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Maesckuit M. u nip. E2-2004-43
PrMaHOBa MOBEPXHOCTh CTATHYECKOTO Tpesiesa
JIMCIIEPCHOHHBIX COOTHOIICHUH U TPOEKTUBHBIC IPOCTPAHCTBA

Crporoe noxazarenscTBo boromo6oBeIM auctiepcroHHbIX cooTHomrennit (JC) st mu-
OH-HYKJIOHHOTO paccestHust o0ecriednBaeT HaaeKHbI (pyHIaMEHT IS CTaTHIECKUX MOJEINICH.
JIC conepskar mamblii mapameTp (OTHOLICHHE Macc MUOHA W HyKJoHA). CTaTHdecKue MOJeTH
BO3HHUKAIOT, KOT/IAa 3TOT MapaMeTp CTPEMUTCA K HyIIO. S-MaTpHIa B CTATHYECKOM TIpeJiesie nMe-
eT O6110uHy10 CTPYKTYpY. Kaxkp1ii 610K S-MaTpHibl HMeeT KOHEUHBIH TOpAa0K N X N U COCTOUT
13 MEpOMOP(MHBIX (yHKINH SHEPTUHU JIETKOH YaCTHIIBI (» B KOMIUICKCHOM IIIOCKOCTH C pa3pesa-
mu (—o0,— 1], [+ 1,4 ). B ynpyrom ciiyuae on coaurcs k N pyHkiuam S, (@), CBA3aHHBIM Ma-
TpHLel nepekpecTHOl cummeTpun 4 pazmepHocTH N X N. YHUTapHOCTD U IEPEKPEeCTHAs CUM-
METpHs IPUBOIAT K CHCTEME HEeNTMHEHHBIX KpaeBhIX 3a1ad. OHa omperernseT aHaIHuTHIeCKoe
npogoskenue Gpyskuuit S (w) ¢ GU3MYECKOro NUCTa Ha HEPUUUECKUE M MOXKET PaccMaTpu-
BaThCS KaK CHCTEMa HEIMHEIHBIX Pa3HOCTHBIX YpaBHEHHUH. 3a/1a4qa pemaeTcst A 0001 1By X-
psAmHON MaTpulbl A, 9TO MO3BOJSET HAWTH TpaekTopuu Pemxke crarmueckoit SU (2)-monenu.
[TokazaHo, 4yTO I00aTBHBINA aHANN3 3TOW CUCTEMBI MOJKET OBbITh 3()()eKTHUBHO MPOBEICH B MPO-
€KTMBHBIX IPOCTpancTBax Py _, u P, . O6Cy)IaeTcs COOTHOLIEHUE MEX/y STUMH POCTPaH-
crBamMu. HaliIeHO HeCKOJIbKO YaCTHBIX PEIICHUI CUCTEMBI.

Pabora BemonHena B JlaGoparopum Teopermdeckoit ¢m3ukn nm. H. H. Boromo6osa
OUAN.
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The Riemann Surface of Static Limit Dispersion Relation
and Projective Spaces

The rigorous Bogoliubov's prove of the dispersion relations (DR) for pion—nucleon scatter-
ing is a good foundation for the static models. DR contain the small parameter (ratio
of the pion—nucleon masses). The static models arise when this parameter goes to zero.
The S-matrix in the static models has a block structure. Each block of the S-matrix has a finite
order N X N and is a matrix of meromorphic functions of the light particle energy w in the com-
plex plane with cuts (— o0,— 1], [+ 1,+ o). In the elastic case, it reduces to N functions S,(w) con-
nected by N X N the crossing-symmetry matrix 4. The unitarity and the crossing symmetry are
the base for the system of nonlinear boundary value problems. It defines the analytical continua-
tion of §,(w) from the physical sheet to the unphysical ones and can be treated as a system
of nonlinear difference equations. The problem is solvable for any 2X2 crossing-symmetry ma-
trix 4 that permits one to calculate the Regge trajectories for SU (2) static model. It is shown that
global analyses of this system can be carried out effectively in projective spaces P,,_, and P, .
The connection between spaces P, _, and P, is discussed. Some particular solutions of the sys-
tem are found.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004




1. INTRODUCTION

The prove of the dispersion relation for 7N scattering given by N. N. Bogoliu-
bov [1] has, at least, two consequences. In mathematics it gives rise to investiga-
tion on the analytic cotinuation of distributions of several complex variables (the
so-called edge of the wedge theorem by Bogoliubov [2]). In physics, in essence,
it introduces the concept of scattering amplitude for several processes regarded as
the single analytic function of several variables, whose different boundary values
with respect to the corresponding variables discribe these processes. Particularly,
it gives the solid foundation for the static models [3]. The low-energy hadron
scattering problem remains in the focus of attention [4]. The successful devel-
opment of QCD poses the question of the validity of the analytic properties of
hadron-hadron process amplitudes previously proved for strong interactions. In
the series of works by Oehme [5], it was recently shown that they remain valid
in QCD as well. We consider the nonrelativistic limit of the dispersion relations,
which is known as static equations [6], and confine ourselves to study the equa-
tions of this type by reducing them to a nonlinear boundary-value problem [7].
It has the form of the series of conditions on the S-matrix elements S;.

Conditions 1

A) S;(z) — are meromorphic functions in the complex plane z with the
cuts (—oo, —1], [+1,+00), i.e. the only singularities of these func-
tions in this domain are their poles.

B) 57(2) = Si(z"); ()
C) | Si(w+1i0) |?=1 for w > 1 S;(w +i0) = lim._ 40 S;(w + ie);
D) Si(—2) = 3,14 AijS;(2).

The real values of the variable z are the total energy w of a relativistic particle
scattered by a fixed center. The meromorphy requirement for the functions .S;(z)
arises as a consequence of the static limit of the scattering problem [8]. Elastic
unitarity condition (1)C holds only on the right cut in the z plane. On the left cut,
the functions S;(z) are determined by crossing-symmetry conditions (1)D. The
crossing-symmetry matrix A is determined by the group that leaves the S-matrix
invariant; the matrix A is known for some groups [7]. The aim of this paper is to
formulate a method for studying the Riemann surfaces of some static dispersion
models.



2. ANALYTIC CONTINUATION OF THE S-MATRIX
TO NONPHYSICAL SHEETS

We write Conditions 1 in a matrix form. For this, we introduce the column
SO(2) = [S1(2), S2(2), -+, Sn(2)]",

where the upper index denotes the physical sheet of the S-matrix Riemann surface.
Conditions (1)A, (1)B, and (1)D hold on the physical sheet, and unitarity condition
(1)C can be extended to the complex values of w, and, just like condition (1)C,
the extension has the component form

and analytically continues the S-matrix to the first unphysical sheet of the Rie-
mann surface. To rewrite unitarity conditions (1)C in the matrix form, we intro-
duce the nonlinear inversion transformation I by the formula

15(2) = [1/51(2),1/8a(2), -, 1/Sn(2)]".
As a result, Conditions 1 take the following form.
Conditions 2

A) S (z) — is a column of N meromorphic functions in the complex
plane z with the cuts (—oo, —1],[+1,400), i.e. the only singulari-
ties of these functions in this domain are their poles.

B) 5@"(2) = SO (="); @
C) SW(2) = 18O (2);
D) SO (—2) = ASO)(2).

We define the analytic continuation to unphysical sheets as
S®)(z) = (14)P SO ((~1)P). 3)

By definition (3), unitarity condition (2)C and crossing-symmetry condition
(2)D are easily extended to unphysical sheets:

1S0)(z) = 5077 (2), ASW(2) = 5C)(=2), @
and we have the formula

(TA)15)(2) = S (z(~1)1), )



Definition (3) is motivated by the well-known solution [8] of the problem defined
by Conditions 1 for the two-row matrix

1/ -1 4

This solution for the S-matrix S(z) is given by

W(W —2)/(W?—1)
S(z) = < W(W + 1)/(W2 —1) ) D(z), (6)

where W = w + iv/22 — 16(z), w = 1/marcsinz, §(z) = —F(—z) is a mero-
morphic function, and D(z) = D(—z) is the Blaschke function of the variable

14+ivz2 -1

¢ = — The Blaschke function is given by
D N M Cn - C
(D) = ¢ H e

where ) is the order of zero, and the set of zeros {(,}, |¢,| < 1 is symmetric with
respect to the origin and the axes Im( = 0, Re( = 0. In addition to solution (6),
Conditions 1 allow a trivial solution: the column of identical Blaschke functions

Therefore, Conditions 2 do not determine the form of the Riemann surface of
S(z) uniquely. For solution (6), the Riemann surface of S(z) is infinite-sheeted
because of the function w, and the equalities

SO(2) = SW) i<z SE((=1)FY) = S(W)jwtni<1/2
hold, which allow rewriting Eq. (5) as

(TA)"S(W)
(AD)*S(W)

S(W +mn),

S(W —n). M

Equations (7) are a system of nonlinear autonomous difference equations and
can naturally be called the dynamic form of the static dispersion relations. The
same term can, therefore, be used for Eq. (5) as well. Unlike Egs. (7), they form
a system of nonlinear functional equations in which the number of a sheet of the
Riemann surface and the energy variable z serve as arguments.



3. FORMULATION OF THE PROBLEM IN PROJECTIVE SPACES

The example of two-row solution (6) shows that, in general, the solution of
the problem defined by Conditions 1 is determined by /N + 1 entire functions,
among which N functions satisfy crossing-symmetry condition (1)D, and the
last one is symmetric with respect to z and ensures the validity of unitarity
condition (1)C. Conditions (1)A, (1)B, and (1)D are homogeneous and can be
considered in the projective spaces Py_; and Py. We define the nonlinear
inversion transformation I, such that it is correct in these spaces [9]:

IpSi =Ty 5255,
m=N —1,N.

We reformulate the problem defined by Conditions 1 for these spaces. For the
space Py_j, the crossing-symmetry matrix has the form specified by Condi-
tions 1; for the space P, its dimensionality increases by one, i. e.

A0
AN—1:A7AN:<0 1))

where Ay is a block matrix. As a result, instead of Conditions 1, we obtain the
following set of requirements on a column of m functions.

Conditions 3

A) S©)(z) — is a column of m meromorphic functions in the complex
plane z with the cuts (—oo, —1], [+1, +00), i.e. the only singulari-
ties of these functions in this domain are their poles.

B) SO (2) = 5O (%) ®)
C) $W(2) = 1,5 (2);
D) SO (—2) = 4,50 (2).

We illustrate the scheme of the solution for the two-row case in terms of the
projective spaces Pi, P,. We let (z,,21) = (S1,.52) denote the coordinates of
the point (z) in the space P;. We introduce the affine coordinate X = x/x1 on
the projective line P;. Setting z = 0 in (3), we obtain the law for continuing the
coordinate X () from the physical sheet to the first unphysical sheet:

< 2XO+1

= X041 ©)

Taking the n*" power of linear fractional transformation (9) and using crossing-
symmetry condition (3)D, we find that

n—2

X0 = _9 x( = .
’ n+1

(10)



One of the crossing-symmetry conditions (3)D thus proves unnecessary. This
conclusion remains valid for 3 x 3 crossing-symmetry matrices. The solution
of the two-row problem for the line P, allows finding only the ratio of the
functions S; and S;. The functions themselves can be found from the solution
for the projective plane P». We write the projective coordinates of the point
(x) = (xo,x1,22) in Py in a basis explicitly taking the crossing symmetry into
account:

T9 = S— 2a,
T = s+a, (11)
T2 = C,

where s and ¢ are symmetric functions of z, and a is an antisymmetric function
of z.

Considering the transformation (I,A2)™ in the basis s, a, ¢, we can easily
see that s, a, and c are related by the equation

n

2 —a%?—sc=0, (12)

which is invariant under the transformations I, and A,. In other words, Eq. (12)
in P, defines an invariant curve C' whose points do not leave C' under the action
of the transformations I, and A,. In the basis (zg, z1,x2), the equation of the
curve C' is given by

1'21 + 2x9x1 — 22122 — 922 = 0. (13)

Using Eqgs. (10) and (13), we can easily find that

=2 (14)
r2 n—1

and thus completely define the functions S; and S2. Taking unitarity condition
()C (which has not been used yet) into account, we can recover formula (4)
completely.

We discuss the relation between the descriptions of the two-row problem
defined by Conditions 1 for the spaces P, and P». In the projective plane P, the
solution is given by the invariant curve (13). It is irreducible and rational as is
any algebraic curve of the second order. In the affine coordinates, it becomes

T = @, Y= ﬂ, 22 4+ 2y — 22—y = 0.
Z2 Z2
If we construct a bundle of lines of the form \ygg+ A1g1 with the basic point
(20, yo) in curve (13), then the coordinates of the second intersection of the lines
in the bundle with curve (10) are rational functions of k = A1 /Ag:
—(wo 4 2y0) + 2+ k

x = T 2% , Yy =1yo+ k(z —xp).




The functions = and y are reduced to formulas (10) and (14) by the specially
chosen parametrization

(=20 — 2yo + 1)n + w0 + 2y0 — 2
n+1

k = )

which depends on the basic point of the bundle. A bundle of lines behaves as
the projective space P; under collineations (linear transformations with nonzero
determinants) in the space P,. The projective space P, is thus represented by
any bundle of lines whose base point lies on the invariant curve (13) of the space
Ps. In [7], the invariant manifolds for the problem defined by Conditions 1 with
dimensionalities N > 3 were studied and constructed using series over 1/w in a
neighborhood of the rest points of dynamic systems (5). Using projective spaces,
we can reconsider this problem from a new standpoint. We consider the problem
defined by Conditions 1 with the three-row matrix

1/3 -1 5/3
A= -1/3 1/2 5/6 |, (15)
1/3 1/2 1/6

which describes the scattering of the particle with angular momentum one on
the center with the same momentum. In the space Ps, the matrix As has three
eigenvalues equal to +1 and one eigenvalue equal to —1. The coordinates of the
point (z) in P3 can be expressed in terms of three symmetric functions s1, s and
s3 of z and one antisymmetric function a of z by an ordinary collineation (an
automorphism of the projective space):

xr; = biij + bisa.

We construct a plane in P5 that is invariant under the linear transformation of the
coordinates of (z) determined by the matrix As. It is given by

coxo + c1x1 + (2¢0 + ¢1)x2 + caxg = 0. (16)

It is easy to see that the plane 1 + x2 = 0 is the particular case of a plane (16)
and is invariant under the transformation I,,. This plane is the space P in which
the problem defined by Conditions 1 with matrix (15) is reduced to the solvable
two-row problem [10]. The plane z; + x2 = 0 does not contain the rest point
z = (1,1,1,1) of the dynamic system defined by Conditions 3, i.e., the fixed
point of transformation (5). If we require the point z to lie in a plane (16), then
we obtain the equation

Coxo + c1x1 + (260 + 61)332 — (360 — 2(31)1)3 =0. (17)



The transformation I, maps a plane (17) onto the cubic surface
Cox1X2X3 + C1Xox2x3 + (260 — 61)3301‘11}3 — (3(30 + 23?1)330])13?2 =0 (18)

in P3, which is not invariant under the transformation As.

The intersection of a plane (17) and a surface (18) determines a planar spatial
curve C, which is not invariant, in general, under the transformation As. Indeed,
excluding zs from Eqgs. (17) and (18), we obtain a third-degree homogeneous
equation G(xg,x1,22) = 0. In the basis s1, s2,a, the function G on the space
P; contains, in general, odd powers of the antisymmetric function a for any cg
and c¢;. The coefficient of @ is a quadratic form with respect to si, s2, and a.
The invariance of the planar spatial curve C' under the transformation Az implies
that this quadratic form should vanish. As any second-degree equation, it defines
rational functions si, s3 and a of some parameter t. Substituting them in the even
part (with respect to a) of the function G(xy,x1,x2), we obtain a third-degree
equation with respect to ¢, which has three solutions in general. An invariant
curve exists only if this equation is identically zero, i.e., if G is reducible. The
equation determining the coefficients ¢y and ¢; is given by

R4 (G,G,,) =0, (19)

where R, is the resultant of G' and G, with respect to zo. From Eq. (19), we
obtain ¢y = —1,c¢; = 3 and find the function

G(zo,x1,x2) = (—33:% + xox1 + 3x0w2 — T122)(—T0 + X2) = 0, (20)

which defines the reducible curve C'. The first factor in Eq. (20) is invariant under
the transformations [, and A,, and together with Eq. (17) defines the well-known
solution [11] with a finite number of poles with respect to w. It is represented in
Ps as the intersection of the plane

—x9+ 311+ 22 —323=0 21
and the surface
—32% + zox1 + 3zore — 122 = 0. (22)
Using Eq. (21) and writing Eq. (22) in the form
T1T3 = Zox2,

we can easily verify the invariance of (21) under the transformation I,,. Under the
action of the transformation Az, the second factor in (20) becomes (—x1 + x2);
as a result, we have the degenerate quadratic form

(—xo 4+ x2)(—21 + 22) =0,



which is invariant under the transformations I, and As. It determines two bundles
of lines that are invariant under the transformation [, and pass into each other
under the transformation As:

rg n+1/6 g n—3/2

o = X2, $_1:n_7/6’ xr1 = X2, x_lfn_’_l/2

CONCLUSION

The nonlinear boundary-value problem of constructing N-dimensional (con-
dition (1)A), elastically unitary (condition (1)C), and crossing-symmetric (condi-
tion (1)D) S-matrix is formulated in the projective spaces Pnx_1 and Py. In the
space Pn_i, it can be considered as the result of embedding (ignoring one of
the unitarity condition (1)C) the initial problem defined by Conditions 1 from the
affine space Ay into the projective space Pn—_1. The condition for the analytic
continuation of the S-matrix to unphysical sheets is represented as a nonlinear
autonomous system of difference equations, i.e., in the dynamic form. It can also
be considered as nonlinear transformation in the spaces Ay, Py_1, and Py. In
particular, among its fixed points, there is a point corresponding to the S-matrix
without interaction. In the neighborhood of this point, the S-matrix was studied
using power series in 1/w, which can sometimes be summed [7]. The use of the
projective space technique allows analyzing the solutions globally, i.e., construct-
ing the invariant subspaces containing the solutions to be found. The invariant
subspaces are determined by functions that are homogeneous in the projective
spaces Py_1 and Py, but not in the affine space Ax. This statement disagrees
with the conclusion in [12], according to which the invariant subspaces in the
affine space Ay are also determined by homogeneous functions. The above geo-
metric interpretation of the boundary-value problem defined by Conditions 1 in
the projective spaces Py_31 and Py and the examples considered in [8] and [11]
indicate that the homogeneity requirement on the functions defining the invari-
ant subspaces of Ay should be rejected. Concrete applications of the described
procedure for solving the nonlinear boundary-value problem are demonstrated in
Appendices 1 and 2.

They are follow to the same rule: the Conditions 3 solved in the P; for
n € Z, then succeed the chain Z C R C C, and at the end the solution one of
the unitarity equation in condition (1)C is found.



APPENDIX 1

The two-row crossing-symmetry matrix for the group SU(2) is given by

o 1 2042
A22l+1< 26 1 )’ LEN.

The matrix considered in the paper is particular case of it for [ = 1. We give the
calculation scheme for the general case of integer /.

Let us introduce the function X = S;/S5 and consider it for z = 0. Then
the continuation of X on to the first unphysical sheet is determined by the rule

20X 41

x@® =
—X©0) 4+ (21 +2)

and together with the crossing-symmetry condition (1)D gives the following ex-
pression for X (™)

n—(1+1)

x () —
n+1

;X0 = _(141/0). (23)
Thus, on any unphysical sheet n the ratio S;/Ss is defined at z = 0, and for
construction of S; and .S it is sufficient to find any of them. Let us denote S,
by ¢ = S5. This function is determind by the system of functional equations

Pl =1, (24)
(n)
© _n+l
pes it (25)

which follow from the unitarity and the crossing-symmetry conditions (4) on the
unphysical sheets. Here only those equalities are used from (4), which were not
used for derivation of Eq. (23). Equation (24) has an obvious solution in the ring
of meromorphic functions

(n) _ G(n)

=Gy
where G(n) is an entire function. Solution (26) can be represented in another
form In (™) = g(n—1/2), where g(n—1/2) is any odd function of its argument.
That form of In (™ is convenient for the solution to Eq. (25) which is now of
the form

(26)

n—+1/2+1

n+1/2-1

A partial solution of this nonhomogeneous difference equation can be found by
subsequent substitutions of unknown functions according to the formula

n+ (_1)mam+1
n— (=11’

gn+1)+g(n)=1In

gm(n) = gm-i-l(n) +In



where o, = 1/2 41— k and go(n) = g(n). The function g; obeys the equation

n+1/24+ (=1)*(1 - k)
n+1/2— (=1)k(1—k)

gr(n+1) + gk(n) = In

It is clear that
g(n+1)+g(n) =0, (27)

and a general solution to this equation gives a trivial solution of the problem (1),
which does not depend on [. Therefore, one gets [8]

17 n—1/2—(=1)"(1/24+1—-m)
ol )_Hm;ln_1/2+(_1)m(1/2+l_m)- (28)

One has an infinite product in formula (28) for noninteger [ € R. Now Eq. (27)
is of the form

Joo(n + 1) + goo(n) = In(-1). (29)
In this case one has, instead of Eq. (28),

e

(n) _
SO _w(n) I
F[_n—Zl—l_’_l}r[_n—l—l-l}

(30)
2

where ¥(n) = e9(M= is defined by a general solution of Eq. (29) with properties

p(n+1)(n) = -1, Y(n)p(-n) =1L (€2))

Till now one of the unitarity conditions (1)C was not used. It gives the following
result

n(z) = 1/marcsinz + i/ 22 — 15(z2), (32)
where (§(z) = —3(—z) — is a meromorphic function. Equation (32) shows that

the Riemann surface of the model has algebraic branch points at z = +1 and a
logarithmic one at infinify. Now formulae (23), (30), (31), (32) give the general
solution to the problem (1) for matrix As. The function ¢ can be determined
from the requirement that Eq. (30) turns into Eq. (28) for integer [. This gives
¥(n) = — cot(n) for [ even and 1(n) = — tan(n) for [ odd.

Let us remind that in Eq. (30) [ € R, but it is clear that this relation can be
continued to [ € C' and allows explicit determination of the Regge tragectories
with definite signature l,f(z) The common part of the Regge tragectories set for
Jy = 1+1/2is of the form [*(z) = {2 —n(2) +2k,n(z) +2k | k=0,1,2---}.
The Regge trajectories for J_ = [ — 1/2 contained one additional trajectory
1% (2) = —n(z). All the Regge trajectories of the model depend on function 3(2).

10



APPENDIX 2

We apply the developed method to the problem of scattering of a particle
with angular momentum one by a fixed source with the same angular momentum.
In this case, the crossing-symmetry matrix is given by expression (15). We
decompose the column S(z) into a sum of eigenvectors of the matrix A:

1 1 15 -2
Siz)=s1(z2) [ 1 | + 152(2) =5 | +2¢()| -1 |. (33)
1 3 1

For ¢ = 1, p = 0, functional Eq. (5) in the limit z — oo determines the fixed
(rest) points of the problem. Returning from the basis s1(z), s2(z), ¥(z) to the
column S(z), we have

—(2+V5)
Sy = i —%(1 +vh) | (34)
S(1£5)

From (34) it is clear that ImS; € Q(+/5). More definitely they are degrees
of the roots of the equation
-2 —1=0. (%)

These roots are known in the theory Fibonacci numbers and has reflection in
the consideration below. Let us come to the linear approximation of the functional
Eq. (3) at the vicinity of the point S;. It can be solved, and the result is of the
form

axt 0 8zt
S(z)=S;+e L (=" +ec| 5 |27 +cs -1 | 2%, 39
-1 3 1

where x4 are positive and negative roots of Eq. (x) and ¢; is an arbitrary constant.
Formula (35) defines three different planes which are linearly invariant under
approximate transformation (3). We cosidered below only one of them which
is not only linearly but also globally invariant. We can see from (34) that all
rest points lie in the plane Sz + S3 = 0. This plane is invariant under the
inversion transformation / and the crossing-symmetry transformation A. In the
plane Sy + S3 = 0, three-row crossing-symmetry matrix (15) passes into the

two-row matrix Ao
1 1 -8

11



and the problem is thus reduced to finding two functions S1(z) and S2(z). Setting
2 = 0 and defining X™ = S /5$™ where n is the number of the sheet of the
Riemann surface, we see that the transition from the physical sheet to the sheet
with the number n is realized by the linear fractional transformation

xn) \/5\/5(—X(0> + 2)shyn + (X© + 4)ch,n

, 37
—(X© + 4)shyn + V5(X© — 2)chyn G7

where we introduce useful notations
2shyn =y —y", 2chyn =y7 +y",

and y+ = (34 +/5)/2. The unitarity or crossing-symmetry requirements on X (")
gives the condition

(X©O —2)(X© 44)=0 (38)
which determines X (0). Consequently, we obtain two different solutions, X (?) =
2 and X(© = —4, which are compatible with the unitarity and crossing-symmetry
requirements.

The ratio S1/S5 is thus determined for z = 0 on every nonphysical sheet of
the Riemann surface defined by Conditions 2 with matrix (36), and to construct
Sy and Sy, it suffices to find any of these functions. We set Sa(n) = ®(n) =
—s9(n) + ¥(n), where so and 1 are the functions introduced like in (33). The
function @ satisfies the system of functional equations

O(1—n)P(n) =1, (39)
R
o(n) shy(n +1/2) B

e R S T R “

Relations (37), (38) are used in deriving Eqgs. (40), (41). Equation (39) has
the solution
®(n) = 9"/, (42)

where g(n) is an arbitrary odd function, g(n) = —g(—n). Substituting (42) in
(40), (41) and changing n — n + 1/2, we obtain the difference equations

chy(n+1)

_ _ 0) _
g(n+1)+g(n)=In(-1) chyn , XW =2 (43)
g(n+1)+g(n) =In (—1)781’?’(” * 1), XO = _4 (44)
shyn

for the unknown function g(n).
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Solving Egs. (43), (44) by the method of consecutive functional changes, we

obtain
o0

g(n) = g-1(n) + goo(n) + Y Gm(n), (45)

m=0
where go(n) = n ln y4 and

chy(n + 1+ 2m)chy,(n — 2(m + 1))

chy(n — 1 —2m)ch,(n + 2(m + 1))
)
)

Gm(n) =In , X0 =2 6

Gon(n) = In shy(n + 1+ 2m)shy(n — 2(m + 1)
shy(n —1 —2m)sh,(n + 2(m + 1)
The term g_;(n) is introduced to take the factor —1 in Egs. (43), (44)

into account. We set e9-1(") = £(n). The function £(n) solves the system of
functional equations

§n+1)5(n) = -1, &n)é(-n) =1. (48)

The general solution of this system is expressed in terms of f-functions. We
confine ourselves to the degenerate case here

X =4 @)

m 1
&n) = tgg <n+ 2). (49)

Now we use the last unitarity condition (1)C. As a result, the function n
considered as a function of the complex variable z is of the same form as in
Appendix 1. Formulae (37), (38), (42), (46), (47), (49) now give the solution
of the problem defined by Conditions 1 for crossing-symmetry matrix (15) and
equation Sy + S3 = 0.
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