E5-2004-69

H. Fukuda', M. Katuya', E. O. Alt*>, A. V. Matveenko

NONCLASSICAL ORTHOGONAL POLYNOMIALS
AND CORRESPONDING QUADRATURES

Submitted to «Computer Physics Communications»

'School of Administration and Informatics, University of Shizuoka,
Shizuoka 422-8526, Japan

Mnstitut fiir Physik, Universitit Mainz, D-55099 Mainz, Germany

dykyna X. u 1ip. E5-2004-69
Hexraccuieckre MOJTMHOMBI M COOTBETCTBYFOIIUE UM KBAIPaTyPhI

IIpencraBnena mporpamMma AJs BBIYHCICHHUS aOCIHICC M BECOB KBaAPaTypPHI
lNaycca ams mpou3BONBHOTO Beca W MHTepBana. IIporpamMma HamucaHa Ha sI3bIKE
Mathematica u paboTaeT B TOM Clly4yae, €CIM HHTETPajabl MOMEHTOB BBIYHCIISIOTCS
B aHAJIUTHYECKOM BHJIe. PesynbraTtom pabotsl mporpammel siBisiercss QOPTPAH-noz-
IIporpaMma, roToBast sl BBIYUCIIEHUS ONPEAEICHHOIO HHTErpaa.

Pabora Beimosnnena B Jlaboparopun teopernueckoit puzuku um. H. H. Borosro-
6oBa OUN.

IMpenpuaT OOBEANHEHHOTO HHCTHTYTA SAEPHBIX HccaenoBanuil. lyona, 2004

Fukuda H. et al. E5-2004-69
Nonclassical Orthogonal Polynomials
and Corresponding Quadratures

We construct nonclassical orthogonal polynomials and calculate abscissas
and weights of Gaussian quadrature for arbitrary weight and interval. The program is
written by Mathematica and it works if moment integrals are given analytically.
The result is a FORTRAN subroutine ready to utilize the quadrature.

The investigation has been performed at the Bogoliubov Laboratory of Theoreti-
cal Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

INTRODUCTION

The integrals of elementary functions could not, in general, be computed
analytically, while derivatives could be. A lot of numerical analysis of the
quadrature has been worked out [1]. Generally, the integral of a function is
approximated by the sum of its functional values at a set of points, multiplied
by certain weighting coefficients. The Gaussian quadrature gives the freedom to
choose both the weights and the location of the abscissas at which the function
is to be evaluated. The number of the function evaluation can be reduced twice.

The classical Gaussian quadra-
tures are related to the correspond-
ing classical polynomials which all 4 [
are either hypergeometric or conflu-
ent hypergeometric series, i.e., triv- W M | | |)
ial cases; if we are limited to use 2
them only, the power of the method,
which allows one to arrange the
choice of weights and abscissas to
make the integral exact for «poly-
nomials times some known function)

Fig. 1. Up to n = 4 normalized orhogo-

W (x)», is wasted. nal polynomials p,(z = z(x)) with W (z) =

He.re we produced the cot.ie for 1/(1 + 2%)%, 2(z) = ©/v1 + 22, and interval
generating Gauss quadrature with ar- [a,b] = [, 00]

bitrary weight and interval. It can
also be used for classical cases if needed. We have found the code to be dramat-
ically effective used in our 2D quadrature [2].

To finish the Introduction we present the first four polynomials useful (closely
related) to our application.

The corresponding n = 1, 2, 3,4 monic polynomials are:

2 V2

3 -2’

6

V209 —28)z 1 4577 —448
9m2 — 187 —32 20 972 — 187 — 32’
5 24 V2(2257% — 1290 7 + 1832) 2
77 — — - -
7 67573 — 90072 — 13776 7 + 31232
1 (—1374727 + 4725 73 + 285376) z
14 67573 — 900 72 — 13776 7 + 31232
16 V2(1078 +2257% —10507)
35 67573 — 900 w2 — 13776 7 4 31232’
. 40 V2(—948150 7% + 1061880 7 + 165375 7° + 894208) 23
32480625 w1 —3307500 73—99831600 m2+417542400 m—465531904
1 (1386729600 —496125073+74418757* 34422480072 —1530253312) z°
4 24806257*—3307500m3—9983160072 44175424007 —465531904
5 V2(197011456 — 58557120 7 — 22623300 7% + 6780375 7°) z
42 2480625 w1 — 3307500 w3 — 99831600 72 + 417542400 7 — 465531904

1 52093125 7t — 9650745344 — 2520705600 72 + 9375744000 7
336 2480625 7+ — 3307500 73 — 99831600 72 + 417542400 — 465531904

22
)

1. METHOD

We consider a general one-dimensional integral with a given weight W (z)

b
I= / J (@)W (), (1)

where infinity is allowed for both a and b. The variable z(z) is a monotonic
function of x and is introduced for convenience. It is well known that the
Gaussian quadrature (GQ, hereafter) is a quite effective numerical method if the

integrand f(z(x)) is smooth. The integral I is approximated by GQ of degree
n as

Imejf(zj). 2)
j=1

Abscissas z; and weights w; are determined by demanding that Eq. (2) is exact
if f(z) is a polynomial of degree 2n — 1 or less.

As is well known [1], the abscissas z; are j = 1,2, 3,...,n distinct zeros of
the polynomial p,,(z) of degree n defined by the recurrence relation

pj+1(2) = (2 — a;)p;j(2) — bjpj-1(z) 3)

with p_1(z) =0, po(z) = 1, where

_ il (pilpy)
T Apslps) b (pj—1lpj—1)’ @
and
b
flo) = [£EgW @ 5)

The polynomials defined as above are monic, i.e., the coefficient of their leading
term [27 for p;(z)] is unity. Note that the coefficients in the recurrence relation
depend on the adopted normalization.

In its turn, the weights w;, 7 = 1,2,3,...,n are given by the expression
(Pn—a|pn—1)
w; = ——————— (6)
T ()P, ()
where p/,(z) is the derivative of p,(z) with respect to z.
If we know the first 2n moments of a weight function W (z),
b
ukz/ FW(z)de, k=0,1,...,2n—1, @)
a

it is formally possible to calculate p,(z). However, it is well known that the
solution of the set of algebraic equations for the coefficients a; and b; in terms
of the moment i, is extremely ill-conditioned: «Even in double precision it is
not unusual to lose all accuracy by the time n = 12» [1]. The effective and
stable methods to calculate GQ abscissas z; and weights iy, are known only for
classical polynomials [1].

On the other hand, if we use symbolic calculations, there is formally no
problem with accuracy since we can obtain accurate results by converting the
analytic output into numbers. However, in symbolic calculations there is also a
limitation originated in the capacity of a computer memory. For example, we
have found it to be difficult to obtain the abscissas in the case of n = 12 for

W) = gm0 = g = Lo ®

with ¢ = 1 by a direct unsophisticated run.

In order to get abscissas and weights for an arbitrary weight function and
large enough n we suggest to combine numerical and symbolic calculations as
follows:

1. We calculate the moments (7) symbolically and convert the results into
numbers having N, digits since if we use the moment expressed in symbols the
polynomial p,(z) might be too complex to be used by the usual computer.

2. We obtain the polynomial p,(z) from the moment accurate in N,, digits
and, accordingly, a; and b; from Eq. (4).

3. Since accurate abscissas are necessary to calculate weights w; by Eq. (6),
instead of seeking zeros of p,(z), we follow the suggestion from [1] and use the
so-called Jacobi matrix,

ap Vb
Vb a1 Vb
J = ...) 9)
bp—2 An—2 bn—1

\V bp—1 Gp—1

In this case, the eigenvalues of .J are the abscissas z; and the weights w; are
given by the corresponding eigenvector v; as

. 2
w; — Holvs el (10)
Vj . Vj
where e; = (1,0,0,...,0). We solve this eigenvalue problem numerically in N,

digits precision.

This procedure is quite elementary and can be programmed easily using any
symbolic computation system, such as Mathematica or Maple. But, if we want
to have the final accuracy NN,, the internal accuracies N, for the moments j;
strongly depend on the problem: the weight function W (x), the argument z(z),
the interval [a,)] and the degree n of GQ formula. That is why we check the
final accuracy N, by comparing the exact moments j;, with those calculated by
using the obtained GQ

Ak =) W], (11)
j=1
for k=0,1,...,2n—1. Here £; and w; are the calculated abscissas and weights,

respectively. Naturally, if they coincide in N, digits, we are sure that we have
the same accuracy for approximation (2). The required accuracy N, for the
eigenvalue problem of the Jacobi matrix also depends on the problem.

2. DESCRIPTION OF THE PROGRAM

The program was written by using Mathematica 4.0 and should work for
its later versions. It produces the abscissas and weights for the weight function
W (x), the argument z(z) and the interval [a,b]. It works if Mathematica can
calculate the moments (7) analytically. The result is the FORTRAN subroutine

that contains the arrays of calculated abscissas and weights (see the end of this

section).
Integral (1) is defined at the beginning of the Mathematica code as follows.

The integral region [a,b] where a and b are allowed to be infinity. For
example,

(* integral region a, b *)
a=1;
b=Infinity;

The weight function W (x). For example,

(* weight *)
c=1;
Wix_J:=1/(1+ ¢ x°2)"2;

The argument z(z). For example,

(* argument *)
z=x/(8qrt[1+ ¢ x72]);

The inverse of the argument z~!(u), which is defined by z(2~(u)) = w.
For example,

(* inverse relation *)
zi=u/(Sqrt[1- c u~2]);

The degree of the GQ, n. For example,

(* degree of formula *)
n=4;

The internal precision in number of digits is: NN, for the moment ; and
N, for the eigenvalue problem of the Jacobi matrix. For example,

(* Internal precision *)

(* in number of digits *)
Nm = 50; (* moments *)

Nz = 25; (*x Jacobi matrix *)

The final precision IV, of calculated abscissas and weights in number of
digits. For example,

(* final precision *)
Na = 17;

FORTRAN output has two options. If outputww is set to 0, the FORTRAN
subroutine produced by Mathematica provides weights itself, otherwise the FOR-
TRAN subroutine provides weights divided by the weight function W (x). This
option is useful for very small or large weights. It can be important, for example,
in the case of Gauss—Laguerre quadrature:

W(z)=e"% z(z) ==z, [a,b] = [0, 00]. (12)

(* FORTRAN output *)
outputww = 0;

The name of the produced FORTRAN file. For example,

(* fortran filename *)
fortranfname="gqxw.f";

After checking the above parameters, we execute our Mathematica code by
pushing

[Shift]+[Enter]
keys. Then a message
Evaluating moment z"i W([x]...

will appear. If all moments are obtained analytically, evaluation of the Jacobi
matrix begins. Otherwise the calculation will stop. Next, the abscissas and
weights are calculated as described in the previous section. When the calculation
is finished, the moments u are compared with the GQ-approximation fj (11).
The two are displayed in NN, digits for k = 0,1,2,...,2n — 1 together with the
relative error .
(Al
i

If the corresponding pairs coincide, we accept the results and the FORTRAN
subroutine is being produced.

In the following example, the abscissas are stored in the array x when you
call this subroutine by setting the input n, the degree of the GQ. Here, abscissas
are given by x; instead of z; with z; = z(z;). In the array w, the weights w; or
weights divided by the weight function w; /W (z;) are stored depending on the
value of the option outputww.

C Abscissas and weights of Gaussian Quadrature
c produced by Mathematica code: AWGQ

cccccce

c for int_a b{f(z(x))W(x)dx}

c argument z(x) = x/Sqrt(1l + x*x*2)
c weight W(x) = (1 + x**x2)**(-2)
c region a =1

c region b = DirectedInfinity(1)
c GQ order n <= 200

cccccce

subroutine gqxw(x,w,n)
x: abscissas

c w: weights
implicit real*8(a-h,o0-z)
dimension x(200),w(200)

if(n.eq.4) then
x(1)=1.0545042737116109D0
w(1)=3.1956375209299262D-2
x(2)=1.3141812952767702D0
w(2)=5.3744870692213551D-2
x(3)=1.9558594860602826D0
w(3)=4.2533155301151633D-2
x(4)=3.9506935616438789D0
w(4)=1.4464680496059708D-2
return

end if

stop ’gqxw.f, n=’, n
end

3. TEST RUN

The test run presents integral (1) for the weight function, the argument and
interval (8). The corresponding output list is that displayed in Mathematica 2.2
for n = 4. Since the output from Mathematica 4.0 is graphical, we have chosen
a simpler output from Mathematica 2.2. Here we note that though the program
can work in Mathematica 2.2, it does not control that the analytic moments py,
are really calculated. The FORTRAN file produced was already shown in the
previous section. In Table 1, we tabulate the computation time at Pentium IV
1.7 GHz and the two internal accuracies N, and N, necessary to get the final
accuracy N, = 17 for several values of n. In this case, internal accuracy N,,
strongly depends on n but the internal accuracy /N, does not depend on n.

In Table 2, the internal accuracies N,, and N, necessary to get the final
accuracy N, = 17 for fixed n = 64 are tabulated for two classical quadratures

(Legendre and Laguerre) and our sample GQ. Now, we can see that the internal
accuracy IV, can also depend on the problems.

Table 1. Computation time and internal accuracies for integral (1) with the weight
function, the argument and the interval (8). n is the degree of GQ; N,,, and N, are the
internal accuracies. The final output accuracy NN, is 17 digits. CPU is the computation
time at Pentium IV 1.7 GHz

n N, N, | CPU [s]

4 50 25 1
8 100 25 1
16 400 25 4
32 | 1300 | 25 21

64 | 6000 | 25 3135
96 | 12000 | 25 32323

Table 2. Internal accuracy N,, and N, necessary for three different GQ. The degree
of GQ is n = 64. The final output accuracy NN, is 17 digits. CPU is the computation
time at Pentium IV 1.7 GHz

W(zx) [a, b] z(x) N, | N, | CPU [s]
Legendre 1 [—1,1] x 1300 | 25 29
Laguerre e’ [0, 0] x 1700 | 55 67
1 T
Our example 1, — | 6000 | 25 3135
vle | e | 0|

4. TEST RUN OUTPUT

2 -2
weight W(x)=(1 + x)
X
argument z(x)=------------
2
Sqrt[1l + x]

integral region {a,b}={1, Infinity}
Degree of formula

n=4

Precision

moment Nm=50

Jacobi Nz=25

final Na=17
MachinePrecision=16
FORTRAN file

gaxw.f
Evaluating moment z"i W[x]...
Orthogonal polynomial and Jacobi matrix ...

...50%

...75%

...100%

abscissas

{0.7256104344253013423139944, 0.7958055094055824274365386,
0.8903722295270473536795167, 0.9694266243792582481606508}
weights

{0.03195637520929926237416762, 0.05374487069221355129581688,
0.04253315530115163329036328, 0.014464680496059707847482635}
Check results
exact moment,

moment by GQ, (relative error)

mO: 0.142699081698724155, 0.142699081698724155, (0.e-18)
mi: 0.117851130197757921, 0.117851130197757921, (0.e-18)
m2: 0.098174770424681039, 0.098174770424681039, (0.e-18)
m3: 0.082495791138430545, 0.082495791138430545, (0.e-18)
m4: 0.069920718545673853, 0.069920718545673853, (0.e-18)
m5: 0.059767358886005803, 0.059767358886005803, (0.e-18)
m6: 0.051512949091046158, 0.051512949091046158, (0.e-18)
m7: 0.044755369682243782, 0.044755369682243782, (0.e-18)

*x** computation time=1[sec]

5. FINAL REMARKS

We were calculating rotational three-body resonances in a new adiabatic
approach, and the main numerical job to be done was a 2D quadrature in the
(z,y)-plane [2]. In the hyperspheroidal coordinates we have 1 < z < oo and
—1 <y < 1 [3]. For the case of the molecular hydrogen ion H;’, the integration
over y can be accurately carried out using the Gauss—Legendre scheme while
for the semi-infinite x-region we have tried more than ten different methods but
failed to find something even approximately reasonable. All subroutines with an
automatic control of the accuracy provided finally inaccurate results. Thus, we

were forced to use the fact that our integrands are approximately of the polynomial
form

(o =)

p(z,y) pla,y)”
with the volume element (22 — y?)/p3(z,y), and p(z,y) = 1+ c(a?® + y* —
1) (c being the constant defined by the particle masses to be approximately
10~2 for the H; -system). We have got the dramatic success. With n, = 64
(Gauss quadrature as given here) and n, = 32 (Gauss—Legendre case) all our 2D
integrations using molecular-like orbitals could be done both fast and accurately.

That is why we believe that the multidimensional quadrature is to be the

prime object of our paper.

REFERENCES

1. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in
Fortran 77: The Art of Scientific Computing. Cambridge University Press, 1992.

2. Matveenko A.V., Alt E.O., Fukuda H. Rotational Three-Body Resonances: A New
Adiabatic Approach // Few-Body Systems Suppl. 2001. V.13. P. 140.

3. Matveenko A. V., Abe Y. /| Few-Body Systems. 1987. V.2. P. 127.

Received on May 13, 2004.

Koppexrop T. E. [loneko

Mognuc Ho B ey b 10.06.2004.
®opm 1 60 X 90/16. Bym r ogcetn 5. Iled Tb ofceTH 4.
Ven. ned. 1. 0,93, Yu.-uzn. . 1,33, Tup x 315 ax3. 3 x 3 Ne 54474,

W3n tenbckuii otaen OObeANHEHHOTO HHCTHTYT SIICPHBIX MCCIIEHOB HUit
141980, r. dy6H , Mockosck s 06:1., yi. 2Konmno-Kropu, 6.
E-mail: publish@pds.jinr.ru
www.jinr.ru/publish/

