S,, shown in Fig. 1, because
in classical physics there are no such a
parameter as wavelength, however wave-
length can enter, if we take into account
relativistic retardation of the interaction of
electron with its own field reflected from

the screen S; or introduce a quantum of action. Indeed, we can suppose that
the shift of the incident electron along distance [ can affect the total field of the
electron in presence of the screen S, and consecutively electron motion only if
pl = h. Just at this point the quantization can enter into the classical behavior,
and give such a parameter as the wavelength.
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Fig. 2. An experiment with classical electron going through the upper slit in the screen
St. Because of interaction of the electron field with the S; its trajectory after the screen
depends on whether the other slit is opened or not. This is an interference illustration of

two slits in classical physics



4. NONLINEAR CLASSICAL SYSTEM OF EQUATIONS INSTEAD OF
oM

All usual equations in mathematical physics can be sorted into two groups:
1. Field equations of the type

Lp(r) = j(r), (11)

where L is an operator, which can be linear or nonlinear in field (r), and j(r)
is a source, which can depend on some particle trajectory r(t), and this trajectory
is supposed to be fixed. As an example we can mention Maxwell equations with
given currents, and with determined boundary conditions.

2. Trajectory equations of the type

d2r

W = F(’I‘(t),t), (12)

where the field of force F(r,t) is fixed.
However, above, we had another type of the problem. It differs from (11)
and (12). In this problem one has the trajectory equation

d*r,
dt?

= F((rp(t), 1)), (13)

with the force F(¢), which depends on unknown field ¢). The field ¢ is a solution
of the field equation

Lp(r,t) = j(r,my(t)) (14)

with the source which depends on yet unknown solution of Eq. (13).

Formally we can exclude ¢ = L~'j(r,r,(t)) from Eq.(13); however, then
we obtain highly nonlinear equation for trajectory

dd;p = F(L71j(rp(t),mp(t))). (15)

Solution of (15) or of the system ((13), (14)) is the challenge for mathematicians.
QM avoids solution of such a nonlinear system, however, reduction of non-
linear system to the linear Schrodinger equation costs probabilities instead of
determinism.
However, it would be very interesting to try to solve such a nonlinear system,
which can be easily formulated in classical electrodynamics.



4.1. The Problem of Classical Electrodynamics. We have the Maxwell
equation for 4-tensor F',,,:

4
OpFu(r,t) = %eu,,é(r—r(t)), wyv =03, (16)
where u, is speed with components ug = ¢, ur = v(t) for k = 1 + 3. The

functions r(¢) and v(t) are not known and are to be determined from the other
equation — the trajectory one

do(t) e
m o = eB(r,1) + o H(r )
where dr(t)
'U(t) = dt )

and electric and magnetic fields are the components of the 4-tensor F,,
Ep(r,t) = For(r,t), Hy = e€ijFi;(r,t),

which are formed by field, reflected from the target screen, and the reflection is
determined by boundary conditions for the field F),,,. The screen can be accepted
to be an infinitely thin ideal conductor. Position of slits, their width and the
distance between them can be arbitrary.

For the beginning it is sufficient to solve even nonrelativistic, pure Coulomb
problem. In the case when there are no slits, solution in nonrelativistic limit is
trivial.

We want to remark that this nonlinear system has nothing to do with Bohm
mechanics. No quantum potential is introduced, and no Schrédinger equation is
presupposed. In the next section we briefly review the Bohm mechanics.

4.2. Bohm Mechanics and Hydrodynamical Interpretation. There are a lot
of activity on interpretation of quantum mechanics in terms of classical trajectories
and quantum potential (see, for example, [4] and references therein), which are
known as Bohm mechanics or hydrodynamical interpretation. However, it is not
a classical version, which replaces quantum mechanics, but only an alternative
way of solving of the Schrodinger equation. We can find the full wave function
1) by solving the Schrodinger equation

'ha t) = hQA V 17
i) = | <5 A V) (1)

or represent it as ¢(r,t) = R(r,t) exp(iS(r)/k), where R(r) = |1)(r), substi-
tute into (17), and after separation of real and imaginary parts obtain two other
equations for them [4]

oR
ot

v (RQ%S) =0, (18)
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ot 2m 2m R
Solution of these two equations is equivalent to solution of single Eq. (17). When
you find R and S, you can find such things as

=0. (19)

h? V°R
t) = — 20
Qr ) = 7—~—. 20)
which you call «quantum potential», and
VvS(r,t
olr,t) = YO0, @1)
m

which you call speed. If you apply V to Eq. (19) and use definition (21), you
obtain the equation

(%(87; i m(v-V)v ==V (V(r) 4+ Q(r,1)), (22)
which is equivalent to
LD W)+ Q). (23)

dt

However, v is not equal to 7(¢), because it is a field, which depends on both r
and ¢.

Now, if you have already solved Eq. (17), you can consider (23) as the
Newton equation and find a family of trajectories. However, in this case you
arrive at the problem of finding trajectories for given field (12). It has nothing in
common with the proposed classical nonlinear system of equations.

CONCLUSION

We think that the wave function ¢ in QM represents some kind of a field,
and the force of this field can be proportional to ||2. Then it will explain why
in QM probability for a particle to be detected is proportional to |¢|%. If v is a
field, then the position and momentum of a particle which is the source of this
field can be naturally defined simultaneously, and UR do not forbid it.
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