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The Nuclear Scissors Mode by Two Approaches
(Wigner Function Moments Versus RPA)

Two complementary methods to describe the collective motion, RPA and Wigner
Function Moments (WFM) method, are compared on an example of a simple model —
harmonic oscillator with quadrupole-quadrupole residual interaction. It is shown that
they give identical formulae for eigenfrequencies and transition probabilities of all col-
lective excitations of the model including the scissors mode, which is a subject of our
especial attention. The normalization factor of the «synthetic» scissors state and its
overlap with physical states are calculated analytically. The orthogonality of the spuri-
ous state to all physical states is proved rigorously.

The investigation has been performed at the Bogoliubov Laboratory of Theoreti-
cal Physics, JINR.
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INTRODUCTION

The full analysis of the scissors mode in the framework of a solvable model
(harmonic oscillator with quadrupole-quadrupole residual interaction (HO+QQ))
was given in [1]. Many obscure points in the understanding of this mode nature
were clarified: for example, its coexistence with the isovector giant quadrupole
resonance (IVGQR), the decisive role of the Fermi surface deformation in its
creation, and so on.

The Wigner Function Moments (WFM) method was applied to derive an-
alytical expressions for currents of both coexisting modes (it was done for the
first time), their excitation energies, magnetic and electric transition probabilities.
Unexpectedly, our formulae for energies turned out to be identical with those
derived by Hamamoto and Nazarewicz [2] in the framework of the RPA. This
fact generated the natural motivation for this work: to check the relation between
formulas for transition probabilities derived by two methods. The obvious devel-
opment of this investigation is the systematic comparison of two approaches with
the aim to establish the connection between them. The HO+QQ model is a very
convenient proving ground for this kind of researches, because all results can be
obtained analytically. There is no need to describe the merits and demerits of the
RPA — they are known very well [3]. It is necessary, however, to say a few
words about the WFM. Its idea is based on the virial theorems of Chandrasekhar
and Lebovitz [4]. Instead of writing the equations of motion for microscopic am-
plitudes of particle-hole excitations (RPA), one writes the dynamical equations for
various multipole phase space moments of a nucleus. This allows one to achieve
better physical interpretation of the studied phenomenon without going into its
detailed microscopic structure. The WFM method was successfully applied to
study isoscalar and isovector giant multipole resonances and low-lying collective
modes of rotating and nonrotating nuclei with various realistic forces [5]. The
results of calculations were always very close to similar results obtained with
the help of RPA. In principle, it should be expected, because the basis of the
both methods is the same: Time Dependent Hartree—Fock (TDHF) theory and
a small amplitude approximation. On the other hand, it is evident that they are
not equivalent, because one deals with equations of motion for different objects.
The detailed analysis of the interplay of two methods turns out useful also from
a «practical» point of view: firstly, it allows one to obtain additional insight into
the nature of the scissors mode; secondly, we find new exact mathematical results
for the considered model.

1. THE WFM METHOD

The detailed description of the method of Wigner function moments can
be found in [1,5,6]. Here we remind briefly only its main points. The



ba51s of the method is the TDHF equation for the one-body density matrix:
th— = [H T AT} , where HT is the one-body self-consistent Hamiltonian de-
pending implicitly on the density matrix p”(r1,r2,t) = (r1]p” (¢)|r2) and 7 is an
isotopic index. It is convenient to modify this equation introducing the Wigner
transform of the density matrix [3] known as the Wigner function f7(r, p,t):
ofT 2

R EH f_H f T T
atmeWTVPVPVJEMf, (1)

where the upper index on the nabla operator stands for the function on which this
operator acts and Hyy is the Wigner transform of the Hamiltonian H.

It is shown in [5,6] that by integrating Eq. (1) over the phase space {p,r}
with the weights x;, x5, ... 2, iy, - - - Pi,_, Pin» Where k runs from O to n, one
can obtain a closed finite set of dynamical equations for Cartesian tensors of the
rank n. Taking linear combinations of these equations one is able to represent
them through various multipole moments which play roles of collective variables
of the problem. Here we consider the case n = 2.

1.1. Model Hamiltonian, Equations of Motion. The microscopic Hamil-
tonian of the model is

A 2 Z N
H= Z(% + Qmw ) AR D (00D @i au(r)

p=—2
1 2 Z N
t5h DD gou(ri)ge-n(ry) + Y dou(ri)az—u(rs)}, )
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where the quadrupole operator go,, = \/167/572Ys, and N, Z are the numbers
of neutrons and protons, respectively. The mean field potential for protons (or
neutrons) is

VT(r,t)= —mw2r2—|— Z 0" Z3,(t)g2—p(r), 3)
p=—2

where 73, = kQ3, +rQ5,, Z5, = kQb,+kQ3, and the quadrupole moments
3,,(t) are defined as

w=/anﬂ%ﬁWWnuw

with [d{p,r} =2(27h)~3 [d®p [d*r.



Integration of Eq. (1) with the weights 73, (rp)a, = {r @ p}a, and p3,
yields the following set of equations [1]:
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ER)\M_E /\N:07 )\20,27

d
— L3, — P;M+mw2R; —2v30 Z\/Qj—l- 1o HZZ R ) =0,

dt
A=0,1,2,

d 11 ‘r
dtP/\H+2mw2LM 44/30 Z\/Zj—l— G HZELT ) =0,

A=0,2, “4)

where {2 } is the Wigner 6;j-symbol,

2 AL
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o,V

is a tensor product [7], and r, are cyclic variables
ri1 = — (21 i) /V2, ro=x3, r_1= (11 —iz2)/V2.

In terms of these variables qo, = \/érgw Q3 = \/EREM. Further the following
notation is introduced:

PL(1) /d{p,r}pmr p.t), L3 (t) = /d{p,r}wp)w(r,p,t). 5)

By definition Rj, = —Qfo/v/3 with Qf, = N7 < r? > being the mean square
radius. The tensor L7, is connected with the angular momentum by the following
relations: L], = %Ig, L7, =313 Fil7).

We rewrite Egs. (4) in terms of the isoscalar and isovector variables Ry, =
Ry, +RY,, Ry, = R}, — R}, (and so on) with the isoscalar ro = (k+&)/2 and
isovector k1 = (k — k)/2 strength constants. There is no problem to solve these
equations numerically. However, we want to simplify the situation as much as
possible to get the results in analytical form that gives us a maximum of insight
into the nature of the modes.

1. The problem is considered in a small amplitude approximation. Writing
all variables as a sum of their equilibrium value plus a small deviation

R/\u( ) = Req +R/\u( ) PA/L(t) = P)?E +7D/\H(t)a LA/L( ) = Leq +£/\u( )

RM( )= Req + RM( )s PAu(t) = pfﬁ + 75/\u(t)a Eku(t) = I’ii + [:/\u(t)v



we linearize the equations of motion in R, Pxu, L, and R, Pays Lap-

2. We study nonrotating nuclei, i.e. nuclei with L]} = L{% = 0.

3. Only axially symmetric nuclei with R51, = R51, = R5%, = R34, =0
are considered.

4. Finally, we take R} = Rgd = 0. This means that equilibrium deformation
and mean square radius of neutrons are supposed to be equal to that of protons.

Due to approximation No.4. the equations for isoscalar and isovector sys-
tems are decoupled. Further, due to the axial symmetry the angular momentum
projection is a good quantum number. As a result, every set of equations splits
into five independent subsets with g = 0, +1, +2. The detailed derivation of for-
mulae for eigenfrequencies and transition probabilities together with all necessary
explanations are given in [1]. Here we write out only final results required for
the comparison with respective results obtained in the framework of the RPA.

1.2. Isoscalar Eigenfrequencies. Let us analyze the isoscalar set of equations
with p =1

Ro1 — 2Lo1/m =0,

Lo — Pay/m + [mw2 + 2k0(Q5a + Qgg)] Ro1 =0,

Po1 + 2[mw? + koQ5A] Loy = 0,

L11 = 0. (6)
Imposing the time evolution via e ~*** for all variables one transforms (6) into

a set of algebraic equations. The eigenfrequencies are found from its characteristic
equation which reads

6/€0 e 4 e
Q%[0 — 40® — —(Q35 + Qo)) = 0. )
m 3
-2 w2
For xo we take the self-consistent value kg = ———, where &% = 5 (see
4Q00 1+ 356

Appendix A) with the standard definition of the deformation parameter Q29 =
4
Qoo§ 0. Then
Q20?2 — 202(1 +6/3)] = 0. (8)

The nontrivial solution of this equation gives the frequency of the ¢ = 1 branch
of the isoscalar GQR
0 = Of = 20*(1+4/3). ©)

Taking into account the relation (63) we find that this result coincides with that
of [8]. The trivial solution 2 = €y = 0 is characteristic of nonvibrational mode
corresponding to the obvious integral of motion £;; = const responsible for the
rotational degree of freedom. This is usually called the «spurious» mode.



1.3. Isovector Eigenfrequencies. The information about the scissors mode is
contained in the set of isovector equations with y = 1

Ror — 2Lo1/m =0,

Lo) — Par/m+ [mw?® + Q53 + 4k1Q58] Ra1 = 0,

Par + 2[mw? + KkoQ5a] L21 — 6k0Q5a L11 = 0,

L11 + 3RQSR, = 0. (10)
Imposing the time evolution via e ~** one transforms (10) into a set of algebraic

equations. Again the eigenfrequencies are found from the characteristic equation
which reads

2 . 36 .
Ot — Q% [4w? —l——mQOO (/<;1—|—2/<;0) 2%]+W(/<;0—/<;1)/<;0( 2%)2:0. (11

Supposing, as usual, the isovector constant x; to be proportional to the isoscalar
one, k1 = akg, and taking the self-consistent value for kg, we finally obtain

O —20%0%(2 — a)(1 +6/3) + 40* (1 — a)s* = 0. (12)

The solutions of this equation are

D2 =2%2-a)(146/3) £/0*(2 - )2(146/3)2 — 40*(1 — a)d2.  (13)

The solution 24 gives the frequency 2;, of the p = 1 branch of the isovector
GQR. The solution 2_ gives the frequency {2 of the scissors mode.

We adjust o from the fact that the IVGQR is experimentally known to lie
practically at twice the energy of the isoscalar GQR. In our model the experimental
situation is satisfied by a = —2. Then

) 3

5
2 _ 42 g Z)2 252
QF = 4w (1+3+ (1+3) 45 ),
5 ) 3
2 42 e _ Pv2 _ 252
02 =4 (1+3 (1+3) 45 ). (14)

1.4. Linear Response and Transition Probabilities. A direct way of cal-
culating the reduced transition probabilities is provided by the theory of linear
response of a system to a weak external field

O(t) = O exp (—iUt) + Of exp (i21).

For magnetic excitations

eh
=0y, = —zZv (rsYiu) - [rs X Vi, pyv ==, (15)



m? 02 —2(146/3)0*
7 Qood” ngsc(Q(gC — élgv)) 1

(16)

miv? Q2 —2(146/3)w?

o o
)

These two formulae can be joined into one expression by the simple transforma-

tion of the denominators. Really, we have from (13)

-«
47

. 1
B(M1)g = 2| < sc|011]0 > |> =

—

. 1
B(M1);, = 2| < iv|011]0 > |? = e

H(QF, - 02) = £(QF — Q%) = £2/01(2 — a)2(1 +§/3)2 — 4w (1 — @)6?

=202 —20%(2 - a)(1 +6/3) = 202 — (2 — a)(w? + w?).
(18)

Using these relations in formulae (16) and (17), we obtain the expression for
B(M1) value valid for both excitations

02— 2(1+6/3)w?
o[ —@?*(2 = a)(1+6/3)]

1 —«
81

—2
mw
B(M1), = - Q0052Q 750 (19)

~ N z
For electric excitations O = O, = Y er?Ys,.
s=1

e*h 5 (14 6/3)Q2, — 2(w)?

_ . 2_ 2 "9
B(EQ)SC = 2| < SC|021|0 > | = 8x Qoo Qsc(Qgc — QIQV) (20)
i 25 (1408/3)02 — 2(w)?
B(E2)i = 2| < i 202 iv 21
( ) | < 1V|021|0 > | m Sn QOQ in(QiQV — Qgc) 21

R 2
B(E2)is = 2| < is| 0210 > |? = %hgiﬂ@m[a +6/3)0% — 2(w6)?]/[Qis)?. (22)

Using relations (18) in formulae (20) and (21) we obtain the expression for B(E2)
value valid for all three excitations

K 25 5 (1+6/3)02 —2(wd)?
B(E2), =2 2_ 6__ v
(E2) | < v|021]0 > o 167TQOOQV[Ql2/_@2(2—a)(1+5/3)]

. (23)

The isoscalar value (22) is obtained by assuming o = 1.



2. RPA

Standard RPA equations in the notation of [3] are

Z {[51]5mn(5m - ei) + ijjin] an + ﬁmnijynj} = hQXmiv
n!j

Z {7_)ijmanj + [5ij5mn(€m - Gi) + 7_)inmj] Yn]} = _hQYmi~ (24)

n,j

According to the schematic model (2), the matrix element of the residual interac-
tion is

’
= _ T* YT
Umjin - K/TT/Dirn,Djn

with D = go1 = 1/16m/572Ys1 and knn = Kpp = K, knp = K. This interaction
distinguishes between protons and neutrons, so we have to introduce the isospin
projection indices 7, 7/ into the set of RPA equations (24):
(€5 — €)X i + Z Korr D D Xpj + Z trr Di D7 Yy = RQX T,
n,5,7’ n,5,7’

> ke D DL X (eh, — €)Y+ D ke DI DY = —hQY .

mi— jn< ng

n,7,7’ n,j,7’
(25)
Its solution is
X7 — D’z—;?, KT YT, — '7r—n*i KT (26)
TR —er T ™M T Q€T

with €7, = ¢l — el and K™ =Y, ki, C7 .
The constant C7 is defined as C7 = 3 (D], X7, + D;;Y,7;). Using here

nj-njg
the above written expressions for X7, and Y,7;, one derives the useful relation

CT=28"K" =287 k. CT (27)

where the following notation is introduced:
T _ T |2 Ezni
ST = %;|Dmi| B () (28)
with E = h€). Let us write this relation in detail
C" —25"(kC" + RCP) =0,
CP —2S5P(RC™ + KCP) = 0. (29)



The condition for existence of a nontrivial solution of this set of equations gives
the secular equation

(1 —28"k)(1 — 25Pk) — 45" SPR? = 0. (30)

Making obvious linear combinations of two equations in (29), we write them in

terms of isoscalar and isovector variables C' = C* + CP, C = C" — CP

C —2(8™ + SP)koC — 2(S"™ — SP)k C = 0,
C —2(8" — SP)kgC — 2(S™ + SP)k 1 C = 0. (31)

Approximation No.4 allows us to decouple equations for isoscalar and isovector
variables. Really, in this case S™ = SP = S/2; hence, we obtain two secular
equations

1—-28kp=0, or 1—Sk=Sk (32)

in the isoscalar case and
1-25k1 =0, or 1—Sk=-Sk (33)

in the isovector one, the difference between them being in the strength constants
only. Having in mind the relation k1 = axg, we come to the conclusion that it
is sufficient to analyze the isovector case only — the results for isoscalar one are
obtained by assuming o = 1.

2.1. Eigenfrequencies. The detailed expression for the isovector secular

equation is

1 €Emi

— = Dppil? =", 34
o %;I Ny (34)

The operator D has only two types of nonzero matrix elements D,,; in the
deformed oscillator basis. Matrix elements of the first type couple the states
of the same major shell. All corresponding transition energies are degenerate:
€m — €; = h(wy —w,) = €. Matrix elements of the second type couple the states
of the different major shells with AN = 2. All corresponding transition energies
are degenerate too: €,, — €; = fi(w, + w,) = es. Therefore, the secular equation

can be rewritten as
1 EoDo EQDQ

[ . 35
2K1 E2—6(2)+E2—e§ (35)

The sums Dy = Z |Dmi|2 and Dy = Z |Dmi|2 can be calculated
mi(AN=0) mi(AN=2)
analytically (see Appendix B):

_ Qu

—¢€0, D2=
@

Qoo

— €2.
mio?

Dy

(36)



Let us transform the secular Eq. (35) in the polynomial
E* — EQ[(QQ) + 63) + 2%1(€0D0 + GQDQ)] + [6(2)63 + 2/@16062(601)2 + €2D0)] =0.

Using here the expressions (36) for Dy, Dy and the self-consistent value of the
strength constant (62), we find

E* - E2(1 — oz/2)(e(2) + e%) +(1- oz)e%e% =0,

or
Q' -2 -a)wi +(1-a)w! =0, (37)
where the notation w? = w2 + w? and w? = (w? — w?)? is introduced. This

result coincides with that of [2]. By a trivial rearrangement of the terms in (37)
one obtains the useful relation

QX2 —wi) = (1 —a)(Qw? —wt). (38)

Substituting expressions (62) for wfc, wf into (38), we reproduce formula (12) for
the isovector case

O —20%0%(2 — a)(1 +6/3) + 40*(1 — )d? = 0.
Taking here a = 1 we reproduce formula (8) for the isoscalar case
Q- 20%0%(1 4+ 6/3) = 0.

2.2, B(E2)-Factors According to [3], the transition probability for a one-body
operator F= E fz is calculated with the help of the formula
<O\ ET|v >= (fr X700 + fr. Y7, (39)

im<*mi it ms
mi

To calculate quadrupole excitations, one has to take f P= er2Y2H =¢eDP with é =

e . The expressions for X" .. Y. are given by formulae (26). Combining

16 mid T mi

these results we have

p
< 0|02, plv >= 2eK? Z \DP, |2%M = 26KPSP = 6CP.  (40)

The constant C? is determined by the normalization condition

’ ’
_ 2 : Tk YT,V T Uk TV )
61’7”’ - (sz Xmi Ymi sz ’

me,T



that gives

1 - F Z Dl €mi + (C))? | Dyil? €mi
(€02 T [ (SD)? [ER — ()] (CD)? (S2)? B2 — ()]
(4D
The ratio C*/CP is determined by any of equations (29):
c™  1-28Px 25"k
_— = = . 42
Ccp 25Pg 1—251k “42)
Formula (41) is simplified by approximation No.4, when SP = S™ el . = €@ .,

DP .= D= .. Applying the second parts of formulae (32),(33) it is easy to find
that in this case C"/CP = 1. As a result, the final expression for B(E2) value
is
—1
B(E2), = 2| < 0|08, |v > |? = 2¢° <16El,/<;% 3 Dol

2 Pl ey
(43)
With the help of formulae (36) this expression can be transformed into
5  €*Quo [ € €2 } !
B(E2), = —— +
(E2) 8t mw2alE, | (B2 —€2)?  (E2—€3)?
- 5 2Q00 (E2 — 60) (E2 — € )2
T 8t mw?a?E, (B2 — €)% + (E? — €2)262
_ i 62hQ00 (QQ(UJF — w4 )2 . (44)

16m m@?Q, Qiw? — 202w? 4+ wiw?

At a glance, this expression has nothing common with (23). Nevertheless, it
can be shown that they are identical. To this end, we analyze carefully the
denominator of the last expression in (44). Summing it with the secular equation
(37) (multiplied by wi), which obviously does not change its value, we find after
elementary combinations

Denom = Qw? —202w? +wiw? +wi Q) — Q22— a)wi + (1 — a)w?]
= wiQ2292 — (2 - a)wi] —wl[2Q2 — (2 — a)w?]
= (Qwi —wh)[202 — (2 — a)wi]. (45)

This result allows us to write the final expression

> Qoo 2 — ot
D202 — (2 — a)w?]

v

B(E2), = (46)

167 mw2

10



which coincides with (23) (we remind that w? = 202(1 + §/3), w? = 46%*).
By the simple transformations this formula is reduced to the result of Hamamoto

and Nazarewicz published in [2]

2.3. B(M1)-Factors. In accordance with formulae (15), (39) and (26), the
magnetic transition matrix element is

m

E, — efm- E,+¢€

mi

<0|O% v >=KP>

mi

(47)

(O )im Dl (O%)miD%] |

As is shown in Appendix B, the matrix element (OY,);y, is proportional to DY
(formula (74)). So, expression (47) is reduced to

eh D? DP* Dp Dp*
< O|O v >=-KF} (W2 — W?)P [ tn b ]
1 2 \/_ sz: Efm (E - Ep ) (E + Emz)

| 2

- 2 _ $
Kpcf w? — w? ; B (@) (48)

With the help of approximation No.4 and expressions (36) for Dy, Dy we
find

CP éh
255 /5

= -2 CP 2
K1 C\/_( —w )
cP e a1l —a«

_ 2
= C\/_( —w3) o (49)

Qoo E, E,
e g g
Qoo (Q wi)
m@? a(Q2w? —w?t)

< 0|0, |v >

—=(wp —w?)

Relation (38) and the self-consistent value of the strength constant k1 = akyg
were used at the last step. For the magnetic transition probability we have

B(M1), =2| <0|0%|v > |? =
(C'p)2 &2 L 4 (1—a)? B wi (1-a)?
4 52 Q2 202 Q2

B(E2). (50)

This relation between B(M1) and B(E2) was also found (to the factor 1/(20c?))
by Hamamoto and Nazarewicz [2]. Substituting expression (46) for B(E2) into
(50) we reproduce (with the help of relation (38)) formula (19).

2.4. «Synthetic» Scissors and Spurious State. The nature of collective exci-
tations calculated by the method of Wigner function moments is ascertained quite
easily by analyzing the roles of collective variables describing the phenomenon.

11



The solution of this problem in the RPA approach is not so obvious. That is why
the nature of the low-lying states has often been established by considering over-
laps of these states with the «pure scissors state» [10,11] or «synthetic state» [2]
produced by the action of the scissors operator

Se =N"H< I >IP— < P2 > D)

on the ground state
[Syn >= S;[0 > .

Due to axial symmetry one can use the I component instead of I, or any
their linear combination, for example, the variable L7;, which is much more
convenient for us. The terms < I7 2 > are introduced to ensure the orthogonality
of the synthetic scissors to the spurious state |Sp >= (I + I?)|0 >. However,
we do not need these terms because the collective states |v > of our model are
already orthogonal to |Sp > (see below); hence, the overlaps < Syn|v > will be
free from any admixtures of |Sp >. So, we use the following definitions of the
synthetic and spurious states:

Syn >= YN (LF, — L}))[0 >= N (0P — Of)|0 >,

e /3
where v = —i——1/ —.
2me N 2

Let us demonstrate the orthogonality of the spurious state to all the rest states
|v >. As the first step it is necessary to show that the secular Eq. (30) has the
solution E = 0. We need the expression for S™(E = 0) = S7(0). In accordance
with (28), we have

Sp >= (O + O}1)]0 >,

- €0D0 €2D2 T -
56 - [+ gy 0|

The expressions for D, D7 are easily extracted from formulae (71), (72):

Do, b

€0 €2

1+30 1-26

4 2 o
1+§5+1—§5] |

,_h . T b,
DOZEQOO[ ]7 DQZEQOO[

Wy W, Wy Wz
(51)
So we find
h 1+45 1 1 251 17
STO —_ _0T 3 = - 3 -
( ) ’ITLQOO|: Wy (62 +€0 + Wy €9 60:|
= _E%:_i%’ (52)
m  €lel m (w2 — w?)"
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where, in accordance with (73),

6 _
(W2 —w2)P = _E(”QSO + kQ3),
Finally, we get
Q@5
2Sp 0) = — 5
©) KQ5 + FQ%,
2511(0) _ QQO

 RQSy + FQY

6
(g —w)" = ——(kQy + FQ5y). (53)
KQ%
1—25P(0)k = —5—220___
© KQ50 + FQ5,
=P
1 - 287(0) = —20

 RQBy + RQY

It is easy to see that substituting these expressions into (30) we obtain the identity;
therefore, the secular equation has the zero solution.

At the second step it is necessary to calculate the overlap < Sp|v >. Sum-
ming (47) with an analogous expression for neutrons, we get

eh |D7 |2
_ Eu KT 2 2\T mi
<Splv > V5 Z: or ) %; eri(BZ — €0,)"
eh |D? . 2er
= R N KT — ) mil fmi (54
o5 B LK =)
Applying the algebraical identity
1 1l
62(E2—62) TOE2%e2 E2 — 2
and remembering the definition (28) of S”, we can rewrite (54) as
eh T(, 2 2\T T T
< Sp|l/ >= ZKI/ (wz - wz) (S ) (0))
cVHE, -
eh KII/) 2 2 2 2\n n n KLIII
=/ (wp = w2)P(S7 = §7(0)) + (w — w2)™(S™ = 57(0)) 55

In accordance with (27) and (42),

K:  1-—-25Px

v == 55

Ky 257F (59)
Noting now (see formula (52)) that (w2 — w?)7S7(0) = —2 Q7 and taking into

13



account relations (53), we find

<Sply > = B{[(kQF + FQ3)25” — Q3]

+10Q3 + rQp)25" - Qg1 g |
= {257 1)Q3 +2577Q3]
n n n_-p 1— QSPH
H(25" ~ )0} + 25" RQDI S |
_ 3 {25%@5 + (2575 — 1)@5%}

ﬂﬁjﬁ {28"72SPR — (1 — 25"k)(1 — 25PK)} =0, (56)
3 eh KP .
where 3 = —Em N and Q2 = QQ2p. The expression in the last curly brackets

coincides obviously with the secular Eq. (30) that proves the orthogonality of the
spurious state to all physical states of the considered model. So we can conclude
that strictly speaking this is not a spurious state, but one of the exact eigenstates
of the model corresponding to the integral of motion /™ + IP. In other words [3]:
«In fact these excitations are not really spurious, but they represent a different
type of motion which has to be treated separately». The same conclusion was
made by N. Lo Iudice [12] who solved this problem approximately with the help
of several assumptions (a small deformation limit, for example).

The problem of the «spurious» state being solved, the calculation of the over-
laps < Syn|v > becomes trivial. Really, we have shown that < 0|0, 4+OY; |v >=
0. That means that < 0]O},|v >= — < 0|O%|v >; hence, < Syn|v >= N~!
< 0]OP, — O lv >=2N"1 < 0|OP,|v > and

U? =| < Synjv > |> = 2N "2B(M1),.

The nontrivial part of the problem is the calculation of the normalization factor
N. It is important not to forget about the time dependence of the synthetic state
which should be determined by the external field

[Syn(t) >=N"'[(OF = Ofy) exp™ + (Of, = Ofy)Texp™]j0 > .

14



Then we have

N? = < Syn(t)[Syn(t) >
= 2<0[(0F, — O (O}, — 0|0 >
= 2) <0|(0F - O1)f|ph >< ph|(O}, — O})|0 >
ph
= 2) | <ph/(OP — Of)|0>*=2) | <ph|Of,|0 > |*. (57)
ph 7,ph

With the help of relation (74) we find

N2 = 2(6_5)22 <w4 | < ph[r? ¥2:(0 > |2>
= -

2¢ = 5;2)}1
1 eh, 4 Dy D3\’
= & (R4 22 58
(50 ) (2+3) (58)

Expressions for Df, D3, wr, w] are given by formulae (51), (73). To get a
definite number, it is necessary to make some assumption concerning the relation
between neutron and proton equilibrium characteristics. As usual, we apply
approximation No.4, i.e., suppose Qf, = Qby, Q5 = Q5. It is easy to check
that in this case formulae for wj , are reduced to the ones for the isoscalar case,
namely (62), and Dj = Dy/2, D} = D3/2, where Dy and D5 are given by (36).
So we get
o, whoeh , Qoo (1 1 9 0 Mwy
= 87(%) s (5 + g) = IN g7 Qoo (59)
The estimation of the overlap for 156Gd with § = 0.27 gives N2 = 34.72u3;
and U2 = 0.53, that is two times larger than the result of [10] obtained in
QRPA calculations with the Skyrme forces. The disagreement can naturally be
attributed to the difference in forces and especially to the lack of pair correlations
in our approach (see the next section, nevertheless). In a small deformation limit

U? = %\/gm 0.6.

3. SUPERDEFORMATION
A certain drawback of our approach is that, so far, we have not included the

superfluidity into our description. Nevertheless, our formulae (14), (19) can be
successfully used for the description of superdeformed nuclei where the pairing
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is very weak [2,9]. For example, applying them to the superdeformed nucleus
152Dy (§ ~ 0.6, hwg = 41/A'/3MeV), we get

FEi, =20.8MeV, B(M1);, = 15.9 3
for the isovector GQR and
Fy = 4.7MeV, B(M1)ge = 20.0 3%,

for the scissors mode. There are not so many results of other calculations to
compare with. As a matter of fact, there are only two papers considering this
problem.

The phenomenological TRM model [9] predicts

By, ~26MeV, B(M1);, ~26u%, FEsx~61MeV, B(M1)s ~22p3.

The only existing microscopic calculation [2] in the framework of QRPA with
separable forces gives

By, ~28MeV, B(M1);, ~37p%, Fsx~5-6MeV, B(M1)+ ~23u%.

Here B(M1),+ denotes the total M1 orbital strength carried by the calculated
K™ = 17 QRPA excitations modes in the energy region below 20 MeV.

It is easy to see that in the case of IVGQR one can speak, at least, about
qualitative agreement. Our results for Es. and B(M 1), are in good agreement
with that of phenomenological model and with Es. and B(M1);+ of Hamamoto
and Nazarewicz.

It is possible to extract from the histogram of [2] the value of the overlap of
calculated low-lying 1% excitations with the synthetic scissors state:
| < Syn[1*t > |2 ~ 0.4. The result of our calculation U? = (.43 agrees with
it very well. So the natural conclusion of this section is that the correct treatment
of pair correlations is more important for a reasonable description of the scissors
mode than the thorough choice of an interaction.

CONCLUSION

The properties of collective excitations (the scissors mode, isovector and
isoscalar giant quadrupole resonances) of the harmonic oscillator Hamiltonian
with the quadrupole-quadrupole residual interaction (HO+QQ) were studied by
two methods: WFM and RPA. We have found that both methods give the same
analytical expressions for energies and transition probabilities of all considered
excitations. Does it mean that WFM and RPA are identical approaches? Certainly,
not. First of all, we have the experience of previous WFM calculations [5] with
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realistic forces which show that, for example, we reproduce only centroids of giant
resonances whereas RPA describes their fine structure. Secondly, we suppose that
one can find such nuclear characteristics that will be described differently by two
approaches even in this simple model. Thirdly, to establish completely (and
finally) the relation between the two approaches, it is necessary to analyze the
equations of motion for multipole moments from the point of view of RPA. It
will be done in the subsequent publication.

There is no sense to speak about advantages or disadvantages of one of the
two discussed methods — they are complementary. Of course, RPA gives com-
plete, exhaustive information concerning the microscopic (particle-hole) structure
of collective excitations. However, sometimes considerable additional efforts are
required to understand their physical nature. On the contrary, WFM method
gives information only on the physical nature of excitations and does not touch
their microscopic structure. Our results serve as a very good illustration of this
situation. Really, what do we know about the scissors mode and IVGQR from
each method? RPA says that the scissors mode is mostly created by AN = 0
particle-hole excitations with a small admixture of AN = 2 ph excitations and
vice versa for IVGQR. And that is alll One can even not suspect about the
key role of the relative angular momentum in the creation of the scissors mode.
On the other hand, the WFM method says that the scissors mode appears due
to oscillations of the relative angular momentum with a small admixture of the
quadrupole moment oscillations and vice versa for IVGQR. Further, it informs
us about the extremely important role of the Fermi surface deformation in the
formation of the scissors mode.

Two new mathematical results are obtained for the HO+QQ model. We have
proved exactly, without any approximations, the orthogonality of the «spurious»
state to all physical states. In this sense, we have generalized the result of
Lo Iudice [12] derived in a small deformation approximation. The analytical
expressions are derived for the normalization factor of the synthetic scissors state
and overlaps of this state with eigenstates of the model.

APPENDIX A

It is known that the deformed harmonic oscillator Hamiltonian can be ob-
tained in a Hartree approximation «by making the assumption that the isoscalar
part of the Q-Q force builds the one-body container well» [13]. In our case it is
obtained quite easily by summing the expressions for VP and V" (formula (3)):

2
V(r,t) = %(Vp(r,t) +Vi(r,t)) = %mwQTQ + Ko Z (—1)"Q2u(t)ga—p(r).

p==2

(60)
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In the state of equilibrium (i.e., in the absence of an external field) Q241
Q242 = 0. Using the definition [14] Q29 = Q00%5 and the formula ¢og =
222 — 22 — y2, we obtain the potential of the anisotropic harmonic oscillator

V() = Si? +y?) + ol

with oscillator frequencies
w2 =w?=w*140), w?=uw?(l-206),

8Qoo
mw?’
reproduced by the harmonic oscillator wave functions, which allows one to fix
the value of . We have

h ¥, X, X h X, X

S(EA ), Qe =2 (5 - 25,
m Wy Wy W, m w; Wy

where 0 = —kg The definition of the deformation parameter § must be

Qoo =

1
where ¥, = Ef‘:l(nx + =), and n, is the oscillator quantum number. Using the

self-consistency condition [14]
wax = Eywy = Zzwz = Zowo,
where Yy and wq are defined in the spherical case, we get

Qo ,wi—w? 200 4
Qoo w2+2w?2 1-06 3

J.

Solving the last equation with respect to o, we find

2

77372 61)

Therefore, the oscillator frequences and the strength constant can be written as

4 2 v?
w2 =w?=a%1+ 55), w? =o%(1 - 55), Ko = —Z;;O

(62)
with @2 = w?/(1 + 26). The condition for volume conservation w,wyw. =

const = w3 makes w J-dependent

1+26
1+ 30)%/3(1 — 26)1/3

2 2
w :WO
(
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So the final expressions for oscillator frequences are

4 1/3 2 2/3
wz_wz_w2<1+§5> wz_w2<1_§5>

= =W 2 ) z = Wo 4 .
1-26 1446

It is easy to see that they correspond to the case when the deformed density p(r)
is obtained from the spherical density po(r) by the scale transformation [8]

(2,9, 2) — (ze*/?,ye/?, ze™?)

with

o (Lan\ o et
e e L (63)
1-36 2e+2

which conserves the volume and does not destroy the self-consistency, because
the density and potential are transformed in the same way.
It is necessary to note that (Qyg also depends on §

hS S, S.. h 2 1 . 1
= —(— — —=) = _Z i ) =
QOO m(wx +wy +wz) m Owo(w% +w§) QOO(]_ + %5)1/3(1 — %5)2/3)

where Q)y = A2R?, R = roA'/3. As a result, the final expression for the
strength constant becomes

1/3
mwg (11— 26 mwig
Ry = =

_ - _ e,
4Q00 \1+ 20 4Q%,

that coincides with the respective result of [8].

APPENDIX B
To calculate the sums Dy = Z |D,m-|2 and Dy = Z |D,m-|2
mi(AN=0) mi(AN=2)

we employ the sum-rule techniques of Suzuki and Rowe [8]. The well-known
harmonic oscillator relations

[ h
Jiwnf = m(\/ nanw—l + Vg + 1wnw+1)7
[mhw,
Pa¥n, = —1 m2 (Vnztn, 1 — Ve + 15, 1) (64)
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allow us to write

W/Jnﬂ/mz =
= L(V NgNVn, —1Vn, -1 + (nm + 1)(nz + 1)1/1nw+11/}n2+1

" Iy
+ v/ (nx + 1)nz¢nw+11/)n271 + v nm(nz + 1)1l)n,3711/1n2+1)7

Pab
———Un,Vn, =
mM2wew,
h
=5 — T zPn,—1Pn, — T 1 z 1 Ny n
zm\/m(\/nnﬂ)x 1Wn.—1+ vV (nz + 1)(ne + Dbn, 419041
Y (nx + 1)nz1/}nw+11/)n271 -V nm(nz + 1)1/)nx—11/1n2+1)-

These formulae demonstrate in an obvious way that the operators

1 1 1 1
P = — [EE— d P = — R —
073 (22 + miwaw, Popz) an 72 (22 miwaw, Dabz)

contribute only to the excitation of the AN = 0 and AN = 2 states, re-
spectively. Following [8], we express the zx component of r2Yy; = Q/%D

= —\/22z(z +1iy) as
zx =Py + Ps.

Hence, we have

A A
€0 Z | <O|Zzsxs|mi> > = 602| <O|ZP0(5)|mi> |2
mi s=1

mi(AN=0) s=1

1 A A
=5 <OID_Pols). [H. D Po(s)])]0 >, (65)

where ¢ = h(w, — w.). The above commutator is easily evaluated for the

Hamiltonian (60), as

A A
<O " Po(s), [H,> " Po(s)]]|0 >=

h <<0|Zf=123|0> <0|Zf=1w§|0>>
—€g - .

2m Wy Wy
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Taking into account the axial symmetry and using the definitions

Q00—<0|22$ +Z |0> Q20—2<0|Zz —J) |0> QQ()—QOQ 5

s=1

we transform this expression to

A 4 2
h 1+36 1-—4%6
<0|[§ Po(s), HE Po(s)]]10 >= —60Q00< wg ——wg ) (66)
s=1

xT z

With the help of the self-consistent expressions for w,, w, (62) one comes to the
following result:

2 - Qoo €2 R o (wo  wo ?
< 0|[Z Py(s), [H;ZPO(S)]HO >=_———0= %Qoo (w_ - —> . (67)
s=1 s=1 z

2
6m w -

By using the fact that the matrix elements for the zy component of 72Y>; are
identical to those for the zx component, because of axial symmetry, we finally
obtain

5 Qoo
2 2 =
€0 E |<0|E r2Yo |mi > > = Tor mo20 =

mi(AN=0) s=1
5 Qe (1430 o
© 16 m w? -2 '

By calculating a double commutator for the P, operator, we find

A 5 Q
e > <0 r2Valmi> P = 00

) 167 mw? &=
mi(AN=2) s=1
S 16 m W \1- 25 ’

where €2 = A(w, + w,).

We need also the sums Dj and D7 calculated separately for neutron and
proton systems with the mean fields V" and VP, respectively. The necessary
formulae are easily derivable from the already obtained results. There are no any
reasons to require the fulfillment of the self-consistency conditions for neutrons
and protons separately, so one has to use formula (66). The trivial change of
notation gives

4 4 h 14460 1 26P
<O Ao L7, Y- A0 5= bl (g™ - 2™ ) 0
s=1 s=1

x
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7
. 5 h
DY |<0|ermimz>|2=——esczgo(

4 2
1+ §5p 1— §5p>
mi(AN:O) s=1 m

wh Wb

Z 4 2
) 5 h 14+ 26 1—26P
G X IO alni> = 2 tagn (F 2.

) 167 m Wg W3
mi(AN=2) s=1
(72)
The nontrivial information is contained in oscillator frequences of the mean fields
VP and V" (formula (3))

2

(@R) = [l = —5 (6@ + FQY)], ()2 = W[l + — (xQy + 5 Q).
2 4

(@) =Wl = — (5QB + RQ)), (@I = WL+ — (kv Q3 + A Q%)

(73)
The above-written formulae can be used also to calculate the analogous
sums for various components of the angular momentum. Really, by definition

Iy = yp, — zpy, I> = 2Py — xp.. In accordance with (64), we have

TP, V0, =

= _ig“ :‘j_z(v nznzwnwflwnzfl -V (nz + 1)(nz + 1)1/)n,:+11/)nz+1+
+ (nx + 1)nzwnw+1wnz—1 Y/ nx(nz + 1)wnm—1wnz+1)'

Therefore,

winwwnz =
h | Wz | W
= ZE( w_ - w_)(\/ nxnzwnxflwnzfl -V (nx+ 1)(nz+ 1)?/an+11/1n2+1)+

h z T
g (24 ) (e Detn, 10,1 = V(s + Don, - 10n41).

Having these formulae, one derives the following expressions for matrix elements
coupling the ground state with AN = 2 and AN = 0 excitations:

B (W2 — w?) \/(nz Y1) (ns + 1)

Y

<ng+1,n, + 1|0 >=i-—2 ==
x s Iz |2| 2wx+wz el
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)

h \/(nx—l—l)(nz—l—l)

<ng+1,n, 4+ 1xz|0 >= —
2m Wy

~ A 2 2 . 1 ]
<7”Lx—|—17n2_1|]'2|0 >= Z§(wx wz) (TL + )n

Wy — Wy WaWz
h 1
<ng+1,n,—1lzz|0 >= — M
2m Wl
It is easy to see that
- (Wi —wd)
<ng+1,n,+1|15]0 >=im—"—2=2- <n, + 1,n, + 1|xz|0 >,
r T Wy
(wy —w?)

<ng+1,n, —1xz|0>.

x — Wz

<ng+1,n,— 1|f2|0 >=1im
w

Due to the degeneracy of the model all particle-hole excitations with AN = 2
have the same energy €2, and all particle-hole excitations with AN = 0 have the
energy €. This fact allows one to join the last two formulae into one general

expression
(wi —w?)
€

ph

< ph|L|0 >= ihim < ph|zz|0 > .
Taking into account the axial symmetry we can write the analogous formula for
Ill

(wi —w?)

< ph|1]0 >= —ihm < ph|yz|0 > .

ph

The magnetic transition operator O141 is proportional (15) to the angular mo-

. j [3 E~ . .
mentum: O141 = —% Dy ;(Ig F ily)s. Therefore, we can write

€T

26\/5 €ph

eh (w2 —w?)

< ph|O141]0 >= — < ph|r? Ya11]0 > . (74)
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