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Spin Observables in the NN — Y©" Reaction at the Threshold
and Quantum Numbers of the " Pentaquark

General formulae for the spin-spin correlation parameters C; ; and spin-trans-
fer coefficients K/ are derived for the reaction NN — Y©" at the threshold for an ar-
bitrary spin of the pentaquark ©". It is shown that measurement of the sign of C, ,
or observation of the non-zero polarization transfer from the nucleon to the hyper-
on Y allows one to determine the P-parity of the ©" unambiguously and indepen-
dently of the spin of the ©". Measurement of these spin observables in both the pp -
and pn-channels of this reaction determines also the isospin of the 6*.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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1. INTRODUCTION

Experimental indications [1-7] of existence of an exotic baryon with the
strangeness S = +1, called as the ©7(1540), which presumably consists of five
constituent quarks, stimulated many theoretical works. An important task now
is an experimental determination of the quantum numbers of the ©F. Model
independent methods for determination of the P-parity of the pentaquark ©7 in
the reaction NN — Y ©F were suggested in Refs.[8—11]. These methods are
based on such general properties of the reaction amplitude as angular momentum
and P-parity conservation and on the generalized Pauli principle for nucleons. It
was shown that the sign of the spin—spin correlation parameter C,,, determines
unambiguously the P-parity of the ©F, mg, in the reaction pp — LTOT [9].
Another strong correlation between C, , and mg is also valid for the pn —
AY©7 reaction [10, 11] if the isospin of the ©1 equals zero. Furthermore,
measurement of the spin transfer coefficients K = K7 or K7 of these reactions
also allows one to determine the P-parity unambiguously [10, 11]. Measurement
of the polarization transfer from the initial nucleon to the hyperon in the reaction
NN — YO can be perfomed by a single spin experiment with polarized beam
or target, because the polarization of the hyperon can be measured via its weak
decay. However, the results of Refs.[8—11] are based on the assumption that the
spin of the ©% is equal to 1/2. Up to now the spin of the ©T is not known,
as well as the P-parity and isospin, and within some models its value can be
3/2. In this work we derive formulae for the spin observables of the reaction
NN — Y ©F at the threshold for the general case of an arbitrary spin of the
©OT. Analysis is based on common properties of the reaction amplitude and the
standard method of the spin-tensor operators [12]. We also derive a full spin
structure of the cross section of this reaction for the case of the spin-1/2 particles
taking into account all polarizations in the initial an final states.

2. FORMALISM

Assuming dominance of the S-wave in the relative motion in the final system,
the most general expression for the amplitude of the binary reaction 1+2 — 3+4
at the threshold can be written as [13]

Tl = Z (J1p japa|SMs)(jsps ja pal J M) x
Mg Lm

x (8 Mg Lml|J M)Ypm(k)a%S. (1)

Here j; and p; are the spin of the ith particle and its z-projection, J and M
are the total angular momentum and its z-projection; S and L are the spin and



orbital momentum of the initial system, respectively, and Mg and m are the
corresponding z-projections. Information on the reaction dynamics is contained
in the complex amplitudes a JS . The sum over J in Eq. (1) is restricted by the

conditions J = js + ja,js + ja — 1, ey |3 — Jal- We choose the z-axis along
the vector of the initial momentum k therefore Y7, (k) = /(2L + 1)/47 6 0.

Due to P-parity conservation, the orbital momentum L in Eq. (1) is restricted
by the condition (—1)* = 7, where © = 7 7y m3m4 is the product of internal
parities of the participating particles, ;. We consider here mainly transitions
without mixing the total isospin 7 in this reaction®. For the fixed 7" and 7 the
spin of the initial nucleons S is fixed unambiguously by the generalized Pauli
principle: (—1)% = 7(—1)T*!. Therefore, in order to determine the P-parity 7
of the system at a given isospin 7, it is sufficient to determine the spin of the
N N-system in the initial state of this reaction.

Let us consider here a particular case of j3 = % and j4 being half-integer,
Jja =%, 5,3,.... For this case there are two total angular momenta .J, = js + 1
and J,, = j4 — % For the spin-singlet initial state S = 0 only one orbital
momentum is allowed, L = J, and therefore there is only one scalar amplitude,

a S = a9 For S =1and js > % there are the following three scalar amplitudes

LS _ L.

aJ J: aJ.

(1) aj‘;, aﬁ:“ and aJm —Lif (-1)7» =,
or

ey I Jp+1 Jp—1 . g
(i) ay” (Jm #0), a) " and a3l if (=1)7r = —m.

For particular case of j4 = j3 = %, one has J,, = 0 and J, = 1. For this case
only two triplet amplitudes are allowed for 7 = +1, i.e., a(l) and a%, whereas the
amplitude a is forbidden by conservation of the total angular momentum. For
m = —1 one also has only two triplet amplitudes, one of them corresponds to
J=1, a%, and another one is allowed for J =0, i.e. a(l).

Using Eq. (1) one can find the polarized cross section do(p1, p2) as follows:

2
1 11
2
dotnpa) =0 30 1T = 5 (gl )
H3 Ha
> VEL+1DRL +1)(SM L0|J M)x
JMLL'

x (SML'0|J M) ak® (a}%)", ()

where ® is a kinematical factor. Using the relations (% 11 % 12]00) = ijl Z:;i X,S? +

*The isospin mixing is possible, for example, in the reaction p +n — %0 + @7, if the ©F is
an isotriplet. In this case the P-parity cannot be determined by using the method in question.



and (§p15p2/10) = X}, o,\i‘;%x,g”, where o; (i = y, \) is the Pauli matrix and

Xy is the 2-spinor, one can find

2
1 1 1
= —Z(1—p;-
(2M12u2|00) 4( P1P2), 3)

11 2
<2M12/~L2| ) {

In Egs.(2), (3), and (4) p; is the polarization vector of the ith particle with the
spin j; = % being in the pure spin state x,,. The unpolarized cross section is
given as

(]— +P1-P2 — 2p1zp22)a 0

M=o,
“)
[1 + (plz +p22) +p1zp22]a M = +1.

NN

— 1 3 a2 1 LS|2
dog = 5 STk =5 ® ;(2J+1)|aj 1. (5)

H1 p2 43 Ha

2.1. The Spin-Singlet Initial State. Using Eqgs. (2), (3), and (5) one can find
for the spin-singlet polarized cross section the following formula:

do(p1,p2) = doo(1 — p1 - p2). (6)

In notations of Ref.[14], non-zero spin—spin correlation parameters for this case
are the following: Cy , =Cy =C; . = —1.
In order to find spin-transfer coefficients, one should consider the following
Cross section:
do(p1,p3) = ® Z | T a2, (7

M2, Ha

The polarization vector p; of the 1st particle in the right-hand side of Eq. (7) can
be found only in the following sum:

1 1 1
> (GHag02000)® = 2 0, oy X ) Oy (—i0y) X)) =
H2 H2
_1 Sp (1 _ 1 8
=% 0+o-p)=5. ¥
Since the vector p; is absent actually in the right-hand side of Eq. (8), one should
conclude that all the polarization transfer coefficients are zero for the spin-singlet
initial state: K] = 0(i,j = x,y,z). The obtained results for C;; and K}
are valid for any values of the spins js3 and j4, both of them being integer or
half-integer.



2.2. The Spin-Triplet Initial State. For S = 1 and M = 0, Eq.(2) can be
written as

_ d
do™=%(p1,p2) = — (1 + p1 - P2 — 2p1.P2:) X

167
x> WTaj b =T+ 1a™P 9
J

We arrive at this formula from Eq.(2) using Eq.(4) and the following formu-
lae for the Clebsh—Gordan coefficients: (10.J0|J0) = 0,(10J —10]|J0) =
VJ/(2J —=1), (10J+10[J0) = /(J +1)/(2J + 1). In order to simplify the
notations, we omit in Eq.(9) and below the superscript S = 1 in a¥ S, The sum
over the projections M = +1 and M = —1 into the right-hand side of Eq.(2)
gives

)
d M==1 _ 1 Das
o (P1,P2) —1677( + p12p2z) X
A2 WTagt VT Tag R i (<) = (10)
>, 2T +1)]ag?, if (-1)7=m.

Here we used the following relations: (11J —1]J0) = \% (11J —-1|J-10) =

VI +1/y/2(2J+1), (11J —1]J +10) = VJ/\/2(2J +1). Using Egs. (9),
(10) and (5), one can present the polarized cross section (2) in the following
standard form [14]:

da(pl, p2) = dog (1 + C:r:r Plz P2z + Cy,y P1yP2y + Cz,z D1z p22)7 (11)

where the spin—spin correlation parameters are given as

D S VA e 3 U
@e = My SOEI

C..=1-2C,,. (13)

(12)

As seen from Eq. (12), the spin—spin correlation parameters are non-negative for
transversal polarization. One can see from Eq.(12) that the diagonal term a:}
does not contribute into the numerator of C,. , = C,,. The obtained results for
C;,; are valid for any values of the spins js and js, both of them being integer
or half-integer.

Using Eq. (12), one can find, for example, for the particular case of j3 = %

and j, = 3

V243 — V3a3]?
3lai|* + 5lag]* + 5la3|*’

Cro=Cyy= (14)



ifr=-1(S=1,T=1), and

o~ VEaiP

C:C, = )
o = O = G B+ 5l

15)

ifr=4+1(S=1,T=0).

Considering the sum Zuz(%m%ugﬂM)(%m%ugHM’), one can find that
this sum explicitly contains the polarization vector p;. Therefore, in contrast
to the case of S = 0, the spin-triplet initial state S = 1 allows a non-zero
polarization transfer in this reaction. In order to get the spin-transfer coefficients
we use below a general method developed in Ref. [12].

3. THE GENERAL METHOD

According to Ref. [12], the amplitude in Eq. (1) can be written as
Tllffﬁ; = X;; 13 X;’; I Fle p1 Xjz pz> (16)

where F' is an operator acting on the spin states of the initial and final particles.
This operator can be written as

F= Z TTT?TZL; X;rl mi (1)Xj; mo (2)X_]3 m3 (3) X]4 myq (4)5 (17)

mi m2ms3mq

where Xj, m, (k) is the spin function of the kth particle with the spin j, and

z-projection my, and T34 is defined by Eq. (1). The operator F' is normalized

to the unpolarized cross section as

[
dog = - - SpFFT. 18
T A D@D P (1%

3.1. Polarization Transfer Coefficients. The spin-transfer coefficient is given
by the following formula [12]:

. SPFo(UF*0,(3)
Ky = = (19)




where A,k =0, £1. For j; = j3 = % we found from Egs. (1), (16) and (19) the

spin-transfer coefficient in the following general form:

SpFF K =6y v S JRLED @D +1)x
SS"JJ LL"Jy
x /(25 + 1) (25" + 1)(2J + 1) (2J' + 1) (—1)F2Hia+S" I +L
X (1 -1 )\lJ() 0)([//0[/0 |JOO)><

‘ . J S L
1 S 1 J’ , Loy
x{ A }{3 T } N Y (T M 1)
2 2 1 1 J

Here we used the standard notations for the 6j- and 9j-symbols [15]. From
Eq. (20) one can find the following relations:

K.l =K' =-K!=-K/, Q1)
and Kf = 0 at ¢ # j, where i,j = z,y,2. From Eq.(20) we also find that
there is no polarization transfer (Kij =0, ) =z,yz2) for S =5 =0in
accordance with the above discussion. These coefficients are also equal to zero
for J = J’ = 0. For the spin-triplet transitions S = S’ = 1, we find from Eq. (20)
that K7 = K # 0 and K = K? # 0. Eq.(20) is valid for arbitrary spins jo
and 7j4.

As an example, let us consider the reaction with the minimal spins j; =
%, i =1,...,4. For the total isospin 7" = 0 and parity 7 = +1 one has S = 1.

For this case Eq. (20) gives (using the notation a§ L= a%)
K® = KY = [V2a + af|* — 3Re (v2af + af)ai” 22)
v 3 (|af]* + |ai[?) ’
3 a0 2|2
K — [V2af +ai (23)

* 0 3(lafP +atP)

The formulae (22) and (23) coincide with those obtained previously in Ref.[10]
by a different method. For the case of 7' =1 and m = —1 one has S = 1. In this
case Eq. (20) gives

6 R 1 1%
K® = KV = M7 (24)
Y Jagl? + 3lagf?
3 112
z |Cl1| (25)

> ol + 3lal P’

which coincide (except for notations) with those obtained recently in Ref.[11]
in the o-representation for the amplitude. For higher spins of the 4th particle



Ja = %, Eq. (20) also gives non-zero coefficients K7 and K7Z, but the formulae
are more cumbersome and thus we do not present them here.

3.2. Spin-Spin Correlation Coefficients. For the spin-spin correlation coef-
ficient, defined as [14]

_ SpFox(1)o.(2) FT
O,k = SpFFT ) (26)

1

we found for the case of j1 = jo = 3

3
21

SpFFT Cyp = 0x_x Z (=15t (27 +1) x /(25 +1)(25" +1)x

SSs'J

< 3 (D200 + DV2D + 1 x (IN1 = A[Jo0) (JoO L' 0|L0)x
LLJy

!

S5
X{L I J} S
Jo

a5k Sy @7

=N N[
=N N[

We found from Eq.(27) the following relations: Cy; 1 =C_1 41 = —Cp ;=
—Cyy # 0, C) = CZ # 0, whereas C;; = 0 at i # j (i,j = x,y,z). This
formula is valid for arbitrary values of the spins j3 and js4 both of them being
integer or half-integer.

One can see from Eq. (26) that the sum ¥ = C, . + Cy  + C. . is equal to
o(1)-o(2). Therefore, X is fixed by the spin S: ¥ = -3 for S =0and ¥ = +1
for S =1 in accordance with the above results given in Egs. (12), (13) and (6).
From Eq. (27) one can find that C, , = Cy , = C. . = —1 for S = S’ = 0. For
S = S5 =1 we did not find here a transformation from a rather cumbersome
formula (27) to a more compact form of Egs. (12) and (13). However, one can
check by straightforward calculations that these formulae lead to the same result.

4. FULL SPIN STRUCTURE FOR THE REACTION } +1 — 141

For completeness, in this section we give the full spin structure of the binary
reaction at j1 = js = j3 = j4 = % discussed in part in Ref.[10]. For the case
T =0 and 7 = —1, one has S = 0, and the amplitude (1) can be written as

o 10 —i0 - 3
UAEEDD (xtg,oaT;xiZ”) (x,ﬁ? ﬁ”xuz)ka\/ﬂa%o. (28)

a=t,y,z




When deriving Eq. (28) from Eq. (1) we used for the Clebsh—Gordan coefficients
the formulae given above after Eq. (2). The unpolarized cross section correspond-
ing to the amplitude (28) takes the following form:

M1 2

_1 2 __ 3 10)2
dog = 7@ > |Mps = 16 ® ", (29)

M1 2 13 4

that is in agreement with Eq. (5). In order to calculate the polarized cross section
we use the density matrix for the spin-1/2 particle being in the pure spin state
Xu; in the following form:

1
Xos Xoi, = 5 (140 pa). (30)

Using Eqgs. (30) and (28) one can write the cross section with polarized both initial
and final particles as
do(p1,P2; P3, Pa) = @ | Mo 1% =

1
= Zdoo (1-p1-pP2)[1 +p3-ps—2(p3-k)(ps-k)]. (31)

The polarization vectors of the final particles ps and p4 are determined by the
reaction amplitude (28) and can be found using the standard methods [12, 14].
After performing this step and substituting the obtained vectors ps and p4 into
Eq.(31), one can find the polarized cross section do(pi,p2) given by Eq. (6).
However, the calculation of ps and p4 is not necessarily and Eq. (31) is sufficient
to find all the spin observables for the reaction described by the amplitude (28).
In particular, one can see from Eq.(31) that there is no polarization transfer in
this reaction (K7 = 0, ,j = x,v, 2), but there are spin—spin correlations in both
the initial and final states.

For T'=0 and m = +1 we have S = 1, and the amplitude in Eq. (1) can be
written as

, 1ef —i0
s = Y (e Gl ) (WD )

a=x,Y,z

where II,, is the following spin operator:

I, = Goo + F ko(o - k) (33)
with
G = L (a9 + 2z a?) (34)
Vir et



and
3 5

= (35)

The cross section with polarized initial and final particles is the following:

F=-—

do(p1,p2; Ps, pa) = O | M} 4|2 =

= 3 Sploa(i-a p)osl+op)}x

af=wz,y,z
1
X3 Sp{Ily (1+0-p2)ls(l -0 p1)}. (36)

Calculating the traces in Eq. (36), one can find finally

do(p1,P2; P3, Pa) = %Q {|G|2(1 +Pp1-P2)X
X (3+Pp3-pa) + [(|[F]> +2Re FG*)(1 + p1 - p2)—
—2|F[* (p1 - k)(p2 - k)] [1 — 2(ps - k) (P4 - k) + p3 - pal—
—2|G)*[(p1 - P2)(1 + P3 - Pa) — (P1 - P3)(P2 - P4)—
— (P2 - P3)(P1 'Pm—
—2Re FG*(p2 'E)[(pl -k)(1+p3 - pa) — (p3 - k) x
X (ps-P1) — (P4~ lA<)(P1 'P3)]—
—2Re FG*(p1 - k)[(p2 - k)(1 + ps - pa)—
— (p3 'E)(P4 “P2) — (P4 'E)(P2 'p3)}—

—2Im FG* ([p1 x k|(p2 - k) + (p1 - k) [p2 x K]) - (P3 + pa)+
+21Im FG* (p3 - k)([k x (p1 + p2)] - pa)+
+2Tm FG* (pa - k)([k x (p1 + p2)] - p3)+
+2(|G]> + Re FG*)(p1 + p2) - (P3 + Pa)—

—2ReFG*(p1-l;+p2 1A<) x (ps3 -lA<—|—p4-lA<)}. 37)
The unpolarized cross section for this case is
1 o
dog = 7@ {IG+F)* +2|G]*} = E3(|a?2+|a§ 2. (38)

Using Eq. (38), one can find from Eq. (36) all the spin observables for this reac-
tion. For example, one can see that the spin—spin correlation coefficients C; ; and
spin transfer coefficients K’ f obtained from Eq. (36) coincide with those given by
Eqgs. (12) and (13) and Egs. (22) and (23), respectively.



5. CONCLUSION

The obtained formulae (6), (12), (13), (20), and (27) allow us to conclude that
for S = 1 (i) the spin—spin correlation coefficient C,, , is always non-negative, and
(ii) spin transfer coefficients K 4 and K7 are non-zero in the reaction in question
1+2 — 344 at the threshold independently of the spin j4 of the 4th particle. On
the contrary, for S = 0, the spin-spin correlation coefficients Cy , = Cy , = C.
are equal to —1 and all the spin transfer coefficients are equal to zero. This
conclusion is a generalization of the previous results [10, 11] found for the case
of ju = % The obtained result allows one to determine unambiguously the P-
parity of the ©F by measurement of either Cy, , or KZ (or K7) in the reaction
pp — LT OTF. The total isospin of this channel is fixed, 7' = 1, therefore the
spin S of the initial nucleons is directly related to the P-parity mg of the O7:
(=1)% = me. In the reaction pn — A°©7 one has either (—1)% = —7g, if the
isospin of the ©% is even (Ig = 0, 2), or (—1)5 = e, if Ig = 1. Therefore,
both the P-parity and the isospin of the ©T can be determined unambiguously
by combined measurement of C, , or K (or K?) in these two reactions.
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