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INTRODUCTION

QED processes of the type 2 — 3,4,6 at colliders of high energies have
attracted both theoretical and experimental attention during the last four decades.
Accelerators with high-energy colliding e*e~, e, vy and up~ beams are now
widely used or designed to study fundamental interactions [1]. Some processes
of quantum electrodynamics (QED) might play an important role at these collid-
ers, especially those inelastic processes whose cross section does not drop with
increasing energy. The planned colliders will be able to work with polarized
particles, so these QED processes are required to be described in more detail,
including the calculation of cross sections with definite helicities of the initial
particles — leptons (I=e or p) and photons . These reactions have the form of
a two-jet process with the exchange of a virtual photon v* in the ¢ channel (see
Fig. 1).
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Fig. 1. The processes v, vyl (I = e, u) with the exchange of a virtual photon 4™ in the 7
channel

Much attention to the calculation of helicity amplitudes of QED processes at
high-energy colliders was paid in the literature (see [2] and references therein).
Keeping in mind the physical programs at planned v+ and lepton- colliders, a
precise knowledge of a set of calibration and monitoring processes is needed. The
calibration processes are the QED processes with sufficiently large cross sections



and clear signatures for detection. A rather rich physics can be investigated in
peripheral processes such as heavy leptons and mesons (scalar and pseudoscalar)
creation, where the relevant QED monitoring processes must be measured. Let
us remind the general features of peripheral processes, namely, the important fact
of their nondecreasing cross sections in the limit of high total energies /s in
the center of mass frame of the initial particles. The possibility of measuring
the jets containing two or three particles can be relevant. This is a motivation
of our paper. It is organized in the following way. In Sec. 1, the kinematics of
peripheral processes is briefly described. In Sec.2, the impact factors describing
the conversion of initial photon to the pair of charged particles (fermions or
spinless mesons) are calculated. In Secs. 3, 4, and 5 a similar calculation is made
for the initial polarized electron and photon, in particular subprocesses such as
the single and the double Compton process, and the processes of pair creation
are considered. Since the helicity amplitudes for subprocesses of type 2 — 3
have in general a complicated form, we do not put explicit expressions for the
corresponding cross sections indicating only the strategy to obtain it.

1. KINEMATICS

Throughout the paper it is implied that the energy fractions of a jet component
are positive quantities of the order of unity in magnitude (the sum of energy
fractions of each jet is unity) and the values of transversal to the beam direction
component of their 3-momenta are much larger compared to their rest masses.
Thus, we neglect the mass of jet particles. The corresponding amplitudes include
a large amount of the Feynman diagrams (FDs). Fortunately, in the high-energy
limit a number of essential FD contributing the “leading” approximation greatly
reduces. The method used permits one to estimate the uncertainty caused by
“nonleading” contributions which have the following magnitudes of the order:
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where s; and s are the jet invariant mass squares™ compared with the terms

of order unity. The last term in Eq. (1) is caused by the absence of radiative

corrections in our analysis. The angles #; of particle emission to the corresponding

projectile direction of motion is assumed to be of the order (see Fig.2)
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*These are supposed to be small.



Fig. 2. The scheme of collision of initial beams with detection of two jets moving in the
cones within the angles 0;

where m; is the typical mass of the jet particle.

In this approach we can consider initial particles (having the 4-momenta
p1,p2) as massless and use the Sudakov parameterization of 4-momenta of any
particle of the problem:

¢i = aip2 + Bip1 + qiL, (3)
giip2=0, ¢ =-q;<0.

The Sudakov parameters (3; are the quantities of order of unity for the
momenta of the particles belonging to the jetl and obeying the conservation
law >, Bi = 1, whereas the components of the jetl particle momenta along
the 4-momentum p- are small positive numbers which can be determined from
the on-mass-shell conditions of the jetl particles ¢? = sa;3; — q? = 0,c; =
qQ?/(spi) < 1.

The same is valid for the 4-momenta of the particles belonging to the jet2,
namely, o ~ 1, 35,05 = 1, B = a4} /(say) < 1.

Among the large amount of FDs, describing the process in the lowest (Born)
order of perturbation theory (PT) (tree approximation), only those survive (i.e.,
give a contribution to the cross section which does not decrease with increasing
s) which have a photonic t-channel one-particle state.

It is known [3] that the matrix elements of the peripheral processes have a
factorized form and the cross section can be written in terms of the so-called
impact factors, each of which describes the subprocess of interaction of the
internal virtual photon with one of the initial particles to produce a jet moving in
the direction close to this projectile momentum. So the problem can be formulated
in terms of computation of impact factors. For processes with initial photons with
definite state of polarization described in terms of Stokes’ parameters we construct
the relevant chiral matrices from bilinear combinations of chiral amplitudes. The
last step consists in the construction of differential cross sections.

The matrix element, which corresponds to the main («leading») contribution,
to the cross section, has the form



M =gt 9;; T3, )

where Ji' and J¥ are the currents of the upper (associated with jet1) and lower
blocks of the relevant Feynman diagram, respectively, and g,,,, is the metric tensor.
The current J{* describes the scattering of an incoming particle of momentum p;
with a virtual photon and subsequent transition to the first jet (similar to J3).
Matrix elements (4) can be written in the form (see the appendices in [3])

M =221,
1 o ®)
o v
I = ;J1p2u; I = g']2p1u-

Really, it follows from the Gribov representation of the metric tensor:

9
= —(phpy +p5pi) + ¢ =

wo_ 2
s

2

9 Tt (6)

Invariant mass squares of jets can also be expressed in terms of the Sudakov
parameters of the exchanged photon:

q=ap +PBp1+qi, (¢+p1)°=s1=—-a"+sa, 7
(—g+p2)? =s2=-d" — 50, ¢ =saf—-q’=—q’. @
Here and below we mean by the symbol «~» the equation with neglect of the
terms which do not contribute to the limit s — oco.
The singularity of the matrix element (5) at g = 0 is fictitious (excluding
the elastic scattering). Really, one can see that it disappears due to the current
conservation:

" S
Qi = (apa 4+ qu)uJi =0, poJi = o (®)
S
@dy = (Bp1+q1)udy =0, p1.Jy = ﬁqu- ©)]

We arrive at the modified form of the matrix element of peripheral process

. . . nitn 2s
M (a(p1,m) + b(p2,m2)) — jetyy, + jetyy, = i(dma) "= @W”L?ilmgiy (10

where 7); describe the polarization states of the projectile ¢ = a, b; \; describe the
polarization states of constituents of the corresponding jet. The numbers of QED
vertices in the upper and lower blocks of FD (see Fig. 1) are denoted by n4 o.



We give here two alternative forms for the matrix elements mq o of the
subprocesses v*(q) + a(p1,m) — jety(y,) and v*(q) + b(p2,m2) — jetoy,)

n
m o __ qui\l
= R (11)
'os1tq
1
miy, = SP2d 1A (12)

and the similar expressions for the lower block. We use the second representation
(12). The form (11) can be used as a check of validity of gauge invariance, namely
turning the matrix elements to zero in the limit q — 0.

A remarkable feature of the peripheral processes is that their differential
cross sections do not depend on the total center-of-mass energy +/s. To see this
property, let us first rearrange the phase volume d® of the final two-jet kinematics
state to a more convenient form:

d® = (2m)' 0% (p1 + p2 — 2,0l — 3, PP )AF D dF@) =
= (2m)'dA g8t 0l dAF D AF ),
5211) =d'(p1+aq— Eipz('l))7 5?2) =0(p2—aq - > p§»2)), (13)
A d3pz(172)
z251(.1’2)(277)3 .

Using Sudakov’s parameterization for the transferred 4-momentum ¢ phase vol-
ume

dF(LQ) = H

1
d'q = %dadﬁdQQL = %dsldSQdQQL (14)

with the invariant mass squares of the jets s; 2, we put the phase volume in the
factorized form

2m)* (1) 54 (2) 54

Using the modified form of the matrix element and the phase volume for
peripheral process cross section in the case of polarized initial particles (photons
or electrons), we have

a™ “+no 71'2 (47T)2+n1 “+no d2(IJ_

do™"? = CEE o7 (q)P2*(q) (16)
with the impact factors @} in the form
7 (q) = /dsiZ|mZ{J 2dF0Y), i=1,2. (17)
Aj



The matrix elements with the definite chiral states of all particles m?("’/\),
where the subscript () denotes the set of chiral parameters of the final state, are
calculated and listed below.

In the case of initial polarized photons the description in terms of Stokes’
parameters &1 23, &7 4+ &2 + € < 1 is commonly used. The matrix element
squared in the r. h.s. of (17) must be replaced by [4]

Tvar(Mp)ler(erJr m*)( 1+& ifl—f?,) (18)

2 m-~t mT i1 —&  1-&

with the spin M-matrix elements

_ + - _ + — \*
=B lmil = mi (mgy) (19)
m :Zk|m()\)| , m~t=(m"7)
We choose A = +1 for the initial fermion
T.=> |m{|. (20)

A

The cross sections doy, ., of the process of type 2 — ny + np with production
of two jets

a(p1,m) + b(p2,m2) — a1(r1 A1) +.. Fan, (Tny, Any )+
+b1(q170'1)+...+bn2(qm70'n2)7 (21)

where energy fractions z1,...%,,, »_ 2; = 1 and transversal components of mo-
menta ri,...r,,, ».r; = q of jet a and the similar quantities y;,q;, >, v = 1,
> q; = —q for the other jet b, have the form

0&4 (1) n(2) d2q dxldyl
dogg = T,'T. drid?q ————, 22
2T g1 T2 (@2)2 Y zayiys @2)
b (1)rn(2) d?q dzxidyidys

dogs = T Prid?®qd?qy ———=-"7= 23
023 = gtz T3 e d nd ad e (23)

ab (1)rn(2) d?q dridrodydys
doss = ——Ta T — L g d? god?r  dPry ———2—22 92 24
033 = 55513 13 (@) q1d”qadr1d T Tyt Yals (24)



2. SUBPROCESSES *vy — ete™, mtn~

Let us first consider the contribution to the photon impact factor from the
lepton pair production subprocess

Y(k1,m) + 7 (q) = e (g=, \) + €T (g4, —N). (25)

The matrix element of the subprocess has the form (we suppress the factor 47wa)

’ _ - — k1 =G4 + k1,
m?ﬁ\ = _UA(Q*) gn K1 ,yl‘« + ’Y“Té‘n v)\(qu)a (26)

Uy = UW_), V) = W_)\V.

We imply all the particles to be massless. A definite chiral state initial photon
polarization vector has the form [5]

£ = NilG-Gykrw—» — k1 grwyl, 27

where
2

Nf=——,
S1K4K—

$1= 2019, K1+ = 2k1q+. (28)

Chiral amplitudes m] = (1/s)m]§ p2, have the form

+ Nl — A an + Nl _ A an
my, = —?uq+qp2w+v, my_ = —?UPQQQ—W—%
2
_ Ny _ Ny _ 9
my_ = _?UJQ-FQPQW—% myy = —?UPQ(](]—W#)-

The elements of the spin M-matrix in the case of lepton pair production are

++ - 29 2 2
me+e_ - me+e‘ = ﬁl‘+l‘_ (l‘+ + JJ_),
e | (30)
mir, = (m ) = = (w2
qi1q-

x4 and x_ are the energy fractions carried out by pair components; x4 +x_ =1
and 6 is the angle between two Euclidean vectors; q = q— + q4 and Q =
T+qQ- — T-q+.

In the case of charged pion pair production

v(pr,el) +77(q) = 7 (g4) + 7 (g-), 31
we have
T T_ 2
m" = el phm¥ = &g + Mg — 2(ps) . (32)
PRt Py, ! Pids 19+ s( 1P2)



Using the photon polarization vector written as

el = Nil(qp1)d—p — (4-p1)dsp + i€ apra®d? ], (33)

we obtain the chiral amplitude of the pion pair production process (we define
(P1P24-4+) = €apryspiPr a2 a5 = (s/2)[a-a+])

m' = —Nl(QQ+ Zn[Qaq]Z) = _N1|q| |Q|ei779, 0= 6(5’ (34)

where we imply the z-axis direction along the photon 3-vector and use the relation
[a—,a+]. = [Q,q].. For the pion chiral matrix we have

__ 2q2
m:rrjf =M = g—qg($+$7)2a
on2 (35)
+— — * q 2,210
mI m rrx_)%e
ntm ( ot ) qiq% ( + )
For the two-pair production process
7(p1,€1) +72(p2. &) — alq-) +algs) + b(p-) + b(p-), 6)

G+ = QxP2 +T1pP1 + Q15  px = y+£p2 + Bp1 + P+,

the differential cross section (assuming that the pair aa moves along the photon-1
direction and the pair bb moves along the photon-2 direction) has the form (22)
with
q?
TW = —— (247 )?[1 — & cos (20) + & sin (20)], for 7«t.7m,  (37)
qQ1q-
q?
71 — W(mx,){xi + 2% 4+ 2z, x[€3c0s (20) + £ sin (26)]},

for et,e” (38)

and the similar expression for 7®*, We remind that the obtained formulae
are valid at large, compared to masses of particles, transverse components of jet
particles

q> ~qL~pi~p>->m’, qy=q9-9q-; pr=-9q-p-, (39

and finite energy fractions x4+ ~ y4+ ~ 1, which correspond to the emission
angles of jet particles §; = |q,|/(x;€) > m/e that are considerably larger than
the mass-to-energy ratio.

)

*In paper [6] formula (38) contains a misprint in the sign of §§1’2 .



3. SUBPROCESSES *vy — ete ™y, 77y

Here and below for subprocesses of type 2 — 3 we restrict ourselves to
calculating the chiral amplitudes and checking their gauge invariance properties.
The subprocess

Y(k,A) +7%(q) = e (g, —A-) + e (g, A=) + y(k1, A1) (40)

is described by 6 FDs. A standard calculation of chiral amplitudes m§1 \_ leads
to

mty = =20 g dpawiv(ar) = (™))
i = = Yoo vlar) = (2 ) o
mt s = (g ) A wselan) = (mr)"
= g AT w (g = (mp)*
with AT _(k, ki) = AT (—k1,—k),
N2 = 2 , Nf:#, S$1 = 2q4+q—,
S1K_Ky S1K14K1— (42)

kt = 2kqy, K1+ =2k1qs

and a rather cumbersome expression for A~ .

S a8 N RN ~ ~ SN A /A » ~

At = 71276%761(—% + @)P2 — 4+ (4— — k)p2(d+ + k1)q——
(¢+ —a)
S N N RN A~
- mm(q— — Q)kG_k1. 43)
Substituting
R | s . ~ N - .
P2 —(4—qu) = G+ + k1 +(3- —k) — 4],

in the second term of the r.h.s. of (43) we have

x
+ +
AT, = —ss1k14 {(
sa

4+ —q)°
S1 P T A A S1 PP
+ @ —q2 kG k1Gip2 + @ —q2 q)szquqfk'ﬁ

1] _ 1]
LR [ S
sa (- —q)

+ 5q+(q— —k)GL(q+ +k1)g- (44



with

k2 2 2
(q= — q)? = —q® + 2qqs — sazs, sa= L4 =4 3
x1 T Ty
2 (45)
qx 1 2
T+ T +xy =1, Kr=-—, Kix= (r1q+ — 21kq)”.
T4+ T1T4+

A gauge property (the chiral amplitudes must vanish as g — 0) can be seen
explicitly.

A further procedure of constructing the chiral matrix is straightforward and
can be performed in terms of simple traces. We will not touch it here.

Consider the subprocess
vk, A) + (@) = 7 (q4) + 77 (g-) + (K1, A) - (46)

There are 12 FDs describing a rather cumbersome expression for the matrix
element. It can be considerably simplified when using the modified expressions
for the photon polarization vectors in the form [8]

N o
en(k) = 8P ud-qhws,
N (47)
ent(ky) = TISPIYMQA*qA+k1w)\

with the same expressions for IV, N; as in the case of the yy* — eTe~ sub-

process. Polarization vectors chosen in such a form satisfy the Lorentz condition

e(k)k =0, e(k1)k1 = 0 and also the gauge condition (k)q_ = ¢(k1)g— = 0.
The matrix element has (we lost the Bose symmetry at this stage) the form

1 0 _ 1 *o _ dx (Elq )(EQ) (€1q)(6q )
M3, = PR RIS () Opp = oy (1SS P

K1+ K4
A(ep2)(e194)  4le1p2)(eqy) L4
T ey w2 {(q+ -9? (¢ - q)Q}’

(48)

1

where we imply € = ¢*, ¢, = Ei‘ and x4 = 2paq+/s, x1 = 2poky/s, where

Ty +x_+x =1
For A1 = X\ we have

my = siNN1[A1 +iAB1], A1 =-Qq, Bi=[Qq].. (49)

10



For the case of opposite chiralities we have

m?\ = s1NNi[A +i)\B],

1
A=— -
Qq+2x1x,x+
x [Q%k} — @ (z1a4 — z4:k1)? — @ (z19- — 2_kq)?]x
T4 X _
N )
(+ —a9)?* (¢-—q) (50)

o T4 X _—
b= ((q+ —? T - Q)2)X
x (salq-qy]. — sa_[qqi]. + say[qq-].)+

+2[a-qt]: - [Qdl.,
2 k2
1

Say = —, Sa=— + Say + sa_.
Lt 1

We can see that the Bose symmetry is restored.

4. SUBPROCESSES ev* — ev;e+v+ 7y
Consider first the Compton subprocess™
() + e(p, A1) = (K, A) +e(p', M) (51
For the chiral matrix elements we have (we choose A\; = +1)

N

mi = —a(p')[—pwr(p + k)p2 — p2(p — k)p'w_r]wiu(p),
18\7 N (52)
mi = ——u(p)pipawsu(p), mt = ——u(p)prip'w i u(p).

The sum of modulo square of the matrix elements is

2
- +12 o4 2
T, —z)\:|m)\| _2—m,[1+(1—x)] (53)
with
PRI SR (p'z — k(1 - 2))? (54)
x’ z(l —x) ’

*The case of real initial photons was considered in paper [7].

11



a b c

Fig. 3. Feynman diagrams describing the subprocess y*e~ — e~ (a) and pair production
~v*e — eaa subprocess by the bremsstrahlung (b) and double photon (¢) mechanisms

and © = 2kpa/2p1pa, 1 — x are the energy fractions of photon and electron in the
final state.
Consider now the double Compton subprocess (see Fig. 3, a)

e(p,n) +v"(q) = e(@';n) +y(k1, A1) + (K2, A2). (55)
The chiral matrix elements m} , are
172

~ s1Ni Ny _

mi, =(m-_)" = T“(P')ﬁ(iﬁzwru(l?);
= () = SRR g u(p); 3
mi_=(m_,)" = N18N2 u(p') AT _wyu(p); oY
= i) = T AT u(p)
with A%, (ky, ko) = AT _(ko, k1) and
AT (ki ko) = (p,s_ilq)gm(ﬁ/ — QYk1p' ko + P + k1 )pa(p — ko )P+
gtk + DBz )
with
sy =2pp/, NP = 51%%, ki = 2pki, ki =2p'k;. (58)

To see the gauge invariance property of two last amplitudes we perform a substi-
tution pa = (¢ — q1 )/ in the second term of the r.h.s. of Eq. (57) and arrive

12



at the form

x 1\ 1 1\ -
At ki, ko) = 551K} (7 + —) ko 4 ss1K2 (7 — —) k1+
* ( ) ! (P —a)?  saq (P+a9)? s
S - S o g
+ 7@ +1q)2 k1pkaqipe — mpgruklp’kg—

—ﬁ@“+th@—égﬁi}.<w>

q

We can verify that this expression turns to zero at q = 0. Really, we can use

¥ —q)?=-a*>+2pq-st’a;, (p+q)*=-a’+say,

/ ! / (Sp )2 2
ag=04+a1+a, THri+ra=1 sa = —, sa;=—, (60)
x xX;
]. !
Ky = s, K= —(kiz' —p ;)2

r'z;
A further strategy is similar to the one mentioned above (45).
5. SUBPROCESSES ev* — entn ™, eputu~
The matrix element of the pion pair production subprocess
e(p,n) +7" () = 7t (q1) + 7 (¢-) +e(@',n) (61)
can be written in the form
m" = a(p')[B + Dlwyu(p), (62)

where bremsstrahlung mechanism contribution is (see Fig. 3, b)

1 1 1
B = =Bt + ———@1dp2 — ————3p2dds |,
i s(p+q)? s(p' — q)?
@1 =q++q-, G2=p —p1; (63)
A1 . e . 2(@®°—2qq ).
D=— [D(Qq_ +q2) — 2 q1 + 2}
@ ) (q—q-)? s(g—q-)?

For the squares of module of the chiral amplitudes, which enter in (23) and (24),
we have

T = [m* 2 = Sp (5'(B + D)p(B + D)wy) (64)

with B and D specified below (69).

13



For the subprocess of the muon pair production we have

e(p,n) +v*(q) = w(gr) + 1 (g-) +e(@’,n). (65)

The bremsstrahlung and two-photon mechanisms must be taken into account (see
Fig.3, b, ¢):

1, )
my = 2By rulpy(g- )yt wrv(a) +
1
+?ﬁ(p’)%ww(p)ﬂ(%)Duww(cu) (66)
2

with double photon mechanism contribution (not considered in paper [2])

D, = Dy, + m%ﬁm - mﬁﬁ% (67)
and bremsstrahlung mechanism contribution
Bu = B'Yu - éﬁQQA%L + ér}%dﬁQ (68)
s(p' — q)? s(p+ q)?
with
x’ 1 T_ T
P T or0r P (q—;)2 ’ (69)
= %, = 2p_2p'7 Tyt +a =1
s s

To perform the conversion in the Lorentz indices pu,v in (66), one can use the
projection operators. In the case of equal chiralities 7 = A = +1 we choose the
projection operator as

Py = u(p)grw+ulg-) (70)

u(p)q+wu(q- )

Inserting it and using the relation wiu(p)u(p) = wip, we obtain

mt = () (2 + 5) Q-di+
T u(p)gywiu(go) g @)

4—q4+Dq4Lp2 1 1 )
+ - +
s (qg(q—qﬂ? ¢ (p+ q)?
P24 444D 1 1 >}
+ — w4v(q+) =
s <q§(q— —9? G -92)17" ()
_9 o
=———a(p)ATwiv(qy). (71)
u(p)q+w+u(q)_ ( ) +W+ (Jr)

14



In the case of opposite chiralities 7 = —\ = +1 we use the projection operator
u(p)w—u(q-)
u(p)w-u(q-)

The similar calculations lead to the following result:

sz

2 (D, B pidiiy (1
mf—iuz?/[<—+—>2pq +2 +
u(p)w-u(q-) #) G 4@ (pa-) e a3(q — q4)?
L1 )  piipai- ( L ) B
a3 (p1 — q-)? s 3lg—q-)*  ¢p+q)?
G—p241D 1 1 > }
- + w_v(gy) =
s (qi(q—q—)z’ ai(p+ q)? (@)
2

= —— U ! +w,v .
- ﬂ(p)w_u(q_) (p )A7 (qu) (72)

The property of AI,AJj tending to zero as |q] — 0 is explicitly seen from
(71) and (72).

For the sum of squares of chiral amplitudes, entering Eqs. (23) and (24), one
has

T =3 [ =
1

~ 2 ~
=———Sp(pPATg, AT + Sp (AT, AT T
(Pg+)(9-4+) PP ALG Afws) + 2 —Sp (P AZG AZwy). (73)

A further strategy is straightforward.

CONCLUSION

In our paper [6], we wrote down the explicit expressions for the spin matrix
elements M;; for subprocesses of the type 2 — 2, which are reviewed here. For
the subprocesses of the type 2 — 3, we formulated the algorithm of the calculation
of spin matrix elements. We considered all possibilities of pair creation in the
mentioned subprocesses as they were not completely considered in the recent
work [2]. The gauge condition M,;(¢q) — 0 for |q] — 0 is explicitly fulfilled
in all the cases. The subprocesses with the pions in the final state were also
considered in the paper for the first time.

The magnitude of the cross sections (22)-(24) is of the order o"/ w2 >
a"/s,n = 4,5,6, where u? = max (s1, s2) is large enough to be measured, and
does not depend on s. The strategy of calculation of cross section, using the helic-
ity amplitudes of subprocesses 2 — 3, is described above and can be implemented
to numerical programs which take into account details of experiments.
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